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Abstract

The formula for the number of spanning trees in K, ..., is well
known. In this paper we give an algorithm that generates the list of
spanning trees in K, ..

1 Introduction

We use the standard notation and terminology which can be found, e.g.,
in [9]. Let 7(G) denote the number of spanning trees in a connected graph
G. The graph Kq,,... ., is the complete multipartite graph of order n, i.e.,
t1+4 -+ +tp = n. A formula for 7(Ky,,...,¢,) has been found by Austin [1],
Good [5}], Egecioglu and Remmel [4], Lewis [7), and Clark (3].

In this paper we are interested in finding an algorithm that generates
the list of spanning trees in K, rather than enumerating this list. The

motivation was to find the number of nonisomorphic spanning trees in K ;.

Theorem 1.1 ([1], [3], [4], (5], [7]). Ift1+ --- +¢tp =n, where t; € Z,

then
T(Ky, e ) =1P 2 (n—81)171 o (n = 8t

P
=nP 2 (n - ta) .
i=1
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Notice K, = K 1,...,1- As immediate consequences of Theorem 1.1 we

n-timoo

have:
Corollary 1.2.

T(Kn) =7(K1,.1) =n""2(n - 1) V... (n - 1)A-D = pn=2,
Corollary 1.3. 7(K, ;) = s~ 1ts—1.

As another illustration of the formula consider the hyperoctahedral
graph H, = Ko 9. We have 7(H,) = 2"~ 2n"~?(n — 1)*. For
|

n-timos

H3 = K332 = octahedron, we have 7(H3) = 384; also since the dual
of the octahedron is the 3-cube Q3, we have 7(Q3) = 384.

We show another way to compute 7(Kj,,....¢,) by computing the eigen-
values of the Laplacian matrix of Ky, , .. ¢, The Laplacian matriz, L(G), of
a graph G of order n is defined to be L(G) = D(G) — A(G), where D(G)
is the diagonal matrix of vertex degrees in G, and A(G) is the adjacency
matrix. The Laplacian spectrum of G is s(G) = (A1,...,\n), where the
eigenvalues of L(G) are ordered so that Ay > X3 > --- > A\, = 0. The
following facts about the Laplacian matrix can be found in [2], [8]. It is
known that A, = 0 with corresponding eigenvector [1,1,...,1} and if G is
connected, then A,_; > 0. The Laplacian spectrum is graph invariant; that
is, G1 = G7 only if s(G1) = s(G2). Also, there is a relation between the
Laplacian spectrum of a graph G with its spanning tree number 7(G).

Theorem 1.4 ([2], [8]).

_ D VIED. YRR W

7(G) - . 0

If one has the eigenvalues of the Laplacian matrix of G, they can be
used to compute the number of spanning trees in G. The join, denoted by
GV H, of two graphs G and H is defined to be the graph which is the union
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of G and H together with the additional |V(G)||V (H)| edges consisting of
all possible edges Ty where z is a vertex in G and y is a vertex in H. Merris

[8] gives a way to compute the spectrum of G V H, which we state here:

Theorem 1.5 ([8, pg. 181]). Let G and H be graphs on disjoint sets
of s and t vertices respectively. If s(G) = (v1,...,vs-1,0) and s(H) =
(21, ...y pt—1,0), then s(GV H) consists of the numbers
t+s
S+ p1,8+ p2, ..., 8+ p1
t+uv,t+uvo,...,t+vs—1, and 0, arranged in
nonincreasing order.

Let G denote the complement of G. Notice that K st = K,VK, and
that K, ..,¢, = K,v Ki,,... t,-

Theorem 1.6. With ty + t2 + --- + t, = n, the Laplacian spectrum of
Ky,....t

, consists of the eigenvalues:

@rttitp), (bt -+ tp) . (B -+ )
(p—]3~times

and
gn—ti),(n—tg),...,('n.—t,-)

(t: — 1)-times

foralli=1,...,p.

b
S

Proof. The proof is by induction on p. For the ground case p = 2, we
have K, & K, VK;. Also, s(K,) = (0,0,...,0) and s(K;) = (0,0,...,0).
Hence by Theorem 1.5, the eigenvalues of the Laplacian matrix of K,

consists of the numbers (s + t);

8,8,...,8 tt, ...t
N e’ D
(t — 1)-times (s — 1)-times

Now, assume the inductive hypothesis for all K, ..., 4, Where k < p. Con-

sider Kj,,...:,; we have K, ¢ 'K'tﬁ VK, By the inductive

tp—1°
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hypothesis, the Laplacian eigenvalues of Ky, . are

aip-1

(it tpd), (o), (B o)
(p—2}-times

and with g =ty + -+ +t,_1,

Sq—ti),(q—t;),...,(q—ti)j foralli=1,...,p—1.

—

(t; — 1)-times

Now with s(K,,) = (0,0, ...,0), we apply Theorem 1.5 to K, VK., ¢, &
Ki,....,t,, yielding that the Laplacian eigenvalues of the K t1,...,t, are:

Grdocttp), (b1t tip),.., (b 4+ )5
(p—f)r-tim&s

and
(n—t),(n-t),...,(n—t;), foralli=1,...,p.

(t: — B-tim&e

Theorem 1.7. Ift; +---+t, = n, where t; € Z*, then

P
(K, tp) =P 2 [J(n = t:)%7 1
i=1

Proof. This follows immediately by combining Theorems 1.4 and 1.6. O

The reader familiar with the Laplacian spectrum will notice there is a
faster, more direct way to compute the Laplacian eigenvalues of K thyeenr bp
That is, to first compute the Laplacian spectrum of K;, + K¢, +---+ K tpi
and then use the known relations between s(G) and s(G) for any graph G
and its complement G. Here, notice m = Ky,,...,t,- But we choose to

establish Theorem 1.6 by using the join operator.
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2 The Algorithm

We now discuss the main objective of the paper, to algorithmically list the
set of spanning trees in K, .. We use [n] to denote the set {1,...,n} and
s > 2. A spanning tree in K, is formed by merging two objects; a rooted
directed tree of order s, and a partition (A;,...,As) of {y1,¥2,...,%:}
where |A;| > 1, and |A;| 2 0 for 2 < j < s. In the graph K, we label the
s vertices in one partite set with the integers in [s], and for the ¢ vertices
in the other partite set we label with {y1,...,3:}. We use the notion that
for the two partite sets s and ¢, the vertices in the partite set of size s are
colored red, and the vertices in the partite set of size t are colored blue. To
each of the s°~2 labeled trees on s-vertices we form a rooted oriented tree
as follows:

Given a fixed tree T of order s, with V(T) = [s]:

2(a) Draw the tree as a rooted tree with the vertex labeled 1 as the desig-
nated root.

2(b) An edge (¢,7) of T is given the orientation ({,_J"), ie, 7 € Nt(2), if
d(1,5) < d(,1).

In other words, with the designated root labeled 1, we orient each edge of
T towards the root.

We use ? to denote the oriented tree formed from 7T using the above
definition. Notice that for each red vertex j € {2,...,s}in _7-‘), IN%'}(j)l =1,
otherwise we would have a cycle in T'. We also interchangeably use the term
di-tree in place of oriented tree.

Now, to each of the s°~2 di-trees ?, we pair them with partitions
(Ai, ..., As) of {31,¥2,...,¥:} that satisfy the following:

For a fixed di-tree ?, it is paired with each partition (A, ..., As) where;

2(i) For all vertices j in ?, where [N~ ()| > 0, it is required that A; # 0.
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2(ii) A; #0.

We remark that 2(ii) follows from 2(i) and 2(b) above since d(1,1) <
d(1,4) for any j # 1.

For a fixed di-tree T and an associated partition (A, ..., As)of {z1,..., 4},
that satisfies 2(i) and 2(ii) above; we call such a pair a legal pair, and de-
note them as (?, (Ai,...,As)). The pair (?, (Ai,..., As;)) generates the
following spanning trees in K, .

Given the partition (As,..., 4,), for each A;, where |A;| > 0, we join
the vertex j in the red partite set to all of the blue vertices in A;. Notice
at this stage we have a subgraph of K, formed having ¢ edges. Now to
form a spanning tree we add to this subgraph the following s — 1 edges. For
each red vertex 1 in ?, where 2 < i < s; let  denote the out-neighbor of
1 in ?, ie., (i,_’j) is an arc in ?, we then add an edge of the form (3, y)
where y; is any vertez in A;. Note from 2(i) above, that A; # 0.

We now show this is indeed a spanning tree. We remark that when
we add the edge (4,y:) as mentioned above, there are |A;| choices for
this y.. Moreover, given the pair (?,(Al,...,As)), for each j € [s], let
k; =|A;| and let {zy, z, ...,z } be precisely the subset of red vertices of T
in{2,..., s} where |[N~(z;)| # 0. Then the number of spanning trees gener-
ated by this fized legal pair (T', (Ay, ..., As)) is kY @EEINT @) (INT(@),

Theorem 2.1. With the above notation, the number of spanning trees gen-

erated by a single legal pair (?, (Ag,...,As)) is

KN~ (@) k:lclg”(mz)l o EINT @RI

1 r

Proof. A term in the above product, say klz"v-(z‘)', comes from the algo-
rithm as follows. When we add the last s—1 edges, for each of the |[N~(z;)|

red vertices in N~ (z;), there are |A;,| = kz, blue vertices to choose from

in Az,in which to form an edge. ]
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This observation will lead to some enumeration that we do later. Now
to show our algorithm generates a spanning tree, we first note that by
construction it produces a spanning subgraph of K, ; with s+ ¢ — 1 edges.
Since any connected graph of order » and size n — 1 is a tree, we need to
show our subgraph is connected. Also, since any graph that contains a u—v
walk also contains a u — v path, we show the existence of walks between
any two vertices. There are three cases to check. If W = z1,z2,...,zpis 2

walk then we use W1, to denote the walk W1 =z, 2,1, ...,21.

Given a legal pair (?, (Ai1,...,As)), and a subgraph H in K, gener-
ated by the algorithm, we have:

Lemma 2.2. There exists a walk between any two red vertices in H.

Proof. Consider two red vertices 4,7, where 7 and j are in {1,...,s}. We
show there are two walks W; and Wj, here W; is a walk from 7 to 1, and
W; is a walk from j to 1. Hence, the walk I/VM/J.““1 is a walk from i to j.
Let 73,' = 1,z1,%3,...,Zn,1 denote the oriented path from i to 1 in
T. By the definition of the algorithm, since (i,_:z:l) ) is an arc in 7”, there
is an edge in H of the form iu;, where u; € A;,. Also by the algorithm,
z1u is one of the initial ¢ edges of the construction. Hence, so far we have
the path i,u;,z;. We repeat this with the arc (z7,z3) in P. Again, by
the definition of the algorithm, we have that there exists an edge in H of
the form z ug, where up € Ag,, also Toug is one of the initial ¢ edges of
the construction. At this point we have the walk i, u,,z;,us,zo in H. We
continue this process and form the walk 4, uy, 1, us, Z2,us, ..., Un, T in H.
Now, since (ﬁ) is an arc in '?, we have by the algorithm that there is
an edge in H of the form z,a,, where a; € Ay; also 1a, is one of the initial
t edges of the construction. Hence W; = i, uy, z1,us2,23,...,Zn,a1,1 is an
i—1,1i.e., (i to 1)-walk in H. We can apply the same idea starting with the
oriented path T“)j from 7 to 1in T and obtain a j—1(j to 1)-path W; in
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H. Consequently W,-Wj'1 isan ¢ — 7 path in H. O
Lemma 2.3. There exists a walk between any two blue vertices.

Proof. Consider two blue vertices yp,, ¥ ,where y,, and y, arein {3, ..., .}
From our partition (A, ..., As) if ym and y, are in the same partition set,
say, Az, then for red vertex z in [s], ymz and y,z are amongst the initial
t edges of our construction, hence ym, Z, yn is a ym — yn path and we are
done. Otherwise, they are from different partition sets, say y,, is in A, and
Yn is in Ax. Then, from our construction, y,¢ and y,k are amongst the
initial ¢ edges; also by Lemma 2.2, since £ and k are red vertices there exists
~an £ —- k walk, which we denote by W, henceforth; ym,¢,W, yn is a walk
from y,,, to yn. O

Lemma 2.4. There ezists a walk between any pair of red and blue vertices.

Proof. Consider a blue vertex y and a red vertex j. From our initial parti-
tion (Aj,...,As), if y is in Aj;, then by definition of our construction, the
edge jy is one of the initial { edges and we are done. Otherwise, y is in
some other partite set say, Az. Now by definition, zy is one of the initial ¢
edges in our construction, and from Lemma 2.2 there exists a walk from z

to j, denoted by W; henceforth y,z, W is a walk from y to j. O
Combining the above cases yields:

Theorem 2.5. Any subgraph of K. that is generated by the algorithm
using a legal pair (?, (A1,...,As)) is o spanning tree.

Proof. Let H be a subgraph of K, generated by the algorithm. We have
by construction, H is a spanning subgraph with s+t —1 edges. Combining
Lemmas 2.2, 2.3, 2.4, we have shown H is connected, consequently H is a

spanning tree. a
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We now want to show that any spanning tree in K, is generated
uniquely by the algorithm, i.e., from any spanning tree, we will extrap-
olate a wnique legal pair from whence it was generated. Let Q be a span-
ning tree, we will remove s — 1 edges from @ to reveal the unique legal
pair (?,(Al,... ,As)) that generated it. Consider our special red ver-
tex 1. From amongst the other s — 1 red vertices, namely 2,3,...,s, we
form a subset of these which we call vertices at level 1, denoted Vi where
Vi = {j|Nq(j) N Ng(1) # 0}. We now begin to build our rooted tree T
with designated root 1, by first adjoining to 1 all vertices in V;. Note that
V1 # 0, otherwise Q would be disconnected.

Let Vi = {v11,v12,...,v1p, }. We then define vertices at level 2, V; as

follows:
Vo = {7 | Ng(4) N Ng(v1:) # @ for some vertex vy; € Vi}.

We denote V2 by V3 = {va1,v22,...,v2p,}. We continue in this way and

define vertices at level k, V} as:
Vi = {7l No(h) N NQ(’v(k_l)‘.) # 0 for some vertex UYk-1); € Vi—1}.

We denote Vi by Vi = {vk1,vk2,...,Vkp,. }. We also define Vo = {1}.
For a given graph G = (V, E), and a vertex subset S C V with § =
¢
{u1,u2,...,us} we define Ng(S) as Ng(S) = |J Na(ui).
i=1

Lemma 2.6. For any vertez j in Vi, with k > 1, |INg(j)NNg(Vi—1)| = 1.

Proof. Suppose there exists a vertex j € Vi, where |[Ng(j)NNo(Vi-1)| > 2.
Case 1. Suppose there is a single vertex v € Vi_; with |[Ng(j) N
Ng(u)| > 2. Let z,y denote two blue vertices in the intersection set. We
then have u, z, j, ¥, u is a 4-cycle in Q, contradicting that Q is a tree.
Case 2. Suppose there exist two vertices a,b € Vi_; with [Ng(a) N
Ng(i)| 2 2 and [Ng(8) N No(j)| > 2.
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Case 2(i). Suppose Ng(a) N Ng(b) N Ng(j) # 0. Let u be a common
vertex in these intersecting sets. Let A denote the path from a-to-1 in
Q, and let B denote the path from 1-to-b in Q. We then have A, B,u,a
contains a cycle contradicting that Q is a tree.

Case 2(ii). Let z € Ng(a) N Ng(j) and y € Ng(b) N No(j). Let A
denote the path from a-to-1 in @ and B the path from 1-to-b in Q. We
then have z, a, A, B, y, 7, z is a cycle in Q contradicting that Q is a tree. 0O

Lemma 2.7. For any vertex j € Vi, with k > 1, No(5) N No(v(k—1):) # 0

for exactly one verter v(x_1)i n Vi—1.

Proof. We have by Lemma 2.6 that |[No(j) N Ng(Vik-1)] = 1. Let z €
Ng(3) N Ng(a) N Ng(b) for two distinct vertices a,b € Vi_;. Let A denote
the a~to—1 path in @ and B the 1-to-b path in Q. We then have z,a, A, B,z

contains a cycle contradicting that Q is a tree. a

We continue this process of building the sequence of vertex levels V4, V5, ...

until {1}uVU---V,, = {1,2,...,s}. Let Vi = {v11,v12,...,v1p, }, bY
Lemma 2.6 to each vy; in Vi [Ng(v1i) N Ng(1)] = 1. Let ¢;; denote this
single blue vertex, i.e., {t1:} = Ng(v1:)N Ng(1). More generally, with Vi =
{vk1, . . -, Vip, } let blue vertex ¢x; be defined by {tx:} = Ng(vki)NNg(Vi-1).
So, (vki,tki) is an edge in Q for all 1 < kK < m, 1 < i < px. Notice
WVil+ Vo] + -+ |Vl =p1 + P2+ - -+ pc = s — 1. So given a spanning
tree Q in K, ¢, to show that it comes by the algorithm from a unique legal
pair (?, (A1,...,As)). We first remove from Q a selected set of s — 1 edges
that will reveal T and (Ay,..., As).

Theorem 2.8. For any spanning tree Q in K, ;, it is generated by a unique
legal pair (?, (Ax,...,As)).

Proof. We first reveal T by building T level-by-level. Let 1 be the desig-

nated root. First, attach all vertices in V; to 1 (oriented towards 1). To
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each vertex j in V5 attach the arc (4, 4) where ¢ is by Lemma 2.7 the unique
vertex in Vi with Ng(j) N Ng(i) # 0. More generally, vertices in V; are
attached towards vertices in Vi, as follows. To each vertex j in Vi we
attach the arc (]T;) where 1 is, by Lemma 2.7, the unique vertex in Vi_;
with Ng(7) N Ng(i) # 0. The resulting unique oriented tree is T in the al-
gorithm. To reveal the associated partition (Ay,..., As) we remove the s —
1 edges {((v11,¢11), (v12,£12), - - -, (V1p1s t1py) - - - (Um1, tmi)s (Um2, Em2) - - -,
(Ympums tnp,.)) }- Let H denote this subgraph of Q. Then H is a collection
of disjoint stars, and to each red vertex j we define A; = Ng(j) yield-
ing the partition (A;,..., A;). The pair (?, (A1,...,A;) is legal since if
(77_5) is an arc in ?, we have 1 is in some level Vi and j is in Vi_; with
Nq(i) N Ng(j) # 0, consequently, A; # 0. O

Combining Theorems 2.5 and 2.8 we show some enumeration.

3 Some Enumeration

Using the notation of Thm. 2.1, there are k'lN -(1)|k,|,]:'_(")l k,'g Tl
k,',’l’"”')' trees generated by the fixed pair (?,(Al, .. .4As)), hence for the
fixed tree T there are in total

N- - “(z t t—k
T KNI @l L NGl (kl)( . 1)

t—k1 —ko t—ki—- - —ks
® (TR (TR

- IN™ ()] N~ N~ (zr t!
= Z K} kLl =)l ... k:lz.. ( )Im
kitetky=t e s

spanning trees generated.

Let H (?) denote the above formula for a fixed di-tree T'. Hence we

have:

Theorem 3.1. 7(K, ;) = EH(?), where the sum is over all of the s°2
T

rooted di-trees ?
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We illustrate Thm. 3.1 for the cases s = 2,3,4,5. The enumeration

involves the usual techniques involving multinomial identities.

Example 3.1. K3,

For the case K3, we have only one tree, namely
- — < ——o
T =
1 2
n
From Theorem 3.1 we have 7(Kan) = Y. ki (,:) Let f(z,y) = (z+y)" =
k1=1

> (n)z*y ", then £f=n{z+y)" ! =
Y k(g )zk1~1ynk, letting z = y = 1 we obtain 7(Ka ) =n(1+1)*! =
n2™1,
Example 3.2. K3 , For the case K3, we have three di-trees

—— 8 O — >

1 2 3 1 3 2 2 1 3
-7—:1 ?2 ?3

by Eq. (1) we have, H(?l) = zkl’%m» H(?z) =
Y kiks gy, and H(Ts) = ¥ K ey

Notice by symmetry H(T1) = H(T32). For H(T) let f(z,y,2) =
(z +y+ 2)*, then

5 _ el _ n! ki—1, ka2 k3
5of =nz+y+2) —Zklkl!kglkglx vE
and
32f a2 n! k1—1, ka—1 ka3
gos =M= DE+y+ )" =) ket iy T

letting £ = y = z = 1 we obtain H(?l) = 3""2n(n —1). For H(?a), let
f(z) = (z+y+ 2)", then

a.f _ n—-1 _ n! k1, k2 k3
x[az] =na(z+y+2)"7 =) kit
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and
0 af - n—1 n—-2
gg[m%}—n(x+y+z) +nz(n—1)(z+y+2)

1
_ 2 n: ky—1, ka k3
_Zklkllkglka!z yuEs

letting £ = y = z = 1 we obtain H(?s) = n3""! 4 n(n — 1)3"~2, Hence
7(K3n) = 2n(n — 1)3*"2 4+ n3""1 4 n(n - 1)37"2 = 3n~1n2,

Example 8.3. K4,n

For the case K4, consider the following three di-trees,

?1 73’2 ?3

For any other di-tree, T of order 4 we have H (?) =H (?i) for some
1=1,2,3. To see this let

be another ?, then, by symmetry,
nl

— n! :
HT)= 3 hikoks Filkalkslky! 2 kikaks k1 lkaths teg!
ki+-tka=n

= H(T ).

For this case we say tree T is of type ?1, of the 16 di-trees of order 4,
one may draw them and check that there are six of type ?1, nine of type

?2 and one of type ?3. Using the same techniques as in the previous
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illustration, starting with f(x,y, z,w) = (z + y + 2 + w)™ we obtain

nl nl
T(Kan) =6 Z klkzks—— + sz%bm

+) ke e
=6n(n—1)(n—2)4" 3 + 9[’n(n —1)4n"2
+n(n - 1)(n — 2)4*~3] + n4n~?
+3n(n—1)4""2 4 n(n - 1)(n — 2)4™3
= n34n-1,

More generally, there are three types of di-trees in the above example be-
cause there are p(3) = 3 partitions of the integer 3, namely; 3, 2+1, 1+1+1.
Here p(n) denotes the number of partitions of n. For a given T the begin-
ning terms in formula (1) are of the form k'lN-(l)l k',l:’—(z‘” k;lclf_(z')'.
Suppose we have another tree a, if its beginning terms are of the form
FNTOIEINTOl - IN"w)l gnq the unordered sets

{N"LINT(z1)] -+ IN(z)]}
={IN"@LIN"@)| -+ IN"(3)}
are equal, then by the symmetry of the formula (1); H(?) = H(a). So

)

more generally we say trees T and 6 are the same types if equation (2)
is satisfied. Hence we partition the s*~2 di-trees into p(s — 1) equivalent
classes, where two trees are equivalent if they are the same type. In the
K4 example, the 3 partitions p(4 —1) = 3,2+ 1, 1+ 141, led to the
three types of classes k2, k2ky, kikyk, and as mentioned there are 1, 9, 6
trees in their respective classes.

For the case K5, there are p(5 — 1) = p(4) = 5 types of di-trees. The 5
partitions of 4, namely, 4, 3+1,2+2,2+4+1+1, 1+ 14141, yield the tree
types k§, k3kz, k2k2, kkzky, k1kzkyk,. The reader may draw the 53 = 125
trees on 5 vertices, and check that the di-trees are then partitioned into one
of type ki, 16 of type k3kz, 12 of type k?k2, 72 of type kZk.k,, and 24 of
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type kikzkyk., with 1 + 16 + 12 4 72 4+ 24 = 125, and using the above
techniques with f(zy, 22, z3,24,25) = (21 + z2 + z3 + z4 + z5)" one can

show:
n!

n! I
2
+ 1221:11:2—-—,61!._*5! +72Zk1k2k3———-k1! R
n!
+ 24Zk1k2k3k4——k1! T

Remarks. For the general case K,, we have there are p(s — 1) types of
equivalent classes. For the first few values of s we were able to compute
the number of di-trees in each class, but we do not have a general way to
count the size of those classes. For each partition a; +as+++-+a, =s—1
of s — 1, let A,,, . o, denote the number of di-trees in the equivalent class

k31 k3? - - - k2=, then
(Kee) =s"10= Y > Aay,.aki

a1+ Gz =0—1 Kyt thy=t

et
Z k) k!

where the outer sum runs over all p(s — 1) partitions of s — 1.
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