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Abstract

A fractional automorphism of a graph is a doubly stochastic ma-
trix which commutes with the adjacency matrix of the graph. If we
apply an ordinary automorphism Lo a set of vertices with a particular
property, such as being independent or dominating, the resulting set
retains that property. We cxamine the circumstances under which
fractional automorphisms preserve the fractional properties of func-
tions on the vertex set.

1 Introduction

In (6] a fractional isomorphism between two graphs with adjacency matrices
A, B is defined to be a doubly stochastic matrix § with the property that
AS = SB. This definition is found by generalising the view of ordinary
graph isomorphisms as permutation madtrices. It is natural to consider the
case when A = 3; any doubly-stochastic matrix S such that SA = AS can
be considered a fractional autornorphism. It is understood that a matrix has
the property of being a fractional automorphism (or isomorphism) subject
to a certain ordering of the vertices, imposed by the ordering used in the
adjacency madtrix.

Fractional automorphisms have been studied, though not under that
name, by Tinhofer in [4, 5] and Godsil in [2]. It is obvious that the set of
all fractional automorphisms of a graph with adjacency matrix A, which we
shall denote by S(A), contains the convex hull of the set of automorphisms
taken as permutation matrices; a graph is called compact if these two sets
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are in fact equal. While several classes of graphs are known to be compact,
as yet no good characterisation of compact graphs has been found.

It is shown in [2] that every fractional automorphism of a graph G
determines a nontrivial equitable partition of the vertex set. A partition
™ is equitable if for any cell C € =, the induced subgraph V[C] is regular
and, for any pair of distinct cells Cy, C; € 7 the induced bipartite graph
between C; and C; is biregular.

One view of fractionalising graph parameters is that one takes an integer
linear program and considers the linear relaxation. If G is a graph with
adjacency matrix A and incidence matrix B, for example, then a fractional
dominating vector is a [0, 1)-vector which satisfies the matrix inequality
(A + Iz > 1; note that if we restrict the values of the components of z
to 0 and 1, then z is the characteristic vector of a dominating set of G.
Similarly, a fractional independent vector is a vector z satisfying BTz < 1,
and a fractional covering veclor is a vector x which satisfies BTz > 1. A
good introduction to fractional graph theory is [7].

In [3], the authors asked the question: suppose thal z is a fractional
dominating, independent, or covering vector, and let S be a fractional au-
tomorphism. Is Sz necessarily dominating, independent, or covering, re-
spectively? It was shown that, if G is a compact graph, then all fractional
automorphisms preserve the properties of being fractionally dominating,
independent, or covering. (The authors used the term “automorphism-
closed” to mean “compact”.) An extension of this result, also proved, is
that if G is regular and S{A) is precisely the convex hull of the autormor-
phisms together with the constant stochastic matrix, then all fractional
automorphisms of G prescrve the properties under discussion.

2 Fractional domination is preserved

It turns out that the question of when a [ractional automorphism’s action
on a fractional dominating vector results in a fractional dominating vector
is easily answered, and the answer is “always”.

Theorem 1 Let S be a fractional automorphisn of a graph C with adja-

cency malric A, end lel « be a fractional dominaling vector. Then Sz is
also fructional domninating.
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Proof. By the definition of fractional domination, we know that (A+I)xz >
1. So:

(A+D(Sz)=({(A+1)S)z
= (SA+ SI)x
= S((A+ Dz)
>S5-1
= 1 since S is doubly-stochastic

O

Note that a similar result holds for fractional closed neighbourhood
packing, which is the LI’ dual to [ractional domination.

3 Fractional independence and another look
at automorphisms

Our result on fractional domination hinges on the fact that the adjacency
matrix A is used to define both the fractional dominating vector and a
fractional automorphism. We have no such coincidence for fractional in-
dependent or covering vectors, however. Note that a vector z is fractional
independent if and only if 1 — z is {ractional covering, where 1 here stands
for the vector of all 1’s, as it does above, so in considering the action of
doubly stochastic matrices on fractional independent or covering vectors,
it suffices Lo consider only onc or the other.

This underscores a deeper concern about our definition of fractional
automorphisms, namely the actions of such an operator on the cdge sct.
We know that an ordinary automorphism can be defined as a permutation
of the vertex set, and that this induces a permutation on the cdge set.
There does not, however, secm to be an obvious analoguc of this induced
permutation for fractional automorphisms.

We are thereby led to consider an alternative way of characterising au-
tomorphisms. Rather than being a single permutation /2 of the vertices
which preserves adjacency, we can instead view an automorphism as a
pair (P, Q) of permutations, on the vertices and edges respectively, which
joinuly preserve incidence: that is, for some vertex-edge incidence matrix
B, P = BQ.

We [ractionalise this as [ollows. An edge-based fractional eulornorphism
of a graph with incidence matrix B is a pair (S,T) of doubly-stochastic
matrices such that SB = BT. We can think of S as defining the action on
the vertices, and T the action on the edges.
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A pair (S, T) is an edge-based fractional automorphism with respect to
orderings of the vertices and edges of the graph. When we are speaking
of sets of edge-based fractional automorphisms, it will be understood that
these orderings are fixed. Note that, with respect to any such fixed order-
ings, the set of edge-based fractional automorphisms of C is a convex set
in the Cartesian product of the n x n with the m x m real matrices, where
n is the number of vertices of G and m is the number of edges.

Theorem 2 Let G be a graph with incidence matriz B, and let Lhe pair
(ST,T) is an edge-based fractional automorphism of G. Then if z is a
Jfractional independent vector, then so is Sx.

Proof. The definition of fractional independence assures us that BTz < 1.
Thus:

BT (Sz) = (B7'8)z
=(T"B")x
=TT Bz
<T".1
=1

]

Corollary 1 Let S be e fructional automorphism of a graph G. Then if
z s a fractional independent vector and T a matric such that (ST, T) is
an edge-based fractional aulotnorphism, then Sz is a fractional independent
veclor.

This partial result begs a further question: let S be a fractional auto-
morphism. Under what circumstances docs there exist a doubly-stochastic
matrix T such that the pair (S, T) forms an edge-based {ractional automor-
phism? The converse question is also interesting: let (S,T) be an cdge-
based fractional automorphism. Is it nccessarily the case that S by itself is
a fractional automorphism? We have achieved partial answers to both of
thesc questions.

Godsil ([2]) showed that each equitable partition of a graph determines a
unique idempotent fractional automorphism of the graph. Suppose that the
cells of an equitable partition arc Cy, ..., Ck, with cardinalitics ¢y, ..., ck. The
idempotent fractional automorphism associated with the partition is the n.x
n matrix with the reciprocal of ¢; in each entry with both row and column
index associated with verticesin C;,7 = 1,... , k, and zeroes at any position
not in a C; x C; submatrix. (Although the fixed ordering of the vertices with
respect to which we have fractional automorphisms may not be such, it is
helpful to imagine that the ordering of the vertices has those of C first, and
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then those of Cy, etc. Then the matrix described is a block diagonal matrix
with constant entries in each diagonal block: the only entries possible that
would make the resulting matrix doubly stochastic.) Let us denote by F¢
the set of all such idempotent fractional automorphisms of the graph G.

Proposition 1 Let S be a fractional automorphism of G. If S is in the
convez hull of the union of F¢; and the aulomorphisms of G, then there
exists a doubly-stochastic m x m matriz T such that the pair (S,T) is an
edge-based fraclional autornorphism.

Proof. By the convexity of the set of edge-based fractional automorphism
pairs, remarked on above, it suffices to verify the claim for cach member
of F¢ and for each automorphism of G. For automorphisms of G, this
verification has already been noted.

Suppose that S € Fg; let Cy,...,Ck be the cells of the underlying
equitable partition, with cardinalities ¢, . .. , cx. Without loss of gencrality,
since we are dealing with only onc fractional automorphism, let us suppose
that the fixed ordering of the vertices is such that S is a block diagonal
matrix.

We shall partition the edges of G into sets f2; ;,7 < j, with cardinali-
ties ¢; ;, consisting of the edges with one end in C; and the other in Cj.
Let the edges then be ordered so that the edges in /) come first, then
Eyo,...,E g then [5y 5, ..., I2 ¢, ete. This is without loss of generality; if
there is already some ordering of the edges fixed, then we can do everything
that follows with reference to columns indexed by the cdges in the I ;, in
the resulting vertex-cdge incidence matrix, but it will be much easier for
the reader to follow if we have the cdges supposedly ordered as described.

Let B be the vertex-edge incidence matrix of G with respect to the
orderings supposed of the vertices and edges of G, and let T be the m x m
block-diagonal matrix with blocks indexed by I¢; ; x E; ; down its main
diagonal, with each such block having constant entry equal to the reciprocal
of e; ;. Clearly T is doubly stochastic; it remains to be shown that SI3 =
BT

By direct calculation the C; x [5;; block of SB has constant entry ri,
for i < j the C; x I ; block of $B has constant entry - l’ for i < j the
C; x [ j block of SB has constant entry —; and all ot.h(‘r entrics of SI3
are zero.

Let a; ; be the number of neighbors in C; that cach vertex in C; has;
this is well-defined by the equitability of the underlying partit,ion By dircet
calculation, the C; x [ ; block of BT has (onst,anl, anry . Since a;; =

—lande;; = ( ) it is clear that = = 2. A similar countmg argument

wnll show that the ofl-diagonal vlunvnt.s of BT match up with those of SB.
g
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Proposition 2 Let (S,T) be an edge-based fractional automorphism of G.
If S and T are symmelric, and G is regular, then S is a fractional auto-
morphism of G.

Proof. Recall that, if G is k-regular with adjacency and incidence matrices
A and B, respectively, then BBT = A + kI. Consider, then:

S(A+ kI) = S(3BT)

= BTB”
= BB”S, by symmetry
= (A+kI)S
Since (kI)S = S(kI) = kS, this implies that SA = AS. |

4 Fractional automorphisms of general inci-
dence structures

One added advantage of edge-based fractional automorphisms is that they
give us a way Lo [ractionalise the idea of an automorphism on an incidence
structure such as a finite geometry or a combinatorial design. Such struc-
tures have no useful notion of "adjacency” as graphs do, and so the more
usual formulation of a fractional graph automorphism will not carry over.

Let us be concrete: an incidence structure consists of an ordered pair
(P, B), where the set 13 (the “blocks”) is composed of subsets of I (the
“points™). Every incidence structure has an incidence matrix M, with rows
indexed by P and columns by B, where

~_J 1 il point 7 is contained in block 7,
i 0 otherwisc

Hence, we can define a fractional automorphism of an incidence struc-
ture to be a pait (S, T) of doubly-stochastic matrices such that SM = MT.
We can also discuss fractional isomorphisms: Two incidence structures with
matrices M, N are fractionally isomorphic when there exist a pair of doubly-
stochastic matrices (S, T) such that SM = NT.

One well-studied class of incidence structures is that of BIBDs: a bal-
anced incomplete block design with parameters (v,k, A) is an incidence
structure with the following propertics: |P| = v; if z € B, |2| = k; and if
P,q € P, then there are precisely A clements of B3 containing both p and q.
This extreme regularity allows us to determine precisely which BIBDs arc
fractionally isomorphic.
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Theorem 3 Two BIBDs are fractionally isomorphic if and only if they
have the same parameters.

Proof. It is common to denote by b the number of blocks |B| in a BIBD,
and by r the number of blocks which contain a given point. We note first
that, for two designs to be fractionally isomorphic they must share both v
and b; otherwise their incidence matrices will be of different sizes. (b and r
are determined if one has fixed v, &, and A; the relationships between these
parameters are that r(k — 1) = A(v — 1) and bk = vr. A proofl of these
equations can be found in Chapter 1 of [1].)

Suppose that M and N arc the incidence matrices of designs with iden-
tical values for v and b, and with k-values kps and ky, and r-values rp and
rn. Let S and T be doubly-stochastic matrices such that SM = NT.

It is easy to see that the row- and column-sums of the matrix M are
rp and kp, respectively; a similar remark holds for the matrix N. Thus,
the matrix SM will also have column-sums equal to kps, by the doubly-
stochastic nature of S. Similarly, the matrix NT will have row-sums cqual
to rn. The sums of the entries of SM and NT arc thus bky and vry,
respectively. But since the two matrices are equal, we have that bky = vry.
However, we know that bkpy = vry; and hence ry = ry and ky = k.
Since we can express A in terms of v, k, 7, the parameters of the two designs
must therefore be equal.

So let M and N be the incidence matrices of designs with identical
paramelers. Lcet S = %J,, and T = ;];Jb, where J, indicates the n x n
matrix with all entries 1; it is easy to check that SM = NT. 0

Perhaps more interesting is the case of pairwise-balanced designs (IPBDs),
a generalisation of BIBDs where there is no fixed block size. Onc might
conjecture that two PBDs must share the same profile of block sizes -
that is, have the same multiset of block sizes - for them to be fractionally
isomorphic; it is unclear whether this would be sufficient, however.
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