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Abstract

We investigate the optimization of a real world logistics problem
which is concerned with shipping a dangerous chernical substance
in various degrecs of refinement to several locations and customers.
Transport frequencies, inventories and container flows have to be
optimized. On the one hand, we discuss the mathematical structure
of our problem (one result being its NP-completeness), and on the
other hand, we describe our practical approach which achieves nearly
optimal solutions.

In spring 2001, Microlog Logistics AG and the chair of Discrete Mathe-
matics, Optimization and Operations Research at the University of Augs-
burg set themselves the goal to solve the logistics problem of a leading
Lithium supplier. The aim was to optimize the business processes of this
producer for the given time ol 560 days (80 weeks).

1 Description of the problem

The Lithium producer has facilities at scveral locations (some of them in
Germany and the United States), in which different lithium products, for
instance lithium-granules, can be produced out of their respective preceed-
ing product which is unambiguously specified in the so called lithium pro-
duct tree. Apart from incurring costs and the given capacity limits it is
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also known which products can be produced at which location and which
amount of the preceeding product is needed to produce one unit of a certain
product.

Diflerent products may be produced at one location, and it is also pos-
sible that a product can be produced at several locations. There are also
locations (so called “sources”) at which an “indefinitely large” supply of a
certain product is available.

The Lithium producer has a defined set of customers for the scveral
different lithium products. Moreover, it is well known which products are
demanded by a certain customer. A storage facility for the products at the
individual locations is always given.

If a product transport is scheduled between two locations of the pro-
ducer or from a location of the company to a customer, the product can be
transported at certain costs. Moreover, a customer order is to be satisfied
in the time span given by the customer.

Ior the transport of the products there are one way containers, which
arc used only once, as well as returnable containers, which are reused, of
different types (i.c. Road Tank US or Big Bag) available; some of these can
be quite expensive. Containcr flows arc distinguished into empty container
flows and dependent (filled) container flows. Variables of the second type
arc rclated to product flows by transport constraints. These constraints
model the number of containers which are necessary to transport a given
amount of product flow.

For the transport ol a certain product between two fixed locations
mostly only one container type is provided. Il a certain amount of a product
is Lo be transported between two locations or Lo a customer, the number of
required containers is determined by the density and amount of the prod-
uct as well as the volume of the respective container type. Vice versa the
number of existing containers of the required type on one day bounds the
quantity of a product which can be transported.

For the modeling of the logistics problem, a network node is generated
for every product which is available at a certain location and for cvery
product which can be ordered by a certain customer. At these nodes, the
storage of the products is modeled via product storage arcs, whereas the
production and the transportation of products are modeled by arcs between
these nodes. In the same way container flows are modeled. If a container
is situated at a certain node at a certain time, it is only available at that
time for the product which belongs to the node.

Like product flows, container flows cause costs. Additional costs can
arise if containers have Lo be freighted into shipping containers (oversea
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transports) or trucks. This depends on the product which has to be trans-
ported, the starting point and the destination of the transport as well as
the used container type. As shipping containers and trucks are always only
hired if they are needed, they are always sufficiently available.

Naturally, the product flow variables arc floating numbers while con-
tainer flows are integral. Product flows are related to other product flows
by product flow balance constraints. In the same way, transport container
flows of returnable containcrs are related to cach other by flow balance con-
straints, but one way containers and shipping containers (including truck
transports) are not. The latter are not subject to flow balance constraints,
because the Lithium producer is not responsible for the return transport.

Due to the model we now have to distinguish three kinds of variables:
Product flows, transport container flows and shipping container flows (in-
cluding truck transports). All product and container flows within the loca-
tions, between them and to the customer as well as the storage of products
and returnable containers have to be optimized by minimizing all the costs
which are associated with the problem. The mathematical difficulty re-
sults from the dependencics of product and container flows as well as of the
integrality requirements for container, shipping container and truck [lows.

2 The relational database and the optimiza-
tion tool

All the business processes of the Lithium producer are modcled by a rela-
tional databasc. This dala base delermines a special kind of flow network
with the given product flows and container flows depending on cach other
together with some time dependent information, namely inventory levels
and customer orders.

A mixed integer linear programming (MIP) optimization tool was de-
veloped with the purpose of the evaluation of the overall costs and decision
making for the Lithium producer’s logistics. This optimization tool trans-
forms the dynamic network model into a mixed integer linear programming
(MIP) formulation which is then input to a CPLEX LP-Solver, which com-
putes via a Branch & Bound method concrete flow values in a certain time
frame [$1,¢1]). The optimization tool delivers the computed flow values via
databasc tables again.

The optimization constraints are the initial inventory levels, the cus-
tomer orders which must be satisfied in the interval [sq, 4 — 1], time invari-
ant product supplics and the production capacity constraints.
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The optimization may be restarted with another time frame, say (s, ¢2]
where sz must be in the interval [sy,¢1]). In that case, the previous flow
values determine the inventory levels at s.

The MIP for the total period under consideration of 560 days of the
logistics problem would have

o 147,329 constraints

e 226,114 variables, of which 64,655 arc integer variables

Due to the limited computing power and capacity of the AIX-workstation
at the University of Augsburg on which the CPLEX LP-Solver was running
it was only possible to optimize intcrvals of at most 300 days. Thercfore a
temporal partitioning of the logistic problem was necessary.

It has emerged that a partitioning of the problem in 5 to maximally
15 intervals makes sense. Then the resulting MIPs for the single intervals
possess an average of 25,000 constraints and 40,000 variables, of which in
general more than a quarter are integer variables.

3 Labeling policy for problem variables and
restrictions

The variable and restriction names of the MIP passed to CPLEX provide
some information, but arc not too descriptive and hence need some expla-
nation. Variables arc associated with the network arcs. A typical variable
narne looks as [ollows:

SPRO028T088

The first letter denotes the are type such as S’ (Storage) or *M’ (Main-
tainance). The next two letters denote the entity, that is cither PR’ (Pro-
ducts), ’EC’ (Empty container), "D’ (Filled Containcr), ’ES’, 'FS’, ’ET’ or
I'T’ (Shipping containers and trucks). The four digits which follow deter-
mine the ID of the network are. The next letter T is a constant delimiter.
The concluding three digits denote a time stamp, namely the day at which
an action was started. In our example, the variable denotes the product
flow label associated with the are with 1D 28 in the table PAres.txt. This
arc models the storage of a product from day 88 to day 89 (storage arcs
have processing time 1).
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The policy for the constraint names is similar: The first part is the
general constraint type with the possible alternatives '/BPROD’, 'BCONT?,
'CTRANS’, 'CFSHIP’, "CESHIP’, 'CFTRUCK’ and ’'CETRUCK". The first
two constraint types modcl the flow balance of products and containers
respectively. The other constraint types model the packing of products into
transport containers CTRANS’) and of transport containers into shipping
containers ("CFSHIP’, "CEESHIP’) and trucks ("CFTRUCK’, '"CETRUCK?).
Note that capacity bounds and integrality requirements are not explicit
constraints in the MIP format. Then an arc ID and a time stamp [ollow
which are separated by a letter *T°. The ID may cither denote a node (for
flow balances), a product arc (for ’'CTRANS’ type), an empty container
arc ("CESHIP’, 'CETRUCK’) or an dependent container arc ("CFSHIP’,
'CFTRUCK?). For container flow balance constraints, the container type is
also specified, separated by a letter ’C’. Two cxamples for constraints:

BCONT0040T310C05:
1.000 SEC0366T310
- 1.000 SEC0366T309

+ 1.000 TEC0446T310
- 1.000 TFC0214T309
= 0.000
CESHIP0446T336:

48.000 TES0446T336
- 1.000 TEC0446T336
>= 0

The first constraint models the balance of incoming and leaving containers
of type 5 at day 310 for the network node 40, The second constraint models

the packing of empty transport containers into shipping containers at day
336 where the transport containers flow is specified by the arc with 11D 166,

4 Mathematical background

4.1 NP-completeness of the problem
The logistics problemn under consideration cannot be solved casily due to

the integrality requirements. It will even emerge in the following that the
problem is NP-complete and therelore difficult to solve,
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In order to prove the NP-completeness of our problem we first have to
show that the problem belongs to the class NP. This is obviously the casc
because a given solution can be checked for admissibility (flow balance,
capacity compliance, etc.) in polynomial time.

The proof of the NP-completceness of the logistic problem of the Lithium
producer is done with the aid of the first proven NP-complete decision
problem SATISFIABILITY (shortly called SAT); cf. [2].

Problem (SAT): Let X = {zi,...,z,} be a set of Boolean variables.
If z; is a variable in the set X, z; and the negation Z; arc called literals.
A clause C; is a disjunction (“or”-connection) of some of the literals. Only
formulas in conjunctive normal form are considered, that means conjunc-
tions (“and”-connections) CyC; .. .Cy, of clauses. Now the problem SAT
requires to decide whether there is an assignment of the variables z; with
Boolean variables so that a given formula C;Cs ... C,, becomes truc.

The problem SAT is now transformed as follows to our logistics prob-
lem:

With every variable, we associate a network node which is not a cus-
tomer node and which is called a variable node in the following, while the
clauses are mapped to customer nodes. At cach variable node there is
cxactly onc container available at the beginning. Moreover there are two
network nodes for cvery literal in a clause, where one of the two is always a
source node, called the literal source node. From the literal source node to
the second node, called the literal targel node, there always exists a product
arc. Furthermore there exists a product arc from every literal target node
to the customer node which represents the underlying clause. For cach of
these product arcs there exists a parallel one-way container flow arc. It is
always the same product which is assigned to all network nodes.

Up Lo two container flow arcs for emptly containers start from cvery
variable node. The first container flow are goes to some literal target node
which belongs to the variable in non-negative form (if possible). Also there
is a container flow arc for filled containers which runs parallel to the product
flow arc starting at the literal source node. If the same literal should occur
once more, there is a further container flow are for empty containers from
the previous literal target node to the new literal source node. In the same
way, a container flow are for filled containers is generated parallel Lo the
latest product flow arc. This is done until all the positive literals are han-
dled. In an analogous manner container flow arcs for negative literals are
generated for every variable node. To all these container flow arcs return-
able containers of Lthe same type are assigned. Storage of these containers
is possible at all literal nodes.
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In order to model the transformation as simply as possible, all execution
times are taken to be trivial (0 days). However, a transformation with dif-
ferent execution times would also be possible without a modification of the
model. All the customers have ordered for day 0 one barrel of the product.
Onc container is always sullicient for the transport of the product between
any of the nodes. The required one-way containers for the transport to the
customers are sufficicntly supplied at the literal target nodes. All costs arc
trivial (i.c., 0).

Because of the fact that there is only one container at cach variable
node there can either flow products on the product flow arcs which belong
to the literals at which the variable is not negated or on those at which the
variable is negated. This corresponds to the decision of the assignment of
the Boolean values to the single variables.

A customer order which belongs to a certain clause can only be accom-
plished if there is at lcast one product flow between a literal source node
and a literal target node which belongs to the clause. However, there can
only be a product flow if there is an associated container flow. Finally, the
problem is valid, if all customer orders can be accomplished.

From a valid solution of the transformed problem promptly follows the
solution of the given SAT-problem. I the transformed problem is not ad-
missible, the presented formula cannot be satisfied.

As all transformations obviously take place in polynomial time, we have
shown that the existence of a polynomial algorithm for our logistics problem
would imply a polynormial algorithm for SAT. This proves that the logistics
problem of the Lithium producer is NP-complete and therefore cannot be
solved casily.

The following cxample illustrates our transformation. Let:

o X = {-'81,12,-’53}

o C) = {x1, 5,23}, Cy = {z2, 73}, C3 = {%1, 72}

A truth assignment of the variables z; is required so that C1C2C3 be-
comes true. Figure 1 shows a transformation of this problem to our logistics
problem. For the sake of clarity all storage arcs as well as the one-way con-
tainer arcs Lo the customers are not displayed.

It can easily be scen that this problem is valid: If for example there
are container flows on the green container flow ares which belong Lo the
variable 2z, and on the red container flow ares which belong to the variables
xzy and zg, all customer orders can be satisfied. The corresponding truth
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C, Cy Cs

Figure 1: Transformaltion of the example
8

assignment of the variables for which the given formula of the SAT-problem
becomes true is £, = “truc”, zy = “false”, z3 = “falsce”.

4.2 The integrality of empty containers

If all container flows are fixed, the reduced problem is an ordinary lincar
program and computationally casy. This reduced problem is not a network
flow problem in the usual sense since masses change during the production
processes.

Il all filled container flows and all shipping container flows (including
truck transports) arc fixed, the problem decomposes into the LP for the
product flows and ordinary nctwork flow problems for the various container
types, and all of these problems can be solved independently in polynomial
time.
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It turned out that empty container flows arc integral even if these MIP
variables are not cxplicitly required Lo be integral. This will be proved in
a special case which will surely occur in most practical cases.

In this special case we assume that an LP is given at which integer
valucs are assigned to all explicit integer variables by the constraints which
got more and more restrictive through the branch & bound method.

We now claim that on the one hand there is an optimal solution of such
an LP which fulfills the integrality of the empty container flows and on the
other hand that such a solution is calculated by the CPLEX LP-Solver.

As integer values are already assigned to the flow variables of the filled
containers, shipping containers and trucks, these variables are replaced by
their values at the beginning of the optimization of the LP. As the variables
for the empty container flows are now independent from all other variables,
the constraints which belong Lo these variables can be regarded separately
for the optimization. These arc constraints of the type 'BCONT’, 'CE-
SHIP?, )CIETRUCK” and the upper capacity bounds for the single variables.

The constraints of the type "BCONT’ result. in a system ol equations of
the form:
Az =1b
In this system of equations the columns of A¥X™ correspond Lo the 7 empty
container variables and the rows to the k constraints. One should especially

take into account that A;; € {—1,0,1} for all ¢ and 7 and that every column
has at most, one —1 and one 1.

An cquation system of the form

Brx+ Bz=15

describes the constraints of the types "CESHIP’ and "CIETRUCK?, where
[5'%™ is a subsct of the rows of the identity matrix /£™*™, because shipping
containers and trucks are not required for all transports of empty containers.
The matrix £4%! is an identity matrix. The vector # denotes slack variables.

As therc is an upper capacity bound for every empty container variable,
capacity constraints which are given by a system of equations of the form

D N Dy )
exist. 157%™ is an identity matrix and T is a further vector of slack variables.

Altogether this results in a systermn of equations of the form

Akxu ()chl ()k:xn e b
l‘./‘lx" I’;“d ()l)(n 7 - b
I Did xn on x! I,;n Xn T b
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where the matrices 0 are all-zero matrices. In the following the entire
restriction matrix is called G.

Now we will show that the matrix G is totally unimodular, which means
that every square submatrix has the determinant 0, 1 or —1. This makes
sense, as every valid LP with integer data and a totally unimodular restric-
Lion matrix has an integer optimal solution (refer to [3), p. 267). Therefore,
the total unimodularity of ¢ would imply that there is an integer optimal
solution of the problem.

In order to show the total unimodularity of the restriction matrix G we
use following result, cf. [1}:

Result 1 Let Aj; € {—1,0,1} for cvery i and every j. If every column has
at most one 1 and one —1, then A is lolally unimodular.

Theorem 1 The restriction matriz G is lolally unimodular.

Proof.  Result 1 dircctly implies the total unimodularity of the matrix
A. If a row is added Lo the matrix A which only has entrics 0 but onc entry
1, the resulting matrix remains totally unimodular: if a part of the new row
is included in a submatrix, the determinant of the submatrix is 0, if the
column with the entry 1 of the new row is not included in the submatrix.
Otherwise the evaluation of the determinant of the submatrix with respect
Lo the new row gives 1 times the value of the determinant of the reduced
submatrix (which is gencrated by deleting the row and the column which
belong Lo the 1). However, as the determinant of the reduced matrix can
only have the values 0, 1 and —1, the total unimodularity of the extended
maltrix A directly follows. Obviously, it. follows that the matrix

Akxn
E;lxn

[,;nxn

is totally unimodular. By a similar argument the total unimodularity is
preserved if columns arc added to a totally unimodular matrix which have
entries 0 exeept for one entry 1. Thus the matrix G is totally unimodular,
as claimed. D

As the restriction matrix (¢ is totally unimodular, an integer optimal
solution exists, if the problem is valid. It remains to show that the CPLIEX
LP-Solver which uses the simplex algorithm delivers such a solution. For
that. we need a further important. result from the theory of integer opti-
mization, cf. [1].
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Result 2 Let A be a lotally unimodular matriz of full row rank. The poly-
hedron {z|z > 0: Az = b} has inlegral verlices for every inleger vector b,
if and only if A is lotlally unimodular.

It can be assumed that the totally unimodular restriction matrix G
has full row rank as the pre-processor of the CPLEX LP-Solver excludes all
redundant restrictions of the considered LP belore the optimization. Thus it
follows from Result 3 that the vertices of the polyhedron {z|z > 0 : Gz = b}
are integral. However, these correspond to the basic solutions of the simplex
algorithm. Therefore the simplex algorithm, which the simplex LP-Solver
uses, gencrates only integer optimal solutions.

Thus we have shown for our special case that the explicit demand for
the integrality of the empty containers is not necessary. Unfortunately, we
could not find a proof in general, but it seems likely that this special case
will occur most of the time.

5 The optimization

Due to the necessary partition of the logistics problem into subproblems
(temporally seen) again and again there were problems with the validity
of the problem during the optimization. Because of this reason the model
was on the onc hand insofar extended that at the end of every optimization
interval a certain minimum stock level at certain storages was demanded.
A shortfall was penalized with very high fines (555555/L). Furthermore,
there was the possibility that a customer could also reccive products from
a dummy source at even higher costs (999999/1).

The optimization of the logistics problem finally was done both with
the standard sctlings of the CPLEX LP-Solver and with modified CPLEX-
parameters at different reductions of the whole period under considera-
tion (between 5 and 12 intervals). With the modification of the CPLEX-
parameters which mainly influence the branch and bound process neither
the optimization process could be sped up nor was it possible to achicve
any better solution.

It was the use of a sclf-developed branching strategy which enhanced the
results of the optimization as well as sped up the optimization process. In
this strategy first those variables are considered during the branch & bound
process which model the freight. These variables represent filled containers,
shipping containers and trucks. Morc preciscly, the higher the respective
costs are the higher the priority of these variables gets. This makes sure that
the CPLEX LP-Solver firstly pays attention to the “frame” of the solution.
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As the branching direction of the variables is always aimed “upwards”, a
prefcrably fast generation of valid solutions is made possible. This is shown
above all in the fact that, in contrast to the optimization processes not
using the explicit branching specifications, already the first located valid
solution of every single time interval had the demanded accuracy of at most
5 per cent error. Here the quality is always measured by the bounds which
result from the LP-relaxation of the single intervals. The LP-relaxation is
calculated at the beginning of cach branch & bound process and is used
as a lower bound. Sometimes this lower bound can be improved (i.c., with
cutting planes) during the branch & bound process.

Table 1 shows the results which result from a partitioning of the logistics
problem in five intervals by using the explicit branching specifications. or
cvery time interval the respective value of the objective function, its quality,
the required solution time and the total objective value are given.

titne interval | total obj. value I obj. value I accuracy ] solution Limne I
0 - 300 1.8815 x 107 1.2% 40 min
250 - 100 14654 x 107 | 31790 x 107 0.8% 63 min
350 - 470 6.1044 x 107 | 2.5052 x 107 0.9% 43 min
420 - 520 7.3197 x 107 ] 2.0852 x 107 0.9% 30 min
470 - 560 8.9360 x 107 | 2.5849 x 107 0.5% 23 min

Table 1: Results using explicit branching specifications

Table 2 shows the comparison of the results for different. partitionings
of the problem (5, 7, 12 and 15 intervals). Next to the total values of the
objective function and the respective required solution time, the reduced
objective value is given. This corresponds Lo the objective funclion value
reduced by the existing fines.

intervals | 5 | 7 | 12 | 15

objective value | 8.9360 x 107 | 9.7578 x 10" | 8.8928 x 107 | 9.4914 x 107

red. obj. value | 7.9280 x 107 | 7.9390 x 10" | 7.9718 x 107 | 7.9643 x 107

solution time " 3h 19min 3h 2h 54min 41h 25min

Table 2: Comparison of the results using explicit. branching specifications

Comparing the single values ol the objective function with the LP-
relaxation (7.8686 x 107) one can sce that the solutions of the single in-
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terval partitionings have a quality between 12.8 and 24.0 per cent. If one
has a closer look at the solution of the LP-rclaxation, one observes that it
does neither contain any fines caused by shortfalls of certain given mini-
mum stock levels nor any product demands from the dummmy source. But
exactly these are included with very high costs in the solutions of the sin-
gle interval partitionings. Therefore it is unrealistic to compare the single
objective function values to the LP-relaxation. As the flows causing the
fines arc only very small, it makes more sense to usc the reduced values of
every objective function for the comparison. These only differ maximally
1.3 per cent from the LP-relaxation. Due to this reason the optimization of
the single interval partitionings provides very good and practically useful
solutions.

As it appears [rom table 2, the different interval partitionings mainly
have an impact on the fincs. The interval partitioning with five intervals
seems to provide the best solution because of the small fines and its smallest
reduced value of the objective function. If such a solution data sct is used,
finally there only has to be decided how the relatively small use of the
dummy source is Lo be climinated in reality.

As it was still of greal interest Lo optimize over the whole time frame in
one step, a conversion of the logistics problem from the day calculation (560
days) to a week calculation (80 weeks) was also made possible. Here special
importance was attached to achieving the best possible approximation of
the day caleulation by the week calculation, as the solutions of the weck
calculation should serve lor conclusions about decisions on single days.

If the logistics problem of the Lithium producer is solved using a week
calculation, the solution (7.9235 x 107 ) has a quality of 0.7 per cent and
no flows causing fincs. When comparing the week calculation Lo the day
calculation at which only small flows causing fincs arc exisling we again
have to compare the solution to the reduced cost of the solutions of the day
calculation. Then the week caleulation obtains a value at most 0.6 per cent
better than that of the day calculation and therefore differs only marginally
from the results of the day calculation.

With the week calculation the Lithium producer possesscs an instrument
which approximates the day calculation very well and with which much
larger time spans can be optimized. Therefore the solution of the weck
calculation can be used as a basis for a heuristic determination of a solution
for the day calculation.

Finally, we also developed a programm which exceutes automatically
the whole optimization process using the already rentioned optimization
tool and the CPLEX LP-Solver. Besides, a programm for the graphical
evaluation ol the solutions was provided. With this tool warchouse stocks
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can for example be controlled over the course of time or the maintaining of
a flow can be verified.

Eventually, the logistics problem of the Lithium producer was not. only
solved satisfyingly, but the necessary programs for the solution were also
provided which allow Lo master the continuous optimization process in the
best possible way.
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