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For a graph G with vertices vy,vs,...,v, and degrees d; = deg v; (i =
.,dn a degree sequence for G. A sequence
., dn, of nonnegative integers is a graphical sequence il there
exists a graph having degree sequence s. If s : dy,dy, ..., d, is a graphical
sequence, then d; < n — 1 for each ¢ (1 < 7 < n) and the sum Z:‘_l d; is
even. Of course, these two conditions are necessary but not sufficient for a
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Abstract

A set {a1,@a2,...,an} of positive integers witha; < a2 < --- < a,
is said to be equi-graphical if there exists a graph with exactly a; ver-
tices of degree a; for cach ¢ with 1 < i < n. It is known that such a
set is equi-graphical if and only if }_7. | ai iseven and e < 377! 02
This concept is generalized to the following problem: Given a set S
of positive integers and a permutation w on S, determine when there
exists a graph containing exactly a: vertices of degree w(a;) for each i
(1 € i < n). Ifsuch a graph exists, then 7 is called a graphical permu-
tation. In this paper, the graphical permutations on sets of size four
are characterized and using a criterion of Fulkerson, Hoffman, and
McAndrew, we show that a permutation 7 of § = {a1,a2,...,a.},
where 1 < a) < a2 < --- < @, and such that w(a.) = an, is graphical

if and only if 37| a;w(a;) is even and an < 307/ aim(as).
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sequence s to be graphical. Many characterizations of graphical sequences
can be found in the literature. Perhaps the most well known are those by
Havel [5] and Hakimi (3] and by Erdés and Gallai (1].

Theorem 1 (Havel, Hakimni) A sequence s : dy,dy,...,d, of nonnegative
inlegers with dy > dy > -+ > dy, where n > 2 and dy > 1, is graphical if
and only if the sequence sy :dy — 1,ds — 1,...,dg, 1 — 1,dg,42,...,dn 15
graphical.

Theorem 2 (Erdés and Gallai) A sequence s : dy,dy, ...,d, of nonnega-
tive integers with dy > dg > -+ > dy,, where n > 2 and d, > 1, is graphical
if and only if 37| d; is even and for each integer k (1 <k <n—1), the
Jollowing holds:

k n
> odi<k(k—1)+ ) min{k,d}.
i=1 i=k+1

In [4] a set S = {a1,as,...,a,} of n distinct positive integers is said
to be equi-graphical if therc exists a graph of order Y .-, a; that contains
exactly a; vertices of degree a; for every i (1 <4 <n). A simple condition
given in [4] determines whether a set is equi-graphical.

Theorem 3 Let S = {a1,ay,...,an} with n > 2 be a sel of n positive
inlegers such that a1 < ay < --- < a, and E:',_:l a; s even. then S is
equi-graphical if and only if ap < a? + a2+ - +a2_,.

Following the conclusion of [4], we consider a generalization of equi-
graphical sets. Given a set S = {aj,a2,...,a,} of n distinct positive inte-
gers and a permutation m on S, we say that 7 is a graphical permutation if
there exists a graph G of order Z:‘:l a; containing cxaclly a; vertices of de-
gree m(a;) for each 2 = 1,2,...,n. Observe that a set is equi-graphical if and
only if the identity mapping is a graphical permutation. Characterizations
for graphical permutations on sets with cardinalities two and three are wit-
nessed in 4]. A condition is missing for the permutation 7 = (a b c), where
1 < a <b<c In [4] the result states that = is graphical if and only if at
most one of a, b, and ¢ is odd. However, the inequality bc < ab+ac+b(b—1)
is also needed, for consider a graph G with a vertices of degree b, b vertices
of degree ¢, and c vertices of degree a. Let A be the set of a vertices of
degree b, B be the set of b vertices of degree ¢, and C be the sct of ¢ vertices
of degree a. Further, let = denote the number of cdges that join vertices
of B to vertices of AU C. Since the degree of each vertex of A is b and
the degree of each vertex of C is @, we know at most ab + ac edges leave
AUC. Thus z < ab + ac. Further, a vertex of B has degree at most b — 1
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in (B). So at least ¢ — b+ 1 edges for each vertex of B must leave the sect
B. Hence z > b(c — b+ 1). Therefore b(c — b+ 1) < ab+ ac or cquivalently
bc < ab+ ac+ b(b — 1). The details for the construction of a graph with a
vertices of degree b, b vertices of degree ¢, and c¢ vertices of degree a when
al most one of a, b, and c is odd and bc < ab + ac + b(b — 1) can be found
in (7).

The following lemma was provided in [4] and is extremely useful.

Lemma 4 Let z, y, and r be nonnegative integers such that z+y > 0 and
T < z+y—1. Then there exists a graph G of order x + y containing x
vertices of degree r and y vertices of degree r+1 if and only if rz+ (r+ 1)y
s even.

In [4] the following conjecture is made.

Conjecture 5 lLet S = {a1,ay,...,an} be a sel of integers (n > 2) with
1 <a)y<ay < - <ay, and © a permutalion on S such thal 2?:1 a;7(a;)
is cven. Then

1. if w(an) = @,, then w is graphical if and only if a, < Y .. ]l a;w(a;)
and

2. if n(a,) # an, then w is graphical.

Of particular importance is that by providing the necessary inequality
for 1 = (a b ¢), we have disproved part 2 of Conjecturc 5. Next we con-
sider graphical permutations on sets of cardinality four. We return to this
conjecture in the final section, where a proof of part 1 is given as well as a
modification of part 2.

2 Graphical permutations on sets of cardinal-
ity four

This section contains the characterization for graphical permutations on a
set of cardinality four. We provide only the proof for m24 = (a ¢ b d) as it
is the most interesting casc. Additional details for the other cases may be
found in [7], and of course, some of these also follow as special cases of the
general results given in the next section.

Theorem 6 Lel S = {a,b,¢,d} with1 <a<b<c<d Then

1. my, = (a) is graphical if and only if d < a? + 0> +c? anda+b+c+d
8 even,
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10.
11.
12.
13.

14.

15.

16.
17.
18.
19.

20.

21.

o = (cd) is graphical if and only if a and b are of the same parily,

. w3 = (bd) is graphical if and only if a and c are of the same parity,
. w4 = (ad) is graphical if and only if b and c are of the same parity,

. s = (bc) is graphical if and only if a and d are of the same parity

and d < a? + 2bc,

. e = (ac) is graphical if and only if ¢ and d are of the same parily

and d < b + 2ac,

. w7 = (ab) is graphical if and only if c and d are of the same parity

and d < ¢ + 2ab,

. mg = (bed) is graphical if and only if a® + bc + cd + bd s even and

cd < a? +bc+bd +c(c— 1),

. mo = (acd) is graphical if and only if ac + b% + ¢d + ad is even and

cd < ac+ b +ad+c(c—1),
1o = (bdc) is graphical if and only if a? + bd + be + cd is even,
mn = (adc) is graphical if and only if ad + b* + ac + cd is even,

mi2 = (adb) is graphical if and only if ad + ab + ¢* + bd is cven,

M3 = (acb) is graphical if and only if ac + ab+ be + d? is even and
d < ab+ be + ac,

14 = (abd) is graphical if and only if ab + bd + 2 + ad is even and
bd <ab+bc+ad+b(b-1),

5 = (abe) is graphical if and only if ab + be+ ac+ d? is cven and
d < ab+ bec+ ac,

w16 = (ab)(ed) is gruphical,
17 = (ac)(bd) is gruphical,
ms = (ad)(bc) is graphical,

w9 = (abdc) is graphical if and only if a and d or b and ¢ have the
same parily,

790 = (adbe) is graphical if and only if a and b or ¢ and d have the
same parily,

w1 = {adcb) is graphical if and only if a and ¢ or b and d have the
satne parily,
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22. mop = (abed) s graphical if and only if a and ¢ or b and d have the
same parity and cd < ab+bec+ad+c(c - 1),

23. mo3 = (acdb) s graphical if and only if a and d or b and c have the
same parity end cd < ac+ ab+bd + c(c— 1), and

24. woq = (achd) is graphical if and only if a and b or ¢ and d have lhe
same parily and either (1) if c < a+b—1, then bd < ab+ bc+ ad +
b(b—1) or (2) if ¢ 2 a+b—1, then ac+bd < bec+ad+(a+b)(a+b—1).

Proof Assume that wg4 is graphical. Then there exists a graph G of
order a + b + ¢ + d containing a vertices of degree ¢, b vertices of degree
d, c vertices of degree b, and d vertices of degree a. Since the sum of the
degrees of the vertices of G is even, we have ac+bd+bc+ad = (a+b)(c+d)
is even. So either a and b have the same parity or ¢ and d have the same
parity. Define V(G) = AUBUCU D, where A contains a vertices of degree
¢, B contains b vertices of degree d, C contains ¢ vertices of degree b, and
D contains d vertices of degree a.

Suppose, first, that ¢ < a+b~ 1 and let z denote the number of edges
that join vertices of B to vertices of AU C U D. Since the degrec of cach
vertex of A is ¢, but each vertex of a can be adjacent to only b vertices
of B, the degree of each vertex of C is b, and the degree of cach vertex
of d is a, we know al most ab + bec + ad edges leave AU B U D. Thus
z < ab + be+ ad. Further, a vertex of B has degree at most b — 1 in (B).
So at least d — b+ 1 edges for cach vertex of B must lcave the set. B. Hence
z > b(d — b+ 1). Therefore b(d — b + 1) < ac + bc + ad, or equivalently
bd < ac+ bc+ad + b(b —1).

Now suppose that ¢ > a+ b — 1 and let z denote the number of edges
that join vertices of AU B to vertices of C U D. Since the degree of each
vertex of C is b and the degree of each vertex of D is a, we know at most
be 4+ ad edges leave C U D. Thus = < be + ad. Further, a vertex of AU B
has degree at most a +b—1in (AU B). So at least d — a — b 4+ 1 cdges
for each vertex of B and at lcast ¢ —a — b+ 1 edges for cach vertex of A
must leave the set AUB. Hencez 2 b(d—a—-b+1)+alc—a—b+1).
Therefore b(d —a — b+ 1) + a{c —a — b+ 1) < be + ad, or cquivalently
ac+bd <bc+ad+ (a+b)la+b-1).

For the converse, assume that a and b or ¢ and d have the same parity
and let V(G) = AUBUCUD, where |A| =a, |B}=b, |C| =c, and |D| = d.
Begin by placing the complete bipartite graph K, . on the sets B and C,
using B3 and C as the partite sets, so that each vertex of C has degree b and
each vertex of B needs its degrec increased by d ~ ¢. The remainder of the
construction is now divided into three cases depending whether bd < ab+be,
ab+bec<bd <ab+ad+be, or ab+ad+be<bd < ab+ad+be+bb—1).
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Case 1  Suppose that bd < ab + be. Since b(d - ¢) < ab, we distribute
b(d — c) edges from B to A. Define the integers ¢ and r by

bd-—c)=ag+r,

where 0 < 7 < a — 1. Denote this graph by G’. In G’ we sce that the
vertices of B have degree d and the vertices of C have degree b and in A
we have r vertices that have degree ¢ + 1 in G’ and a — r that have degree
¢ in G’. We now consider two possibilities.

Subcasc 1.1 Assume that ¢ — ¢ —1 < a — 1. It remains to construct a
graph with r vertices of degree ¢ — g — 1, a — r vertices of degree ¢ — ¢, and
d vertices of degree a. Place the complete bipartite graph K, c—q—1 on the
vertices of A and ¢ — g — 1 vertices of DD. In A, r vertices now have degree
¢ and a — 7 vertices have degrec ¢ — 1 while in D, d — ¢+ ¢ + 1 vertices
need degree a. Now if a and r have the same parity, we can use Lemma
4 to raise the remaining vertices of D to degree a, while if a and r are of
opposite parity, we add an edge between a vertex of D necding degree a
and a vertex of A nceding its degree increased by onc and then use Lemma
4. The remaining a —r or a —r — 1 vertices can be paired and their degree
increased by one using edges from (B U C).

Subcase 1.2 Assume thal ¢ — ¢ —1 > a — 1. Procced by placing
the complete graph K, on the set A so that r vertices need their degree
incrcased by ¢ — g — a and a — r need their degree increased by ¢ — g —a -+ 1.
Place Kg c—q-q on the vertices of A and ¢— g —a vertices of ) so that a —r
vertices of A need their degree increased by one and d—c+q+a vertices of D
need their degree increased by a. Notice that d—c+g¢+a > a—r, so we add
a—r edges between the vertices in A that need their degree increased by one
and a—r vertices of the d—c+qg+a in D that need their degree increased by
a. Thus it remains to show that there exists a graph // of order d—c+qg-+a
such that a — r vertices have degree e — 1 and d — ¢ + ¢ + 7 have degree a.
By Lemma 4, this is possible if and only il (e = r){(ea = 1)+ a(d —c+ g +71)
isevenand a < d—c¢c+g+a—-1. Clearlya<d—-c+qg+a~—1. Also
(a=m)a—1)+ald-c+qg+7)=ala—1)+ad — ac+ bd — be is even and
such a graph H exists.

Case 2 Supposc thal ab + be < bd < ab + be + ad. Place Kqp on the
partite sets A and 3 and notice that the vertices of A need their degree
increased by ¢ — b while the vertices of B need their degree increased by
d — ¢ — a. The construction is further divided into two subcases.

Subcase 2.1  Suppose that ¢ < a+b— 1. We proceed by distributing
b(d — ¢ — a) edges among the vertices of D. Define the integers ¢ and r
by b(d —c —a) = dg +r, where 0 < 7 < d — 1. Distributing b(d — ¢ — a)
cdges among the vertices of /) we have 7 vertices of D that have degree
q+ 1 and d — r that have degree ¢. Thus it remains to show that there
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cxists a graph H of order d such that r vertices have degree a — g — 1
and d — 7 have degree a — q. By Lemma 4, this is possible if and only if
(a—g—1)r+(a—gq)(d—r) iseven and a—g—1 < d—1. Clearly a—g—1 < d—1.
Also (a—q~1)r+{(a—q)(d—r) = —r+ad — dq = bc — bd + ad + ab, and
bc — bd + ad + ab = bc — bd + ad + ac — a(c + b), which is even if and only
if a(c+ b) is even. When a(c + b) is even the graph on D may be finished
and we obtain the desired degrees for the vertices in A using Lemma 4. If
a{c+b) is odd, we add an edge from a vertex in A Lo a vertex in D neceding
degree @ — ¢ so that the parity condition now holds and we may finish A
and D both using Lemma 4.

Subcase 2.2  Suppose thal ¢ > a+ b — 1. We proceed by placing the
graph K ., on AU B. Now cach vertex of A nceds its degree increased by
¢—a—>b+1 while cach vertex of B needs its degree increased by d—c—a—b+1.
We accomplish this by distributing a(c—a—b+1)+b(d—c—a—b+1) cdges
from AUB to the set D. Notice that a(c—a~b+1)+b¥{d—c—a—b+1) < ad
since ¢ > a+b—1. Define the integers g and r by a(c—a—b+1}+b{d—c—
a—b+1) = qd+r, where 0 < r < d—1. Distributing these edges among the
vertices of D we have r vertices that need their degree increased by a —g—1
and d — r vertices that need their degree incrcased by a — ¢q. By Lemma
4, this is possible if and only if (¢ — g — 1)r + (a — ¢){d — 7) is ¢ven and
a—g—1<d-1. Clearlya—q—1<d-1. Also (a—g—1)r+(a—q)(d—7) =
—r+ad—dq=ad—ac—bd+bc+ 2ab+ (a+b)(a+b— 1), which is even.
Case 3 Suppose that ab + ad + be < bd < ab+ ad + be+ (b — 1). The
construction is once again divided into two subcases.

Subcase 3.1  Suppose that ¢ < a+ b —1. We proceed by placing the
graph K, on the partite sets A and B and distribute ad cdges from the
set D to the vertices of 3. Define the integers ¢ and r by ad = bg + 7,
where 0 < r < b — 1. Thus it remains to show that there exisls a graph
H of order b such that r vertices have degreccd —c—a—¢g—1and b—r
have degree d — ¢ — a — ¢q. By Lemma 4, this is possible if and only if
(d—c—a—q—-1)yr+(d—c—a—q)(b—7)isevenand d—c—a—q—1 < b—1.
By definition ¢ = (ad — r)/b and the desired inequality is cquivalent to
bd < ab+be+ad+b(b—1)+b—7. By assumption bd < ab+bc+ad+b(b—1)
and since b—r > 0, the inequality holds. Also, (d—c—a—q—1)r+(d—c—
a—q)b—7)=—r+bd—bc—ab—bg = —ad+bd — bc+ac—a(b+c). Thus,
il a(b+c¢) is even then such a graph H is possible on 3 and also we can usc
Lemma 4 to achicve the desired degrees for the vertices in A. If a(b + ¢)
is odd, we remove an edge from the complete bipartite graph K, so that
the necessary parity conditions will hold and again the construction can be
finished by using Lemma 4 on both A and B.

Subcase 3.2  Suppose that ¢ > a+ b — 1. To begin the construction we
place K,4p on the vertices AU B. Now each vertex of A nceds its degree
increased by ¢ —a ~ b+ 1 while cach vertex of B needs its degree increased
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Assume that ¢ is graphical. Thus there exists a graph G of order
2: 1 bk containing by vertices of degree b, for 1 < k < n—2, b,_, vertices
of degree by, and b, vert,lccs of degree by, 1. Since the sum of the degr(,es of
the vertices is cven, Zk 1 b2 +2b,,—1by is even, which implies that Zk 1 bk
is even. Now consider when j #n. Foreach k (1 < k < n), let B; denote
the set of by vertices of degree o(bx). Let z denote the number of edges
that join the vertices of B, 5 to the vertices of V(G) — B,_3. Since the
degree of each vertex of By is by for 1 < k < n — 3 and the degree of cach
vertex in Bn_; is b,,, while the degree of each vertex of B,, is b,_1, we see
that at most Y p> b2 + 2b,_1b, edges leave the set V(G) — Bn_2. Thus
z < Estk + 2bp_1b,. Further, a vertex in B,_s has degree at most
bn_2—11in (Bp_2). So at least one edge per vertex of B, _» must leave the
set B,_2. Hence £ > b,,_4. Therelore b, 5 < Z"_s b2 + 2b,—1 by

Now assume that Y"p_2 by is even and when j # n, suppose further
that b,_o < 2b,_,b, + ZL; b2. We now construct a graph G with the
desired properties. For each & (1 _<_ k < mn), let By denote a sct of by, vertices.
On the sets B,,.., and B, place thc complete bipartite graph Ko, , 5, $0
that each vertex of B,_; has degree b, and each vertex of B, has degree
brn—1. On each set By (1 < k < n —2) we place the complete graph K, .
Now in the graph (UZ_ 2Bk), cach vertex necds one more edge to satisfy
its degree requirement. We proceed by joining cach vertex of B; to one
vertex of Bs (so that no vertex of By gets its degree increased by more
than one). Now the vertices of B; all have degree b, and exactly by — b,
vertices of By still need their degree increased by one. Now join each of
these by — by vertices of I3 to one vertex of B3 (so that no two vertices
of By get joined to the same vertex of Bs). So all the vertices of By have
degree by and exactly bz — by — by vertices of B3 need their degree increased
by one. Continuc in this manner until all the vertices of Bx have degree b,
foreachk (1 <k <n-3).

The remainder of the construction depends on the parity of n.

Case 1 Assume that n is even. Now we have 2"/2 1(bg,- = by 1)
vertices of B,,_5 that need their degree mcrcascd by one. Let B],_, denote
this subset of B,,_2. By assumption, Y -} 2 by, is even so that Z"/ 271 by —
byi—1) is even. Since the number of vertices in B},_, is even, we may form
(1/2) E"/ 2- ](bgi — by;_1) pairs of vertices. Then for each pair v in B],_,
we remove one cdge zy from ((Uz;?Bk) U B,,.; U B} and add the two
edges uz and vy. This process does not change the degrees of z and y but
increases the degree of each u and v by one. We must now (,nsure' that there
arc enough edges available Lo do this. We have (1/2) 377 bk (bk — 1) edges
from the complete graphs placed on the sets By, By, . .. B,,_3 Counting
the edges between consecutive sets By, B, ..., By .3, we sec that there arc
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Z?_/z 2 byi~1 cdges between consecutive sets By, Ba, ..., Ba_4. Also there

are Z"/ 2= 2(b2. — byi—1) edges between the sets B3 and B, _4 for a total

of Z"/ 2-2 ba; edges between consecutive sets By, Bo, ..., B,_3. Finally, we
have b, -1b, edges from our complete bipartite graph of the sets B,_, and
Bn. To have enough edges to increase each pair of vertices in Bj,_, we must
have the following inequality hold:

n/2-1 nf2-2

(1/2) Z (bo — baim1) < (1/2) Zbk(bk—l > bai+ bu1bn.
t=1

By the hypothesis, we have b,_o < Z" -3 b2 + 2b,, 1by..
Thus

n--3 n—3 n--3
bue S D Ui+ be= D be+ 2 1bn
k-1 k=1 k=1
or

nf2-2 n/'l»—l n—3

n-3
baoa D BEH( D bt Y bait) = 3 bk +2baibn
k=1 i=1 i=1 k=1

so that by adding E"/ =2 2?7/?4 byi.-1 Lo both sides, we obtain

n/2-2 n/2--1 n-—-3 nf2--2
b2+ Z bai — Z boi.. 1<Zbk Zbk-i-? Z boi + 2b,..1 b,
i=1 k=1
Therefore
n/2-1 -3 nf2-2
Z (bZt _b21 1 k(bk—'l)+2 Z b2;+2bn lb

=1 i=1

and multiplying through by 1/2, we obtain the desired inequality.

Case 2 Assume thaln is odd. In this casc there arc b, _ 2—}—2(" 3)/ z(bzl-wl -
ba2:) vertices of 3,.o that necd their degree incrcased by one. Let B .,
denote these vertices. As in Casc 1, it is clear that B,_, contains an cven
number of vertices. Thus we prou‘cd as before and delete one edge zy of
{((URZ3) U Bpo1 U By,) for cach pair u,v of vertices in B.,_, and add the
two edges zu and yv, thereby increasing the degrees of w and v each by
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one and leaving the degrees of all other vertices unchanged. Again, we
must count the available cdges and make sure there are enough to increase
the degree of each vertex in B.,_,. We have (1/2) Z"_s b (bx — 1) cdges
from the complete graphs placcd on the sets By, Ba,..., Bnr—3. There are
a.lso 2(" 32 by; _ cdges between consecutive sets By, B, ..., B, 3 and
br.-1bn edges from the complete bipartite graph placed on the sets B,_;
and B,. Thus wc must have the following inequality hold:

(n-3)/2 (n—-3)/2

(1/2)(bn—2+ Y (bai-1—bx)) < (1/2) Zbk(bk 1)+ 2 b2i-1+bu—1bn.
i=1

Using similar algebraic steps as ln Case 1, we sec that this incquality
is equivalent Lo b,y < 2b, 1b, + Y o) bk, whlch is provided by the initial
hypothesis and thus concludes the construction. O

In Section 1, we stated the Erdés-Gallai and Havel-Hakimi criteria for
a given scquence Lo be graphical and in the proofs of Theorems 6 and 7
we have utilized construction methods to prove that certain permutations
arc graphical. We now introduce a criterion of I‘ulkerson, Ioffman, and
McAndrew (2] (scc also [6]) that determines if a given sequence is graphical.

Theorem 8 (Fulkerson, Hoffman, McAndrew) Letl s : dy,dz,...,dn be a
sequence with dy > dy > --- > d, > 1, where n > 2. Then s is graphical if
and only if for each k = 1,2,...,n, and m with k +m < n,

k n
Zdigk(n—m—l)-l— Z d;.
i1 i=n—m- 1

Using this thecorem, we now prove part 1 of Conjecture 5.

Theorem 9 Let S = {a1,a2,...,an} be a sel of inlegers such that 1 <

a1 < a2 < -+ < an and let 7 be a permulation of S such thal w(a,) =

tn. Then w is graphical if and only of 3 0 | a;w(a;) is even and a, <
-1

Proof Lets =aj+ay+---+azandleto =71 Foragivenr (1 <r < n),

we define d; = ar iland only if 357, 0(a;) +1 <4 < 37 o(a;). We

use Theorem 8 1o show that the sequence dy, dy, .. ., d, is graphical. Notice

that this scquence is the sequence

Ay sy Qg ooy B lye ey A2y0eey U2, Q1,...,01,
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where the first a,, terms are a,, the next o(a,—-1) terms are a,, -1, the next
o(an_2) terms are a,_o, ..., and the last o(a;) terms are a;. Thus we
must show that for cach k = 1,2,...,5 and m with 0 < m < s — k, the
following inequality holds:

k s
Zd,'sk(s—m—l)-{- Z d;. (1)
i=1 t=s--m-| 1
We now divide the prool into three cases.
Case 1 Suppose that k = a,. By the hypothesis, we have a, <
i aim(as) so that

n-1
a2 <a —a, + Z a;m(a;).
i=1
Since k = an, we have Y ;" d; = a2. If m = s — a,,, then the right hand
side of (1) is

s n-1
an(s —(s—an) - 1)+ Z d; = ai —-a, + Z aio(a;)

i=s—(s-a,)+1 i=1

n-1

= aj—an+ Y am(ai)
=1

and we see that inequality (1) holds for k = a, and m = s — a,,. Now let
0<m<s—an Thens—a,—-m—-1>0and }] d; > 0 so that

=4—m-+1

Qan 8§
Zdi-—.a'ﬁ < apfant(s—an—m-1))+ Z d;
i1

t=§—rmt1

= as—m-1)+ Z d;

iz§-—-rn-t1

and thus inequality (1) holds for k¥ = a, and for every m (0 < m <
s—an—1).

Case 2 Suppose that k > a,. Then dx must fall somewhere in the
sequence dg, 41, .- .,ds. Thus there exists an integer r (1 <r <n—1) such
that dx = a, and

n n

1+ Z o(a;) <k < Zo(ai).

=Tt i=r



We define the integer j (1 < j < o(a,))sothat k=37, o(a;)+j. Now
we see that

n

Zd,— =02 +an-10(an_1)+- -+ ar10(ar41) +ja, = Z a;0(a;) + jan.
i=1 i=r+1

Let m be an integer with 0 < m < s — k, or cquivalently, we can say
k<s—m<s. Sincek > a, weseethat k > a,+1sothat a, +1 < s—m,
or a, < s —m — 1. Observe that the right hand side of (1) is

Ks—m—-1)+ > d&>() ol@)+idan = Y ano(a)+jon
i=s—m+1 t=r41 t=r+1

n

Z aia(ai)+jarr

i=r+1

v

and thus inequality (1) holds for k > a, and for every m (0 < m < s — k).
Case 3  Suppose that k < a,. Observe that Ef‘__,l d; = ka,,. First, let m
be a nonnegative integer such that m < s—a,, — 1 = a, +ag+--+a,.; —1.

Notice that Z‘ s—m+1 % 2 0 and by assumption a, < s —m — 1 so that
kap <k(s—m-—-1)+37 ., .. +1 %i- Thus inequality (1) holds for every m
with0 <m < a1+ag+...an_1—1. Nextlet a1 +as+- - Fan-1 <m < s—k.

We define the integer j (0 < 7 < a,,—k) such that m = a1+az+: - -+an_1+j5.
Notice that since k¥ < a, we have kj < a,j and by assumption a, <
i aim(a;) so that k < Y7 | a;w(a;). Using these [acts, we observe that
kji+k < anj+ 3 i, aim(a;) and by adding ka,, — (kj + k) to both sides of
this inequality, we have

n--1

kan < k(an —j = 1) +anj+ D _ aim(as).
i=1

Noticing that a, —j -1 = s—m—1and a,j+3 |, 1 aim(a;) = ¥i sy Gis

we see that inequality (1) holds for k < a,, and for every m (a1 +az+---+
an-1 £m < s — k) completing the proof. O

We conclude with a revision of part 2 of Conjecture 5.

Conjecture 10 Let S = {a),ay,...,a,} be a set of integers with1 < a; <
ay < --- < an (m2>2) and let © be a permulation on S with m(a,) # an
and Z —1 ai7(a;) cven. Lel m be lhe smallest inleger from {1,2,...,n}

such that
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amm(am) = maz{a;m(a;)|1 <i<n}.
Let M = {i|w(a;) > a;} and k = |M|. Let iy, = m and for each j with
2 <j Lk leti; be defined so that
ailﬂ.(ail) 2 aiz"r(aiz) 2.2 aik"r(aik)'
Foreachr (1<r <k) let S, = Z’Jf:l a;,m(a;,).
Then

1. if a;p < T(am), then w is graphical if and only if for eachr (1 <r <

k),
Sr < Z a;m{a;) + Z a;Sr + 5-(Sr — 1)
w(a:)<S, w{a:)>5,
and

2. if ayn = w(am), then w is graphical.
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