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Abstract

The previously studied notions of smart and foolproof finite order
domination of a simple graph G = (V, E) are generalised in the sense
that safc configurations in G are not merely sought after k£ > 1 movcs,
but in the limiting cascs wherc kK — co. Some genceral propertics of
these generalised domination parameters are established, after which
the parameter values are found for certain simple graph structures
(such as paths, cycles, multipartite graphs and products ol complete
graphs, cycles and paths).

Keywords: Secure & Wcak Roman Domination, Higher Order
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1 Introduction

A guard function for a graph G = (V, E) is a mapping [ : V — {0,1,2,...}
such that f(v) denotes the number of guards stationed at a vertex v € V. A
guard function partitions the vertex sct of G into subsets V; = {v : f(v) =
i}, 1 =10,1,2,... and we (imprecisely) write f = (Vo, W, Va,...). A guard
function is called safe il cach v € V is adjacent to some u € V\Vy (i.c. if
V\Vy is a dominating sct of G). The weight of a guard lunction is denoted

w(f) =), f(v).
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In [1] the following kinds of safe guard functions were considered:

(1)

(2)

(3)

()

A smart k-weak Roman dominating function (k~-SWRDF) is a sale
guard function [ = (V{® v©® ,V.‘,(O)) with the property that, for
any sequence of vertices wvp,v1,...vk—1, there exists a sequence of
vertices u; € V,(i) U Vz(i) in the neighbourhood of »; such that the
functions fC+1)(s) = move(f®),u; — v;) are also safe guard functions
forall i = 0,...,k — 1. The minimum weight of a k-SWRDF is
denoted

= ; (0) (0)
wr(@) = _min (V) +2v?)),

which is called the smart k—weak Roman domination number of G.

Similarly, a foolproof k-weak Roman dominating function (k~-FWRDF)
is a safe guard function f©@ = (V9 v Vi) with the property
that, for any sequence of vertices wvg,v1,...,vk-;, the
functions fG+1(s) = move(f(, u; — v;) are also safe guard functions
for any sequence of vertices u; € Vl(') U Vz(i) in the neighbourhoods of
v; and all ¢ = 0,...,k — 1. The minimum weight of a k- FWRDF is
denoted

* _ : (0) 0)
1@ =, _min  (IVO+27)),

which is called the foolproof k—-weak Roman dominalion numberof G.

A smart k—secure dominating function (k-SSDT") is a safe guard func-
tion f© = (V{? v ) with the property that, for any sequence of
vertices vg, vy, ..., Vg1, there exists a scquence of verlices u; € V,(i)
such that the functions fG+1(s) = move(f®),u; — v;) are also sale
guard functions for all ¢ = 0,...,k — 1. The minimum weight of a
k-SSDF is denoted

Q) = . T
Yer(C) = i VO
which is called the smart k-secure dominalion number of G.

Similarly, a foolproof k—-secure dominating function (k-FSDF) is a safc
guard function f©@ = (V{?, V) with the property that, for any
sequence of vertices v; (i = 0,...,k — 1), the functions fG+D(s) =
move(S®), u; — v;) are also safe guard functions for any sequence of
vertices u; € V,(i) in the neighbourhoods of v; and all t = 0,..., k- 1.
The minimum weight of a k-SSDF is denoted

. : 0
%x(G)= min |V,

which is called the foolproof k-secure dominalion number of G.
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2 Infinite order generalisations

If one is interested in perpctual or eternal security in a graph, then the
following generalisations seem natural.

(5) A smart [foolproof] co—weak Roman dominating function (co-SWRDF)
[((co~-FWRDF)] is & k-SWRDF [k~-FWRDF] in thc limit as k — oo.
The minimum weight of an co-SWRDF [co-FWRDI| is denoted

Yrieo(G) = im Yk(G)  [1r00(G) = lim 77 o(C)],
—00 k—o0

which is called the smart [foolproof] co—weak Roman dominalion num-
ber of G.

(6) A smart [foolproof] co—secure dominating function (co-SSDF) [(co-
FSDF)] is a k-SSDF [k-FSDF] in the limit as & — co. The minimum
weight of an co-SSDF [co-FSDF] is denoted

'Ys,oo(c) = lc]gr;o 7s.k(G) ['Y.:,oo(c) = kl_]rEo 7:,k(G)]a

which is called the srart [foolproof] co-secure dornination number of

G.

The question of existence of these infinite-order paramcters is settled
in the following theorem.

Theorem 1 For any order n graph G, the limits

(@) Yroo(G) = liMg—roo ¥r,6(G),

() ¥:,00(C) = a0 75(C),

(€) Yo.00(C) = i sc0 7, £(G) and

(d) 73 ,00(G) = limg—.00 75 £ (C)
exist. In fuct,

1 € 71,00(G), Yr.00(G)s ¥5,00(G)s V5,00(G) S — 1 (1)

and both these bounds are altainable for all four parameters.

Proof: The boundsin (1) are trivially true for the four parameters ¥,00 (G),
72.00{G); ¥s,00(G) and 7} oo (G) if they exist, and the existence of the limits
follow from Proposition 3 in [1]. The lower bounds in (1) arc attained for all
four parameters when G is the complete graph K, while the upper bounds
in (1) are attainced for all four parameters when G is the star Ky ,—;. W

We now show that the limiting parameter values v, oo (G) and v,,00(G)
cannot differ, for any graph, G.
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Theorem 2 For any graph G, 7;,00(G) = ¥r,00(G).

Proof: Consider an arbitrary problem vertex sequence v; € V(G) (i =
0,1,2,...) for which the move sequence

SO = move(f 9, u; — ;) (2)

generates safe guard functions f) in GV i = 0, 1,2,..., such that f(® =
Va2, VO, Vi) is an co-SWRDF of weight w(f®) = 7,.0(C). If there
exists a k € N such that V) = 0, then f® is an 00-SSDF for C, rendering
the equality chain

W) = 4.00(G) £ Y,00(C) < w(f®) = ().

Now supposc that
Yroo(G) < ¥s,00(G) (3)

for some graph, G. Then it follows by the contrapositive of the above
argument that for any sequence (2) originating from a minimum weight
00-SWRDF, V,?) # @ for all i € N. Hence there exists a vertex v* € v
(for all i« € N) which is not included in the move sequence (2), despite
the fact that the whole open neighbourhood set N(v*) may be included
in the problem vertex sequence wg, vy, vg,.... This means that the valuce
of fO(v*) is not minimal, contradicting the fact that f( is a minimum
weight co-SWRDF'. We conclude that the strict inequality (3) is impossible,
for any graph G. [ ]

Not only is it possible Lo prove a result similar to the above for the
parameters ¥}, ,(C) and v} o (G); it is, in fact, possible to find an exact
value for 7 oo (G) = 75 o, (G), for any graph G.

Theorem 3 For any order n graph G with minimal degree §,

7;,00((}) = 7:,00(0) =n—4J4.

Proof: If n—4§ < [Vi] € n, then [ = (W5, V}) is an co-FFSDF for ¢,
since if there were an undominated vertex of G after a sequence of k moves
from the sale guard function f (for any k > 1), then this would imply that
[Vo| > & + 1. Therelore

Ys00(G) S =4 (1)
Now supposc that v} (G) < n — 4. Because any sequence of k moves
of the form fO+1) = move(f®),u; — v;) may follow a given sequence of
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Figure 2.1: This graph may be partitioned into threc subcliques of order
two.

problem vertices v; € VO(') fori = 0,...,k — 1, it may be possible that
the entire closed ncighbourhood N[v*] of a vertex v* of minimal degree
in G is included in the sct Vo(k) , resulting in v* being undominated. This
contradiction shows that

(4]

Yaoo(C) 21— 0. (5)

The desired result in the casc of 7} ,,(G) follows by a combination of (4)
and (5). The proof of the corresponding result for ;. o (G) is similar. W

It follows by Theorems 2 and 3 that the » and s subscripts arc su-
perfluous in the case of the infinite order paramcters. Hence we shall
simply denote the valucs of ¥r,00(G) = 7s5,00(G) by Yo(G), and that of
Yr.00(G) = 75 00 (G) by 75,(G). In a similar vein we shall henceforth refer
to 00-SSDIs and co-SWRDFs simply as co-smart dominating functions
(co-SDFs), while referring to 0o-I"SDFs and co-FWRDIs simply as oco--
foolproof dominating functions (oco--1"DI%s).

We next prove that 7.0 (G) is bounded from above by the minimum num-
ber of subcliques into which G may be partitioned (somewhat imprecisely
speaking).

Theorem 4 If the vertex sel of G may be partilioned into ¢ subsels S, ...,
S, such that S; tnduces a clique in G for alli=1,...,¢, then 70 (C) < c.

Proof: Lct G be an order ngraph and let. 8 = {8y, ..., S} bea partition of
V(G) such that, for any S; € S, (S;) is complete. Also, let {vy, vy, ... v} C
V(C) be vertices such that v; € S; fori = 1,2,...,¢. Then [ = (¥, V{?)
is an 0o-SDI" for G, where VI(O) = U {vi} and VO(O) = V(()’)\V,(O). This
is true, because [ is cortainly a safe guard function. Furthermore, given
an arbitrary problem sequence v;; € VO(J ) (F=0,...,k=1) where v;; € S;;,
the moves fU+1) = move(fU),u; — ;) render a sequence of safe guard
functions f4U+1, where u; € V(Si;)\{vy}, forall j =0,...,k —1. The
weight of f© is IV,(O)l = ¢, yiclding the desired upper bound on y,,(G). B
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Good bound realisations of the above result for gencral graphs arc hard
to achieve, since determining the minimum value of ¢ in Theorem 4 is a
known hard problem, called the minimum clique partition problem. In
fact, solving the minimum clique partition problem is equivalent Lo solving
the minimum vertex colouring problem for the complement of the graph,
for which no known rm-optimal algorithm exists (m being a constant). For
example, optimal values of ¢ are not nccessarily obtained via a greedy ap-
proach whereby one starts the partition with the largest clique in G, then
chooses the next largest clique, and continues in this fashion until all ver-
tices are accommodated in some clique. Figure 2.1 shows an example where
this approach yields a value of ¢ = 4, while ¢ = 3 is in fact the minimum
number of subcliques. To complicate matters further, it is not certain when
the minimum value of ¢ in Theorem 4 (which is the vertex chromatic num-
ber of the graph complement, x(G)) is cqual to the valuc of 4oo(G). Graphs
exist for which 7., (G) # x(G). However, it is possible Lo show that equality
does, in fact, hold between voo(G) and x(G) for certain graphs, €, as we
now show.

Proposition 1 For any graph G, v,(G) > B(G).

Proof: let T = {vy,vs,...,v5} be an independent sct in G. Suppose,
to the contrary, that v.(CG) < B(C), and let f© = (VO(()) ,Vl(o) ) be any
minimum weight co~-SDF for G. Then the guard function S obrained
from the move sequence fG11) = move(f), u; — v;41) is not a sale guard
function for G, no matter how the vertex sequence u; € V(G) is chosen for
i=0,...,8(G) — 1. This contradiction shows that v, (G) > B(G). [ ]

Note that, for any graph G, B(G) < x(C). Thus, if B(G) = x(G), then
Yoo(G) = x(C) by Theorem 4. Furthermore, equality also holds between
Yoo(G) and x(G) for graphs whose complements are vertex colourable with
relatively few colours.

Theorem 5 If x(C) < 3, then Yoo (G) = x(C).

Proof: Il x(C) < 2 the theorern holds trivially. Therclore let x(G) = 3,
but suppose, Lo the contrary, that v, (G) < 2. By Proposition 1, G cannot,
contain a 3-cycle. Consider the situation where G contains an odd cycle €
Vv - - - vk (k> 2), and define the problem sequence vy, vg, va, s, - . ., Uk
in V(G). Because vy and vy are independent in G, it follows that v, (C) >
2. Morcover, v,uy € V,(z), starting outl [romn any minimum weight oc -
SDF, fO = (V(,(O), V](o)). Hence any safe guard functions f&), f(4) k)
must emanate from the move sequence fG+1) = move(f&) vy o — vy;),
i=23,...,k—1. But then there cxists no safe guard function f&<1,
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because any move resulting from the safe guard function £ will result in
either vog—1 OT vak1 not being dominated. Therefore we conclude that G
has no odd cycles. But then G is bipartite, and hence x(C) = 2, which is
a contradiction. We conclude that v, (G) = 3. |

For specific graph classes the result of Theorem 4 is certainly of practical
value (as will be demonstrated in §3) and the more concrete corollary below
follows immediately from the theorem.

Corollary 1 If G is an order n graph such thal, for some subsel of verlices
S = {vy,...,vm} C V(G), the graph G — S possesses a perfect malching,

then "—m +
P — T
fme n2'n.

This result corresponds to the worst casc upper bound on 44, in (1)
for the case where G 2 Ky n-1. If the vertices of Ky n_y are labelled
such that ({vy,ve,...,vn-1}, {vn}) are the partite sets, then Ky, .y —
{vi,v2,...,vn-2} posscsscs the perfect matching (vn_.1,vn) = Ky, yicld-
ing the upper bound

’Yoo(c) <

n+(n-—2)

Yool G) < 0

=n-1,

as stated in (1). Finally, we summarisc the relationships between the six
new parameters considered in 1) and in this paper, for further reference.

Theorem 6 The relulionships

YG) £ welC) £ 7k(G) 700 (G) < x(C)
IA IA IA (6)

G) < 7k(C) 75.6(G) TolG) = n-4¢

hold for all k € N and any order n graph G with minimum degree 4.

IN

IA
IA

3 Parameters values for special graphs

In this section we consider a number of simplce graph classes and find values
for the two new infinite order domination paramecters considered in this
paper.

3.1 Paths

The following corollary is a dircct result of Theorem 3 in 1] and Theorem
3 in this paper.
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Corollary 2 For any path P,,

k(3

(a) Yol Pr) = 5],

(b) Vi (Pr)=n-—1.

The limiting valuc in Corollary 2(a) is obtained by v, x(F,) and Vo, k(Pn)
when k = [235] if n is odd and when k = [232] if n is cven, while that in
Corollary 2(b) is obtained by 7} ,(Pn) when k =n — 2.

3.2 Cycles

The following corollary is a dircct result of Theorem 4 in (1] and Theorem
3 in this paper.

Corollary 3 For any cycle C,,
. n
(2) Yoo(Crn) = [5];
(h) '7;o(Cn) =n-2.
The limiting value in Corollary 3(a) is obtained by +, «(C,.) and v £(Cy)
when k = [233] if n is odd and when k = [222] if n is even, while that in
Corollary 3(b) is obtained by +; . (Cr) when k =n - 3.

3.3 Complete multipartite graphs

Although exact values for the four finite order domination parameters con-
sidered in [1] are not known for the class of complete multipartite graphs,
these values may, in fact, be found in the case of the two infinite order
domination paramecters.

Theorem 7 For the complete multipartile graph Ky, pay.oper with py <
2L ... <,

Yoo (K, P2rpe) = Yoo (Kpi,pz,pe) = Pry
Jorallt > 2.

Proof: TFor Ky, p,,...p0 With py < pp < ... < pg, the minimum degree is
given by 6 = Zf,—: pi. Hence it follows, by Theorem 6, that

L -1
"/OO(Kmmz..-.,m) < ’Y&)(Km,pz,.-..m) =n-6= ZPi - ZT’:‘ =p. (7)
i=1 i=1
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Figure 3.2: Grid-represcentation of Kp x K, with p =4 and ¢ =5.

Now suppose that Yoo( Ky, pa,....pe) < Po- Let Si,..., 8 be the partite sets
of Kp, py....p0» With |Si} = p; for all i = 1,...,¢. Let f© be a safe guard
function of weight ¥, 00(Kp, pa,...p.), and let {vy, ..., v, } denote the set of
vertices in SN VO(O). Then clearly 0 < py — Yoo [ Kpy parpn) < 0 < pe. Now
consider the sequence of problem vertices vy, ..., Uy, 1L is clear that there
exists no sequence of moves f{+1) = move(f®,u; — v;) (i =0,...,m—1)
such that f(™) is a safe guard function of K,, 5, . . This contradiction
shows that

’Yoo(Kpl.m.---,m) 2 Ppe. (8)

The desired result. therefore follows by a combination of (7) and (8). |

3.4 Products of complete graphs, paths and cycles

In this section we consider Cartesian products of complete graphs, Cartesian
products of paths and Cartesian products of cycles, and find values for or
bounds on the two infinite order parameters for these simple graph classes.

Proposition 2 For the complete graphs Kp and K4, with p < g,
(a) Yoo(Kp x Kq) = p,
(b) Yo(Kp x Kg) =pg—(p+4q) +2.

Proof: (a) The vertex set V(K x Kj;) may be partitioned into p subsets,
each inducing a ¢-clique in K, x K. Hence it follows, by Theorem 4, that
Yoo Kp x Ky) < p. But it follows by Proposition 1 that v, (K, x K,) >
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Figure 3.3: SDFs /@ = (V{®, V(%) for P, x P, showing that v, c0(P, X
P;) < [B]. Dark vertices denote elements of V®, while dark edges delimit
matching pairs.

B(Kp x Kq) = p (as may be scen in Figure 3.2 for the special case where
p=4and q=5).

(b) The graph K, x K, is (p + g — 2)-rcgular. Hence the result follows
directly from Theorem 3 withn=pgand é=p+q—2. [ |

Thecorem 8 For any paths I, and Py, with p,q > 2
_[m
(a) ')’oo(prpq)— {21;

() Yoo Pp X Py) =pg — 2.
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Proof: (a) Label the vertex in row 7 and column j of the grid graph P, x Py
asv;j foralli=1,...,pand j = 1,...,q. Consider first the case where
p or q is even (or both). In this case there exists a perfect matching of
P, x P,, as illustrated in Figure 3.3(a) for the special case where p = 6 and
g = 7. Hence Corollary 1 with m = 0 renders the upper bound

Yoo (Pp X Py) < %‘i if p and/or g arc even. )

This upper bound is indeed the exact value of yoo(Pp X P;), by Proposition
1, since V(P x P;) cannot be partitioned into fewer than B sets, cach
inducing a clique in /’, x P (because il this were true, we would nced at
least one triangle as subgraph of P, x P,). Furthermore it is possible to
define an co-SDF f(O) = (Vo(o),V,(o)) for which Vl(o) is an independent sct
in P, x Py and which contains exactly one vertex from cach matching pair
(as depicted by the dark vertices in Figure 3.3(a)).

In the case where both p and g are odd, any maximum cardinality
matching of the graph 1%, x Py — vp 4 lcaves exactly one unmatched vertex,
as illustrated in Figure 3.3(b) for the special case where p =5 and ¢ = 7.
Hence Corollary 1 with 7n = 1 renders the upper bound

pg—1
2

Yoo (Pp X 1I%) < +1 if p and q arc odd. 10)

Again this bound is in fact the exact value of oo (£ X I%), by Proposition
1, using the same arguments as above. A combination of the exact valucs
of Yoo(P, % P) in the upper bound formulas in (9) and (10) renders the
desired result.

(b) For the grid graph /%, x P, the minimum degree is 6 = 2. Hence
the result follows dircetly from Theorem 3 with n = pg and d = 2. ]

The next result follows immediately from Theorems 3 and 8.
Corollary 4 For any cycles Cp and Cy, with p,q > 4,
7 Al {
(a) F < 70(Cp x Cy) £ [221],

(b) %5(Cp x Cg) = pq — 4.

Proof: (a) The lower bound follows, by Theorem 6, from the bound

n(2A - 2L +5)

¥s1(G) 2 (A+1)2-(t-1)(t-2) (”)

in [3] for any K, -free graph G of order n and with maximum degree A.
Here we may take i = pg, ¢ = 3 and A = 4. Furthermore, v, 0(Cp X Cy) <
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Ys,00{Pp X Pg) < [B] for all p,q € N, since P, x Py is a spanning subgraph
of Cp x C,.

(b) For Cp x Cy, the minimum degrec is § = 4. Ilence the result follows
directly from Theorem 3 with n = pq and 6 = 4. [ ]

Note that if both p and g arc cven, then the same indcpendcnl. sct
structure as depicted in Figure 3.3(a) may be used as V 9 for an co-
SDF f(O = (V(O) V(O)) for the graph C, x Cy, and hence, in this casc,
Yoo(Cp % Cq) = [pq/2], by Proposition 1 We conjecture that this value
for yeo(Cp X Cq) is always Lhe case il p,q > 4. However, the lower bound
in Corollary 4(a) is sharp il p = 3 and q is small cnough (for example, if
4<p<11).

Conjecture 1 For any p, q € N salisfying p,q > 4, Yoo{Cp x Cq) = [pq/2].

3.5 Hcxagonal graphs

The notion of higher order domination in graphs strongly resembles a game
ol strategy, where a player altempts to prepare against a worst case scenario
of a sequence of opposition moves. This resernblance suggests that one
consider higher order domination strategies on hexagonal graphs, since war
games arc typically played on boards consisting of hexagonal cells, where
picces may move from a cell to any of its 6 adjacent cells. We therclore
define a hexagonal graph H,, , consisting of pq vertices, numbered according
to the edge set structure shown in Figure 3.4(a).

Theorem 9 For any integers p,q > 2,

[i'i] 5 il pis even,

I—':';l]"g;+9+l il p is odd.

(e) Yoo(Hp,e) = {

(b) 'Yc:o(Hp.q) =pq -2

Proof: Dcfine the triangular subgraphs

Tij = (U3i1,2541, V3i42,25 4 15 U3 1,2(5 1 1))

and

T 5 = (U3(i-41),25+1> V3i1.2,2(5+1)» U3(i4 1,20+ 1))
of Hpq for all i = 0,...,[2¢/3] and 5 = 0,...,|p/2] with the convention
that these triangles arc pruncd to subgraphs isomorphic to Ky or Ky il

respectively one or two subscripts of vertices of T; j or T; ; are out of range
with respect to the vertex numbering of H,, 4.
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Figure 3.4: 0c0o-SDI* for H, ,.
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Figure 3.5: 0c0-SDF for H,, 4 (continucd).

(a) If p is even (as shown in Figure 3.4(b)), then these (poss:bly pruncd)
triangles constitute a partition of the vertex sct V(H, q) into [—‘1] £ inde-
pendent c—cliques (where ¢ € {1,2,3}), and hence 7,,00(Hp,q) < [—‘1]2 by
Theorem 4. But there exists an independent sct of cardinality [-9] E as in-
dicated by the dark vertices in Figure 3.4(b), and hence v5,00(Hp,q) = |' 1%
by Proposition 1, thereby proving the first equality.

For the second equality (i.c. if pis odd) the pattern for the last three rows
may be altered to improve the upper bound oo (Hp,q) < [—’1] E slightly. 1t
is easy to see that the last three rows of the graph contain g+1 mdcpond(,nl.
cliques. Hence Yoo (Hp,q) < [-5‘1] 35—3 +g+1. But there exists an independent
set of cardinality [3‘1] 223 1 g+1 as indicated by the dark vertices in Figure
3.5 when g is cven, dl'ld hence s 00(Hp,q) = [—'1] B3 4 4+ 1, again by
Proposition 1. For the casc where both p and q arc odd an mdcpondom
sct can be found by sclecting all vertices of the graph whose indices are
both odd.

(b) This result [ollows directly from Theorem 3. u
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4 Conclusion

In this paper the previously studied notions of smart [foolproof] k-weak
Roman and of smart [foolproof] k-secure domination (1] were generalised
in the sense that safe guard functions in a simple graph were not merely
sought after k > 1 movcs, but in the limiting case where k — oo instead,
called perpetually or cternally smart [foolproof] domination. Some general
propertics of these gencralised domination parameters were established in
§2, after which the parameter values were found for certain simple graph
structures in §3.

Further work may involve generalising the paramecters in (1] and in this
paper to the situation where an arbitrary number of guards may be sta-
tioned at any vertex of the graph. Also, examples of graphs exist for which
Yoo(G) < X(G). A characterision of exactly when strict incquality occurs
in ¥00(G) < x(G), which holds for all graphs, will certainly be of interest.
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