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Abstract

Let G be a k-regular graph of odd order n > 3 with & > (n + 1)/2.
This implies that k is even. Furthermore, let

pemin{ 2]}

If zy,%2,...,zp are arbitray given, pairwise different, vertices of the
graph G, then we show in this paper that there exist p pairwise
edge-disjoint almost perfect matchings M, M2,..., M, in G with
the property that no edge of M; is incident with z; fori=1,2,...,p.
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We shall assume that the reader is familiar with standard terminology
on graphs (see, e.g., Chartrand and Lesniak [1]). In this paper, all graphs
are finite and simple. The vertex set and edge set of a graph G are denoted
by V(G) and E(G), respectively. The neighborhood Ng(z) = N(z) of a
vertex z is the set of vertices adjacent with z, and the number dg(z) =
d(z) = |N(z)| is the degree of . The minimum degree of G is denoted by
4§(G). If d < dg(z) < d+1 for each vertex x in a graph G, then we speak of
a (d,d + t)-graph. For a vertex set X of a graph G, we define G[X] as the
subgraph induced by X. If M is a matching in a graph G with the property
that every vertex (with exactly one exception) is incident with an edge of
M, then M is a perfect matching (an almost perfect matching). 1If M is a
matching and H; and H; are two disjoint subgraphs of G, then ey (H,, H)
are the number of edges in M with one end in H; and the other one in H».
Analogously, if G is a graph and X; and X; are two disjoint vertex sets of
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V(G), then eg(X), X2) are the number of edges in E(G) with one end in
X1 and the other one in X,. If G is a graph and A C V(G), then we denote
by ¢(G — A) the number of odd components in the subgraph G — A. The
proof of our main theorem is based on the following two well-known results.

Theorem 1 (Dirac [2] 1952). If G is a graph of order n > 3 and
minimum degree § > n/2, then G is Hamiltonian.

Theorem 2 (Tutte [5] 1947). A graph G of even order has a perfect
matching if and only if ¢(G—S) < |S|+1 for every proper subset S of V(G).

As a generalization of a result by C.Q. Zhang [6] on regular graphs, C.
Zhao [7] proved in 1991 the following theorem.

Theorem 3 (Zhao [7] 1991) If G is a (d,d + 1)-graph of even order
2p > 2 with d > p, then G contains at least

2
2o

edge-disjoint perfect matchings.

Corollary 4 If G is a k-regular graph of odd order n = 2p+1 > 3 with
k> p+1, then G contains at least

k-3

edge-disjoint almost perfect matchings.

Proof. Let v be an arbitrary vertex of G and define the graph H by
H =G —v. Then, H is a (k—1, k)-graph of even order 2p with k — 1 > p.
According to Theorem 3, there are at least

B2 eir-r] <o)

edge-disjoint perfect matchings in H, and the proof is complete. O

All the edge-disjoint almost perfect matchings in the proof of Corollary
4 are not incident with the vertex v. A natural question to ask is how many
edge-disjoint almost perfect matchings exist such that all these matchings
are not incident with different vertices. In relation to this problem, we will
now present the main theorem of this paper.
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Theorem 5 Let G be a k-regular graph of odd order n > 3 with & >

(n+1)/2, and let
. [k n
p=mm{§, [k_§]}'

If the vertices z;, z3, ..., z, of the graph G are arbitray given and pairwise
different, then there exist p pairwise edge-disjoint almost perfect matchings
My, M,, ..., M, in G with the property that no edge of M; is incident with
zifori=12,...,p.

Proof. Let p be chosen maximal such that for p arbitrary given and
pairwise different vertices z1,z2,...,%p in G, there exist p pairwise edge-
disjoint almost perfect matchings M;, M3, ..., M, in G with the property
that no edge of M; is incident with z; fori = 1,2,...,p. Since k > (n+1)/2,
Theorem 1 immediately shows that p > 1. If we define

for s € {1,2,...,p}, then G, is a (k — s,k — s+ 1)-graph with the property
that exactly the vertices zy,z,,...,2, are of degree k—s+1. In the case that
s < k—(n+1)/2, we have §(G,) = k—s > (n+1)/2 and thus, according to
Theorem 1, G, contains a matching M,y with the property that no edge of
M, 4, isincident with z,,,. Thisimplies p > k—(n+1)/2+1 = k—(n—-1)/2.

Define next the graph H = Gi_(n41)/2 With Go =G. If k = (n+1)/2,
then H is the k-regular graph G, and if k¥ > (n + 1)/2, then H is an
({n + 1)/2,(n + 3)/2)-graph with the property that exactly the vertices
Z1,%3,...,Tk—(n+1)/2 are of degree (n + 3)/2.

Now let ¢ be chosen maximal such that for ¢ arbitrary given, pairwise
different, vertices y;,yz,...,¥ in H with d(y;, H) = (n + 1)/2, there exist
t pairwise edge-disjoint almost perfect matchings Ny, N3, ..., N; in H with
the property that no edge of N; is incident with y; for ¢ = 1,2,...,¢.
Because of d(y;, H) = (n+1)/2for i = 1,2,...,t, the vertices y1,y2,...,¥:
are different from the vertices z1,Z2,...,Zk—(nt41)/2, if & > (n + 1)/2.
Therefore, it remains to show that

. [k n n+1y . [n+l-k n43
thm{E,k—E}—(k— 3 )—mm{—-2—, 5 } (1)

We proceed by contradiction. Suppose, to the contrary that

. [n+1—k n+3
t<mm{ R } (2)
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If we define .
H=H-JN,
i=1

then H, is an ((n+1)/2—t,(n+3)/2 —t)-graph with the property that ex-
actly the vertices 21,23, ...,Zx—(n41)/2 (if & > (n+1)/2) and y1, 92, - .., %,
are of degree (n + 3)/2 —t.

Let now y41 € V(H;) be an arbitrary vertex with d(ye41, H;) = (n +
1)/2 —t and define the graph

F=H —yq41.

It follows that F is an ((n—1)/2—1, (n+3)/2—t)-graph. If A is the number
of neighbors of y;., of degree (n + 3)/2 —t in H,, then F has exactly

n;- 1 —t— X vertices of degree n-1_ t, 3)
n—k — 142X vertices of degree ntl_ t, (4)
k—n;—1+t-/\ vertices of degree n+3—t. (5)

By the choice of ¢, we conclude that F doesn’t contain a perfect matching.
Applying Theorem 2, we deduce that there exists a subset S C V(F) such
that ¢(F — S) > |S| + 2. In the following we distinguish two cases.

Case 1. Let S = 0.

In this case, F has at least two odd components Q; and Q3. On the one
hand, the fact that §(F) = (n — 1)/2 — ¢ implies that each odd component
of F has at least (n+1)/2 —¢ vertices. On the other hand, our assumption
(2), shows that ¢ < (n + 3)/6 and hence, F consists exactly of the two
odd components @, and Q2. If we assume, without loss of generality, that
[V(@1)] < [V(Q2)|, then (2) implies 0 < (n + 3)/2 — 3¢, and we obtain

V@)l = IVEI-IV@)lsn-1- "3 44

n-3 3 n+3

n-—
= t -3t =n-2¢.
) +i< ) +i+ 2 dft=n-2

Since |V (Q2)| and n are odd integers, this leads to |V(Q2)| < n — 2 — 2t.
Therefore, we see that

n+1 n—1
5 —t< V@)l < ——, (6)

n-—1

2

SIV(@)<n-2-2t (7)
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Subcase 1.1. Assume that ey,(Q1,Q2) < 1 for each almost perfect
matching N; € {N1, Na,...,N,}. It follows from (2) and (6)

Y em(@,Q:) < i<

i=1

< n+1l
2

—t< V(@)
Thus, there exists a vertex w in @) such that Ng(w) C V(Q1) U {yt41}-
This leads to dg(w) < (n — 1)/2, a contradiction to §(H) = (n + 1)/2.

Subcase 1.2. There is an index j € {1,2,...,t} such that en, (Q1,Q2) >
2. Define the graph H; = H; U Nj, and let uju2 and vyv2 be two edges of
N; such that u;,v; € V(@) for i = 1,2. The inequalities (6) and (7) lead
to

V(Q:i) —{wiH<n-2t-3 (8)

for i = 1,2. Since §(H;) = (n + 1)/2 —t, we conclude that

S(HEIV(@0)  fo}]) 2 SUALIY (@0) — (i) 2 252
and hence, (8) yields for i = 1,2 that
26(HV(Q) — (i) 2 m— 3 -2 > V(@) — {u}]

As a consequence of Theorem 1, we see that the graph H;[V(Q;) — {vi}]
is Hamiltonian for ¢ = 1,2. Thus, the even order graph H;[V(Q:) — {vi}]
has a perfect matching M;" for ¢ = 1,2. If we define the matching N} =
M{UM;U{vyvz}, then N7 is a perfect matching of Hf —y;+1. Furthermore,
we define the graphs

F* = (V(H;) —{y;}, E(H;) - N)

-,

and for: = 1,2
Qi = Qi —y;, if y; €V(Qy),
Qi =@, if y; ¢V(Qi).

Subcase 1.2.1. Let y; € V(Q;) for i = 1 or i = 2, then, in view of (6)
and (7), it follows that

vV@)HN=IV@)-1<n-2t-3. (9)
In addition, we observe that
S(F V(@D > S(HV(QD))) — 12> 6(H[V(Q)]) —2

SEV@QI) 2222 —rp =220

2 2

v

-t.
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Subcase 2.1. Let 8 > 3. Then, the assumption (2) leads to the following
contradiction

n—1=|V(F)|>3(n-2'-1—t)>3(n;1—n;3)=n

Subcase 2.2. Let B = 2. Since S # 0, inequality (12) yields a > 1. If Q
is an odd component of F — .S with |V(Q)] < (n —1)/2—1, then we obtain
by (11) and (2) the contradiction

n-1=n4Fn22(";1

_Q+nq@puﬂ23(";l-0>n.
Subcase 2.3. Let § = 1. In view of (12), we have
a>|S|+1. (13)
It follows from (2) and (13) that
n+1

n-1 = [V(F)|2a+—=~t+|S]
1
> osl+1+ 223 g 4142
2 6 3
and hence, n
1§|S|<§—-1. (14)

Applying (11), we see that the graph F — S has o odd components with
at least (n + 1)/2 — t — |S| vertices and one odd component with at least
(n+ 1)/2 — ¢ vertices. Thus, we conclude from (2) and (14) that

n-1 = |V(F)|2a(%l—t—|5|)+";1—t+|5|
n+l n+3 n+l n+3
> s+ (- 2R 1s) + T - B g
n n
= (SI+1) (5 -181) + 5 +1s]
= M- IsP+ 2
= 3|.S'| |S|+3n
and so, we arrive at n
wﬁ—%ﬂ+§—l>& (15)

If we define the function

g(z)=m2—§z+g—1
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in the interval I : 1 < z < (n/3) — 1, then it is a simple matter to verify
that

max{g(z)} = g(1) = g((n/3) — 1) = 0.

However, this is a contradiction to (14) and (15).

Subcase 2.4. Let = 0. In view of (12), we have at least |S| + 2 small
components of order at most (n — 1)/2 —¢. If Q is such a component of
order ¢ < (n — 1)/2 — ¢, then, every vertex of Q is joint with S by at least
mingev(g){d(z, F)} — (¢ — 1) edges and we obtain

er(V(@),5) > ¢ (i, (4=, )} - 0= 1)) .
Because of 1 < ¢ < mingey (g){d(z, F)}, this leads easily to
er(V(@),5) 2 min {d(z,F)). (16)

If|S|+2 < (n+1)/2—t— ), then it follows from §(F) = (n —1)/2 — ¢t and
(16)

er(S,VF)-5) > (si+2) (251 -1)

- (|5|+2)("+1 )—(|S|+2)
> (5142 (M2 -) - 2F e

If|S|+2 > (n+1)/2 -t — A, then it follows from (3), (4), (5), and (16)
that there are at least |S|+2— ((n+1)/2 -~ )) odd components Q such

that

1
ntl .

er(V(Q),5) 2 min {d(z F)} >
Thus, it follows from (3), (4), and (5) that

n+1 n-—1
(2323 (55
+ <|5l+2———+t+/\)(

= (142 (- -0) -2

er(S,V(F)-S5)

(\Y

)

So, in every case, we arrive at

er(S,V(F) - S) > (IS| +2) (";’1 )— ";'1 +t+A (17)
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According to (5), there are at most k — (n + 1)/2 4t — X vertices in S of
degree (n + 3)/2 —t. Hence, if |S| > k— (n + 1)/2 4+t — A, then (3), (4),

and (5) imply
n+1 n+3
(k-2 -3 (552-9)

+ (ISI—k+n;—1—t+A) (";l—t)

|S|("+1 t)+k—"'2"1+t—)\.

If |S| < k—(n+1)/2+1t— X, then we conclude from (3), (4), and (5) that

er(S,V(F)-5)

IA

er(S,V(F)-5) < |5|("+3 ) |5|("+1 t)+|S|
+1 n+1
< |5|( : —t)-l-k- L

and hence, we have in every case that

1
er(S,V(F) - S) < IS (" + t) nt Lit—a ()
Combining (17) and (18), we find on the one hand that

(|.‘5‘|+2)<"+1 t)-"+1+t+,\<|5|<i—t) "'2”

2

and this is equivalent with

2(";1—t)—k+2Ago. (19)

On the other hand, our assumption (2) implies

n+41 n+l1 n+l1-k
2( 5 —t)—k+2/\>2( 7~ 3 )—k_O,

a contradiction to (19), and the proof of Theorem 5 is complete. O

If Gisof order n =4s+1 and k = (n— 1)/2 = 2s in Theorem 5, then,
by a theorem of Nash-Williams [4] or Jackson [3] (cf. [1], p. 108), the graph
G is Hamiltonian. Using this fact, one can show similarly to the proof of
Theorem 5 the following supplement to the main theorem.
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Theorem 6 Let G be a 2s-regular graph of odd order n = 4s + 1 and
let p=[(n —3)/6]. If z;,z,,...,z, are arbitray given, pairwise different,
vertices of the graph G, then there exist p pairwise edge-disjoint almost
perfect matchings My, M5, ..., M, with the property that no edge of M; is
incident with z; for i =1,2,...,p.

The next examples will show that the conditions k > (n + 1)/2 (cf.
Theorem 5) in the case n = 4s+ 3 and k > (n — 1)/2 (cf. Theorems 5 and
6) in the case n = 45 + 1 cannot be weakened.

Example 7 Let n = 4s + 1 and let k = 25 — 2 with s > 2.

a) Let G, be the complete graph K3,_,, and let Gy = Kosya — (M U
M>UM3), where My, M5, and M3 are three edge-disjoint perfect matchings
of the complete graph K,,,5. Now the disjoint union of G, and Gy is a
k-regular graph G of order n = 4s + 1. However, if z is an arbitrary vertex
of G, then there doesn’t exist an almost perfect matching M in G with
the property that no edge of M is incident with z.

b) For s > 3, let H, be a the complete graphs Ka;_;, and let Hy =
K3541—E(C), where C'is a Hamiltonian cycle of the complete graph Kp,p;.
In addition, let M) = {z,y1,22¥2,...,%,-2y;-2} be a matching in H;, and
let My = {u;v1} be a matching in H,. Now let G be the disjoint union
of Hy — My, Hy — M3, and a further vertex w, together with the edges
wuy, wvy, we;, and wy; for i = 1,2,...,s— 2. Obviously, G is a connected
(25 — 2)-regular graph of order n = 4s+ 1. However, there doesn’t exist an

almost perfect matching M in G with the property that no edge of M is
incident with w.

Example 8 Let n = 45+ 3 and k < (n — 1)/2 with s > 2. Since k is
even, it follows that k < (n — 3)/2 = 2s.

a) Let Gy be the complete graph K3, 1, and let G, be the graph Ko, 40—
M,, where M, is a perfect matching of the complete graph Kas42. Now
the disjoint union of G, and G is a 2s-regular graph G of order n = 45+ 3.
However, if z is an arbitrary vertex of G2, then there doesn’t exist an
almost perfect matching M in G with the property that no edge of M is
incident with z.

b) Let H; and H; be two copies of the complete graph Kasq1 and let
w be a further vertex. In addition, let M; = {z,y1,z2ys, ... yEs—1Ys—1} a
matching in H;, and let Mz = {u;v,} be a matching in Ha. Now let G be
the disjoint union of H; — M; and Hy — M, together with the edges wu,,
wv), wr;, and wy; for i = 1,2,...,s — 1. Obviously, G is a connected 2s-
regular graph of order n = 4s + 3. However, there doesn’t exist an almost
perfect matching M in G with the property that no edge of M is incident
with w.
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