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ABSTRACT. A king graph K G, has n? vertices corresponding to the
n? squares of an n x n-chessboard. From one square (vertex) there
are edges to all squares (vertices) being attacked by a king. For given
graphs G and H the Ramsey number 7(G, H) is the smallest n such
that any 2-coloring of the edges of KG, contains G in the first or A
in the second color. Results on existence and nonexistence of »(G, H)
and some exact values are presented.

1. Introduction

The king graph KG,, has the squares of an n x n chessboard as its vertices
and an edge between two squares if a king on one square attacks the other
square, that is, between two squares having at least one point in common.
In other words, a square on n? lattice points of the unit square lattice are
the vertices of KG,, and the sides and the diagonals of the unit squares are
the edges of KG,, (Figure 1).

Figure 1. KG, forn =2, 3, 4.

The king graph Ramsey number r(G, H) is defined as the minimum n
such that every 2-coloring of the edges of KG,, contains the given graph G
of the first color (green) or the given graph H of the second color (red). The
existence of r(G, H) is possible only for graphs G and H being subgraphs
of some KG,. We restrict ourselves to connected graphs G and H. The
path P; with two vertices may be excluded since r(P;, H) is the smallest
order of KG, containing H.

We have r(G,H) = r(H,G) (symmetry) and r(G',H') < r(G,H) if
G' C G and H' C H (monotonicity) in general.

Instead of the sequence of the complete graphs K, used as host graphs
in the case of the classical Ramsey numbers [10], here the sequence of king
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graphs is used for r(G, H). Other sequences of host graphs for correspond-
ing variations of the classical Ramsey numbers are discussed in [1-9)].

2. Existence

For king graph Ramsey numbers (G, H) the existence is not guaranteed
for all pairs of graphs G and H as it is the case for the classical Ramsey
numbers. We will use 7(G, H) = o if (G, H) does not exist.

Theorem 1. If G is non-bipartite and H is not a path then r(G, H) = co.

Proof. The 2-coloring in Figure 2 can be used for every KG, since the

green subgraph (thin edges) is bipartite and the red subgraph consists of
distinct paths. o

XIXIXIXIXIXIXIXIXIX
XXX XXX X
XXX XXX X]

Figure 2. Bipartite graphs and paths in a 2-coloring.

Theorem 2. For cycle graphs C,, C; we have r(C,,C;) = oo.

Proof. If s or t is odd then Theorem 1 can be used. For s and t even,
s £ t, we distinguish the cases s = 4 for t = 4,6,8,10,and t > 12, s =6
fort =6 and t > 8, and s,t > 8. In Figures 3 to 10 we present 2-colorings
which can be used for KG,. The colorings neither contain a green C, nor

XIXDXDXIX
XXDAIXPXIX
DXIXIXIXIX
DXDXXIXPY

DAXPXIXEX
Figure 3. r(C4,C4) = 0. Figure 4. »(C,,Cs) = .

XIXIAIXIXIX
PXXDXIXIXEXIXIX
XIXDAXIX XXX
XXX XXX
XXX XY

Figure 5. r(Cy4,C3) = oo. Figure 6. r(Cs,Cs) = 0.

DAIXIXIXIX
XIX[IXIXIX
DXAXIXIXIX
XXX

DXAIXIXIXIX
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DXIXIXIXDIXEXI XX
XIXIXIXDXIXIXIXIXTX
XX IXIXIXIXIXIXT XY

Figure 7. r(C4, C10) = 0.

XXX XX
DX XXX
DXOXIXDXIX
XDIXIXXIXIX
XX XXX
XXX XXX
XXX IXDXX

D}XPXXPXIXIXIXIXIX
XA XIXIX XXX
XIXDIXIXIXIXIXTY
}XAXIXIXIXT XXX
XIXDXXIXIX XXX
QAKX X

Figure 8. r(Cy,Cs;) = 0o (i > 6).

ZOZOTOZ0Z0
Z020X00Z020X
ZOZ0HT0Z0X
ROZVZOZOTO0
Z0Z0TOZ020
ZOHZ0Z0Z0Z0%
SRS

Figure 9. r(Cs,C2:) = 00 (i > 4). Figure 10. r(C2;,C2;) = o0 (3,5 > 4).

a red C; since all cycles surrounding edges having the same color only are
too small and all cycles surrounding at least one edge of the other color are
too large. a

Corollary 1. The existence of (G, H) is possible only in the following
three distinct cases where

(1) one of G and H is non-bipartite and the other one is a path,
(2) one of G and H is bipartite but not a tree and the other one is a tree,

(3) G and H both are trees.

Proof. If G is non-bipartite then by symmetry and Theorem 1 it is neces-
sary for the existence of r(G, H) that H is a path. This corresponds to case
(1) and it remains that G and H both are bipartite. If G is bipartite but not
a tree (case (2)) then G contains a cycle and H is a tree by monotonicity
and Theorem 2. It remains case (3) where G and H are trees. O

We now consider some special cases of (G, H).

Theorem 3. For stars K, , and K¢, we have

3
00

if s+t<9,s>3,t>2,

(K1, K1) = { if s+t>10.
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Proof. Red diagonals and green sides in KG; prove r(K; 4, K1) > 3. By
the pigeon-hole principle the central vertex of KGj is incident to s green
or ¢ red edges if s + ¢ < 9 so that 7(K} s, K1) < 3.

The edges of KG, can be partitioned into 8 classes. For each of the
four directions we use 2 classes such that adjacent edges belong to different
classes. Then the edges of s — 1 classes are colored in green and the edges
of the 8 — (s —1) < ¢t — 1 remaining classes in red proving r(Ki,s, K1) = 00
for s+t > 10. a

Theorem 4. The values of 7(K 5,H), s = 6,7, and 8 are as in Table 1.
| .Pa P4 K 1,3 otherwise

K1,6 3 5 3 (o o]
Kiz| 3 oo o 0
Kig|loo o0 o0 (%)

Table 1. (K, H) for s = 6,7, and 8.

Proof. Since P; = K3, the first and third column of Table 1 follow
from Theorem 3. In the second column we obtain r(K4,P;) > 5 from
the 2-coloring of KG4 with one red edge from each border vertex to the
geometrically nearest inner vertex and green edges otherwise.

In a KGs without a green K g and without a red P, the central vertex
has to be incident to three red edges. The edges incident to the other
vertices of these three red edges complete a red P; or a green K; ¢. This
contradiction proves (K¢, Py) < 5.

A 2-coloring of the infinite king graph where every vertex is a vertex
of a red triangle and all other edges are green proves r(K; 7, Py) = oo and
thus r(K g, P4) = oo by monotonicity.

For the fourth column we color the infinite king graph such that every
vertex belongs to a red K4 and all other edges are green. This proves
(K16, H) = oo if H € K4. For non-bipartite graphs H, Theorem 1
implies (K6, H) = oo. It remains H = C,;. However, the 2-coloring in
Figure 3 proves 7(Kj6,C4) = co. The remaining entries in Table 1 follow
by monotonicity. @)

The existence of r(K, 5, H) may be possible for more graphs H than in
Table 1, however, the number of vertices of H must be at most 12.

Theorem 5. If H is not a subtree of the graph in Figure 11 then
T(K1,5, H) = .

Proof. The 2-coloring in Figure 12 does not contain a green K, s and the
components of the red subgraph are as in Figure 11. To see that H cannot
contain cycles, Theorem 1 can be used for odd cycles. The 2-coloring in
Figure 3 proves r(K,5,Cs) = 0o. For t > 3 we obtain r(K;5,Ca) = o0
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Figure 11. Red component of the 2-coloring in Figure 12.
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Figure 12. r(K,5,H) = oo for H Figure 13. 7(K;5,C2) = 00
not being a subgraph of the graph for t = 4.
in Figure 11.

from 2-colorings as in Figure 13 for ¢t = 4 where the red subgraph consists
of parallel lines and diagonals in blocks of t — 1 consecutive squares. o

Theorem 6. If s < 4 then r(K,s, H) exists for infinitely many graphs H.

Proof. To see the existence of r(K},s, P;) we start at a central vertex of
K G, without a green K ;. Since s < 4 there exists a sequence of red edges
each going either upwards or horizontally to the right. This guarantees a
red P, if n is sufficiently large. a

The existence of (G, H) for graphs with vertices of degrees at most 4 is
restricted furthermore by the following two theorems.

Theorem 7. r(K,, H) = oo.

Proof. The 2-coloring in Figure 14 neither contains a green K, nor a
connected red H # Ps. @)

XK
KKK
RKRXR
NOZOSOZO

Figure 14. r(K4, H) = oo.
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Theorem 8. 3 if H=P;,
T(K2,3,H) = 5 if H= P4,

oo otherwise.

Proof. It may be checked that K, 3 can occur in KG,, as in one of the two
possibilities of Figure 15 only. In both cases diagonal edges in both direc-

IAXIXIX]

XIXIXIXIX]

V00
KX AAA
XXX XXX

X7 RXIXIXIXE  IAAXAAAK
Figure 15. r(K2,3,H) = oo for H Z P,.

tions and two consecutive edges of squares in one direction are used. Thus
there is no green K 3 in both 2-colorings of Figure 15. One 2-coloring con-
tains red cycles C; only and the other one red paths only so that r(K> 3, H)
can exist for H = P; and H = P, only. The proofs of (K3 3,P;) = 3 and
r(Ka,3,P4) > 5 are straightforward and r(K2 3, P4) < 5 has been checked
by computer. a

3. Small graphs

For the three cases of Corollary 1, in Table 2 to 4 we gather exact values
of 7(G, H) for all graphs with up to 5 or 6 vertices. We may remark that
the entries oo being underlined follow by monotonicity. For all the values
not being covered by the preceding theorems appropriate 2-colorings for
the lower bounds are easy to find and the proofs for the upper bounds are
straightforward or found by computer.

C3{N1 N2|Cs N3 Ny Ns Ng¢ N7 Ng N9 Nigp N1y N2 Ny3
PA|3|!3 3({3 3 3 3 3 3 3 3 3 3 4 o0
P44 4|14 4 4 4 4 4 5 4 8 6 7 o
P55 5|8 8§ 8§ 5 5 5§ o0 6§ 0 x® 0
Ps| 6|6

nN N N3 Ny Ns Ng

Ny Ng Ny Nio Nn N2 Nis

Table 2. Paths versus non-bipartite graphs.
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P3|Py Ki3|Ps Ty K1a|Ps To Ts Ty Ts Kip5
Cs12]14 3[4 4 5|4 4 4 5 5 o
B|3]4 3 }4 4 5|4 4 4 5 5
By| 3|5 o0 |00 00 00 |00 00 0 XX N0
B;|3|4 5 |5 5 6
By|314 4 |4 4 5
Bs|3|14 5 |6

B, B, Bs B, Bs

T Ty Ts Ty Ts

Table 3. Bipartite graphs not being trees versus trees.

P3|Py Ki3|Ps Th Kha|Ps To Tz Ty Ts Kis
P 212 313 3 3 3 3
Py 3 3 1|3
3
3

Kl '3 3
Py
T
K4
P
T
T3
T,
Ts
K5

3
3
3
3

W W hw WwWww

Wl W WWwW W W

w0 | i 0 Wl w

w0 0o ol e wfew w

w | w e e
o o wlee wofw
8 o ononorw b ifes

Table 4. Trees versus trees.

4. Cycles and paths
For paths versus paths the existence is guaranteed.
Theorem 9. r(FP;, P;) < co.

Proof. Since the graphs of the triangle gameboards are subgraphs of the
king graphs, the existence of r(Ps, P;) follows from Theorem 3 in [5]. g

Theorem 10. For s < 5 the numbers r(Cs, P;) do exist.

Proof. If the red subgraph for a sufficiently large KG, is connected then
a red P, exists. Otherwise, there are red components separated by curves
intersecting green edges only. If there is a branching of these curves, that is,
the four vertices of a unit square belong to three different red components,
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then this square contains a green C3 and a green C;. Moreover, the green
edges of the neighboring squares force a green Cs. If there is no branching
of the separating curves then at least one red component connects vertices
of opposite sides of KG, and thus contains a red P.. o

Theorem 11. The number 7(Cs, P,) does not exist for
(1)s=6,t>25 (2)s=7,t>9, (3)s=8,¢t> 13,
(4) s=45,4i+1,4i+2,4i+3,t >4i+1,i> 2, s £8.

Proof. Consider 2-colorings as in Figure 16 for i = 2 and 3 with red
components having 4: vertices. Since there are only green cycles Cs, Cy,

XIXIXIXIXX X DAX
Z02020Z0Z0Z0T0T%
XIXIXIXIX XAXIX X
XIXIXIXIXIXIXDATX
XIXIDXIXIXIX X XX
XIXDXIXIXDAXIXIX
XIXDXDX XXX X
Figure 16. r(C,, P,) = oo for i = 2 and 3 in cases (2) and (4) of
Theorem 11.
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Cs, Cg, Cs, and C, for s > 4i + 4, cases (2) and (4) are proved.
The coloring in Figure 17 does not contain a green Cs and the red
components have 12 vertices only. This proves case (3).
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for

8

Figure 17. r(Cs, P;) = oo for Figure 18. »(Cs, P;) =
t>13. t > 25.

Case (1) follows from the 2-coloring in Figure 18. There is no green Cg
and the red components have 24 vertices only. O

54



Thus for fixed s > 6 the king graph Ramsey numbers r(Cs, H) exist for
finitely many graphs H only.
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