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ABSTRACT. The Picard group is defined as I' = SL(2, Z[i]); the ring
of 2 X 2 matrices with Gaussian integer entries and determinant one.
We consider certain graphs associated to quotients I'/T(p) where p
is a prime congruent to three mod four and I'(p) is the congruence
subgroup of level p. We prove a decomposition theorem on the ver-
tices of these graphs, and use this decomposition to derive upper and
lower bounds on their isoperimetric numbers.

1. INTRODUCTION

The Picard group I' = SL(2, Z{i]) is the group of two-by-two matrices
with Gaussian integer entries and determinant one. This group acts on hy-
perbolic three-space H® via fractional linear transformations. The center of
this action is given by (1), and we define PSL(2, Z[:]) = SL(2, Z[i])/{%1).
In the following we will make no distinction between a matrix and the two-

element coset it represents.
It is shown in [4] that PSL(2, Z[]) is generated by

0 -1 11 1 0 1
= 9)e=(0 )= 1) (o)
This leads to the well-known presentation (as shown in [4])

PSL(2,Z[i]) = (a,b,c,d | a® = d? = (ad)? = (bad)? = (cad)?
= (cd)® = (ab)® = bcb'c7! = 1).

JCMCC 50 (2004), pp. 95-104



For a prime p = 3 (mod 4) we define the congruence subgroup of level p,
denoted by I'(p) by

o= {(5 9 =0 1) emen)

We note that if p =1 (mod 4) then —1 is a square mod p. Consequently,
the group PSL(2, Z,[i]) reduces to PSL(2,Z,) in this case.

Let T be a finite group and let 2 be a symmetric generating set for T.
Then the Cayley graph of T with respect to Q is the graph with vertex
set ', with group elements g; and g2 connected by an edge if g, = wgs
for some w € Q. Cayley graphs of PSL(2,Z,) have been the subject of
much research. For example, in [1],[2] and [5] Cayley graphs of PSL(2,Z,)
are constructed whose isoperimetric numbers are related to the Cheeger
constants of the fundamental domain of the action of PSL(2,Z,) on the
complex upper half plane. The work presented here can be viewed as an
extension of that research. As in [1], the isoperimetric numbers computed
here should be related to the Cheeger constants of the fundamental domain
['(p)\H3. Also observe that since I'(p) is the kernel of the reduction homo-
morphism from I to PSL(2, Z,[i]) we have that I'(p) is a normal subgroup
of I'. It is easily shown that this homomorphism is onto, leading to the

well-known formula (see (7] for a proof)

2 6 1
T = s1 Zil= 5 (1- )

where p is a prime congruent to 3 mod 4. For such primes, we have that
—1 is not a square mod p and we define the group I', = PSL(2, Z,[:]). The
set = {a,b,b71,c,c71,d} is easily seen to be a symmetric generating set
for I',. Let G, denote the Cayley graph of I, with respect to Q.

Denote by N the following subgroup of I'p:

(1) 1)
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Set I', = N\I',. Observe that if g is any matrix element in I, then left
multiplication by elements of N does not change the bottom row of g. It
follows that elements of I, can be indexed by ordered pairs representing

the bottom rows of matrices. Specifically:

T 2 {( B) | &, B € Zyli, (e B) & (0,0) (mod p)} /().

Finally, we let G}, denote the quotient graph N\G, (i.e. The multigraph
whose vertices are given by the cosets of Iy, with distinct cosets 1N and
42N joined by as many edges as there are edges in G,, of the form (v, v2),
where v; € y1N and v; € 7 N). We note that I', is not a group. There-
fore, the quotient graphs Gy, are not themselves Cayley graphs. They are,
however, induced from the Cayley graphs Gy.

The goal of this paper is to prove a decomposition theorem on the vertices
of the quotient graph G,,. We will then use this decomposition to derive
upper and lower bounds on the isoperimetric numbers of these graphs. As
a corollary we will prove an upper bound on the isoperimetric number of
the graphs G,.

The isoperimetric number finds many applications in combinatorics, due
to its close relationship to the eigenvalue spectrum of the graph. Also, as
a measure of the connectedness of the graph, it aids in an analysis of the
graph’s expansion properties. More on these applications can be found in
[3] and [6).

The authors thank the referees for a careful reading of the paper, and

for clarifications and corrections which greatly improved the exposition.

2. THE DECOMPOSITION THEOREM

Lemma 1. The vertices (o, B) and (7,6) in G}, are adjacent if and only if

det (: ’g) =+1,+i (mod p).
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Proof. We have already noted that if g € I'p then left multiplication of
g by elements of N preserves the bottom row of I',. Therefore, ¢’ € G},
is adjacent to precisely those elements attainable from it by left action
(multiplication) by £ € €, with £ ¢ N. Observe that left multiplication
by a = (_01 (1)) multiplies the bottom row by —1 and then reverses the

rows. Left multiplication by d = ((: z) reverses the rows and multiplies

0

both by i. Specifically, if g = (: ?) €'y withad —By=1 (mod p) and

(4 /
£g = (:, g,), then (v/,8') = —(a, B) or (v, 6') = i(e, B). It follows that
we must have

det (,'77, g,) =+1,4i (mod p).

For the converse, note that if det (: g) = 1,47 (mod p) then we

have (6;2 ef) € I’y for some € € {£1,+i}. So multiplication by a or d
takes (,6) to (e, B) in I', and so these are adjacent in G,. The proof is

complete. O

We now observe that the graph G,, with p # 2, is six-regular. Further,
N is abelian and is easily seen to satisfy |N| = p?. It follows that [V(Gp)| =
%4(1 - ;1;). Of the six edges incident with an arbitrary vertex g € G,, four
of them arise from multiplication by elements of N, with the remaining
two elements coming from elements of the cosets zN, yN, with =, y ¢ N.
Next, observe that any vertex in the quotient graph G, will correspond to
p? vertices in G, It follows that G, is 2p®-regular and |E(G)| = ”2—8(1 — )

We make the following definition:
Definition 1. Let a € Zp[i] — {0}. We define the set V() C V(G},) by

V() = {(0, ), (0,ic), (a1, B), (ia™, B) : B € Zyi]}.
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Then we let H(a) denote the induced subgraph of Gy, on the vertices of
V(a). We will refer to the vertices {(0, ), (0,ic)} as the center of H(c)

and the remaining vertices in H(a) as the crown of H(a).

It is easily seen that there are two vertices in the center of H(x) and
2p® vertices in the crown. Our main theorem is a decomposition of G;,.

Specifically:

Theorem 2.2.1. Let p be a prime satisfying p =3 (mod 4). The vertices
2

4_ ! sets such thal the subgraph of G,

induced by each set is isomorphic to H(ca), for some a € Zy[i] — {0}.
If 6§ ¢ {*a,%ia}, then there are 16p® edges connecting vertices in H(c)

of Gy, can be partitioned into P

to vertices in H(8). Alternatively, if G, denotes the mulligraph obtained

from G}, by contracting each H(a) to a single verter, then G, = K ;%_l ,

—1 vertices, with 16p? edges adjoining each

the complete multigraph on 2

pair of vertices.

Proof. 1t is easily seen that H(a) N H(§) = 0 for § ¢ {a,—q,ia, —ia},
and H(a) = H(5) otherwise. Any vertex v € G}, lies in V(a) for some
@ € Zy[i] — {0}. So V(G}) can be partitioned by the vertex sets of the
H(a)’s. That is,

G =| |V (H(@)

where the union is over the distinct H(a)’s.
Next, recall that

G, -1
epi=1G 22t
Since |H(a)| = 2p? + 2, we have
IGpl _p*-1
|H(@)l — 4

many copies of H(a).
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By Lemma 1, the vertices (0, a) and (0, i) are adjacent to all vertices
of the form (a1, B) or (ia~!, B), where 8 € Z,[i]. Since there are 2p? such
vertices and G, is 2p? regular, we have accounted for all vertices adjacent
to the center of H(a). It follows that vertices in the center of H(a) are
adjacent only to vertices in the crown of H(a).

Now consider the vertices (a1, 8) and (ia~!, 8). Each of these is adja-
cent to the vertices in the center of H(a), which accounts for two of their
edges. Within the crown of a given H(a), we find that these vertices are

also adjacent to each of the vertices
{Ga™1,iB ), (ia"!,if L ia), (@™}, B+ ), (e}, BLia)}.

Therefore, each vertex in the crown of H(a) is adjacent to eight other

vertices in the crown. It follows that
1
|E(H (@))] = 5(8)(29%) +2(2p%) = 120

By Lemma 1, we see that for H(a) # H(y) the vertex (a~!,8) in the
crown of H(c) is adjacent to (y~!,z) in the crown of H(«) if and only if

-1
det (:_1 i) =+1,+¢ (mod p).

The number of solutions to this congruence is independent of the choice
of 4. Similarly, (o1, 8) will be adjacent to vertices of the form (iy~!,z)

provided
ol B\ _ ,
det (i7_1 I) =:+1,+i (mod p),

and the number of solutions to this congruence is also independent of the
choice of . It follows that the number of edges connecting vertices in H(c)
to vertices in H(y) is independent of the choice of & and +.

It only remains to determine the number of edges joining H(a) and H ().

Since for a given o we have that H(a) contains 12p? edges, and since there
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pe-1
4

2 _
Jjoining pairs of vertices within the P

are

isomorphic copies of H(a) in G}, we have 3p?(p® — 1) edges

L copies of H(c).
Also, since |V(G)| = 2

-1
and since Gj, is 2p2-regular, we have

|E(Gy)| = P (p — b . It follows that there are

p__z(”';‘ D 3262 -1)= %pz(zi? - 1)(p* - 5)

edges joining vertices in different H(a)’s. Finally, since the number of edges
joining H (a) to H(vy) is independent of our choice of & and v, and since

-1

there are ( ; choices for the ordered pair (e, ) that give distinct H(a)

and H(y), we conclude that the number of edges joining H(a) to H(y) is
given by
3P°(0* - 1)(p* - 5)

()

as was to be shown, O

= 16p®

3. THE ISOPERIMETRIC NUMBER OF G,

Let G be an arbitrary graph and let S € V(G). Then the boundary of
S, denoted by 88, is the set of all edges having precisely one endpoint in
S. The isoperimetric number of G, denoted by iso(G), is then defined by

|05]
iso(G mf
G)= T

where the infimum is taken over all subsets S C V(G) satisfying |S| <
1IV(G)|. A set S such that iso(G) = %ﬁ—' is called an isoperimetric set for
G.

Our decomposition makes it possible to derive upper and lower bounds
on iso(Gy). Also, since each vertex in G, represents p? vertices in Gp, we
have p*(is0(Gy)) < iso(G}). Thus, our decomposition permits us to derive

an upper bound on the isoperimetric number of Gp.
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First we need the following lemma (which we model after a similar result

in [1)]):

Lemma 2. Given distinct vertices (a, 8), (e, 8’) € G}, with

a B
det (a, ﬂ,) #0,

there are ezactly eight paths of length two joining (e, B) to (c/, B').

Proof. ;From Lemma 1, a path of length two joining (e, 8) to (o/, ') is
given by a vector (v, 6) such that

a B\ _ . v 6\ _ ,
det (’Y 6) ==+1,%i (mod p) and det (a’ ,3') =+1,+i (mod p).
Since we are assuming o’ — /S = w # 0, we have that (, 8) and (¢, '),
are linearly independent in C2. It follows that we can find nonzero constants

k1, ko such that

(7,6) = ki(a, B) + ko (e, B').

Calculating determinants we find

det (3 g) = kg - det (::, ﬁﬂ,) = kow,

6
det (Z, ﬂ’) = kj - det (CC:, ﬁﬂ,) = kw.

This leads to sixteen ordered pairs (kj, k2) for which the vector (v, §) has

and

the required properties. Since vectors differing only by a factor of —1 are

identical, these sixteen pairs represent eight distinct paths in G, O

Theorem 3.3.1. For the graphs G, we have

@ -1)E*~3) _. P -1)
—— <L G L — 7
2p'2 -1 - lSO( P) - pZ } 1

Proof. Let n be even and let K,, denote the complete graph on n vertices.

Then any set S containing g vertices will be an isoperimetric set for K.

2
It is a simple calculation to show that |0.5| = % in this case.
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2 _
Since d

is even we can apply this result in our case. As our set §

2 _

we select any P 3 1 copies of H(a). Then we compute

2 1 \2
2 _ il 20,2 _ 1\2
1S| = (2p* +2) rF-1 and |85| = 16p® ( ! ) P -1 .

8 4 4
From this it follows that
5 P2(P2 _ 1)2 o
(2p% +2) (pT) P

as claimed.

For the lower bound we observe that if (o, 8) is a vertex in G, and
(o, B') is some other vertex that is not a multiple of (e, 8), then Lemma 2
states that there are eight paths of length two joining them.

Partitioning the vertices of G}, into sets Sy and Sz with |S1] < |S2], it
follows that at least one edge from each of these paths must be cut for every
pair of vertices v; € S; and vy € S2, where v; and vy are not multiples of
each other. We also observe that for any vertex v € G, there are p? -1
nonzero multiples of v in Zp[i). Therefore the number of such pairs vy, v2
is at least |S;](]S2| — p® +1). Finally, since G}, is 2p*-regular, we note that
each edge can lie in no more than 2(2p? — 1) = 4p® — 2 different paths of
length two. It follows that

81S1| (1S2] — p? + 1)

>

p* -1

and therefore, since |Sz| >

01| | 8(Sal = +1) | (P = 1P = 3)
[S1] ~ 4p2 — 2 - 2p? -1

as claimed. 0

We then have the simple corollary
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-1
Corollary 1. We have iso(Gp) < i

PP+l
Proof. This follows immediately from the previous theorem and the obser-
vation that p?(iso(G,)) < iso(Gp). O
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