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Abstract

The Whitney number W, (n.k) of the rank-n Dowling lattice Q,(G).
based on the group G having order m. is the nunber of clements in
Qx(G) of co-rank k. The associated munbers U, (0. k) = MW, (n. k) and
Vin(n. k) = KYim* W, (n. k) were studied by M. Benowmhani [Adv. in Appl.
Math. 19 (1997), no. 1, 106 116] where a generating function was derived
using algebraic techniques and logeoncavity was shown for {U,,.(n.. k)} and
for { Vin(n. k)}. We give a central limit theorem and a local linit theorem
on R for {U,,,(n.k)} and for {V,,(n. k)}. In addition. asymptotic formulas
for maxy Uy, (n. k). maxy V,, (n. k) and their modes are given.

Keywonds:  Central limit theorem: Local it theorem:  Asymptotic
formulas

1. Introduction

An array {a(n.k) : n > 0. 0 £ k < D(n)} of nonnegative real
numbers, with P, = Z,f)(:;) a(n k) # 0, satisfies a central limil theorem

(is asymptotically normal) with mean j1,, and variance o2 if

o ke > .
lim sup Z M - (27r)"'l/2/ PRl =0, (1)

N+ e P,
reR 0<hk<Lpy, barery, n "X
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The array satisfies a local limit theorem on $ C R with mean p,, and
)

variance o provided

lim sup apa(n. |py + 2o, })

- (27?) l/.')(f' r2/2 =10. (9)
X s ])n

Typically. a central limit theorem for a sequence of associated random
variables gives one for the array from which a local limit theorem follows
under certain conditions. (Sce the paragraph describing Harper's method
before Lemma 1.)

Based on a finite group G having order in > 1. Dowling {6] constructed
a finite geometric lattice @, (G) of rank » > 1 using the partial G-partitions
of an p-set. The Whitney number W, (0. k) € Nis the munber of clements
in Q,(G) having co-rank & (so W(Q,(G).k) = Wy(n.n — k)). Then
Wo(n.0) = Wy,(non) = 1forn > 1 W, (n.k) # 0for 0 <k < with
n 21 and Wy, (n. k) =0 for k > n > 1. Dowling [6] derived the recurrence
relation

Wonk)y =W, (n - LEk=-10+ 1 +mk)W,(m- 1k 3)

for L <k < nand n > 2. Define W,,(0.0) = 1 and W,,,(0.k) = 0 for k > 1.
Then (3) is correct for kon > 1and W, (m k) # 0 for 0 < k<.

The associated numbers Uy, (n k) = BW,,(n k) and V,,(n.k) =
KM m*W,, (0. k) (k.n > 0) were studied by Benowmnhani {2]. There a
combinatorial interpretation. due to Dowling. was given: a gencrating
function was derived using algebraie teclmiques; and logeoncavity was
shown for {U,,,(n.lv)} and for {V,,,(n.l.')}. In this paper. we derive the
generating function analytically for completeness: refine a result of (2]
implying logconcavity: and give a central limit theorem and a local limit.
theorem on R for {Un, (1. k)} and for {V,,,('n.l.:)}. In addition, we give
asymptotic formulas for max {U,,,(n.. F):0<k< n}, max {V,,, (n.k):0<
k < n} and for their modes. We choose to use the method of Harper [9] to
establish onr limit theorems due to the nature of these arrays.

We write f(n) = ofg(n)) if limy..x f(n)/g(n) = 0: f(n) =
O(g(n)) provided |f(n)] < Clg(n)] for 0 > N: and f(n) ~ g(n) if
limy, ~nc f(n)/g(n) = 1. All asymptotics are with n — o<. The expectation
of a random variable X is denoted LB(X) and its variance Var(X). We
refer the reader to Durrett {7} for probability. The nonnegative integers are
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denoted by N: the real mumbers by R and the complex munbers by C. The
greatest. integer at most. . € R is denoted [). Throughout the paper. m is
a fixed positive integer and is usually omitted from the notation.

2. Results

For kon 2 0, lot Up(n.k) = MW,(n.k) € N and V,,(n. k) =
Kl Win(n. k) € N Then Up(n.0) = 1 and Uy, (n.n) = »! for n > 0.
U,(n.k) #0for 0 < k< nand U,,(n.k) =0 for k >n > 0. In addition.
(3) implies

Un( k) = kUp(n = Lk = 1)+ (1 + mk)U,,(n = 1.k) (4)
for k.n > 1. For completeness. we first derive the generating functions for
{Uni(n. )} and for {V,,(n.k)} analytically.

Let
) _ S N
Way) =33 Un(n-k) =yt =e 437 3 Un(m k) b (5)
020 k20 n>1 k>1

Then (4) inplies
helx.y) = y2hy (. y) + yh(e.y) + (e y) + myh, (. y).

Hence. z = h(x,y) satisties the linear first order PDE z, — (y* + my)z, =
(1 4 )2 with initial condition z(0.y) = 1. The characteristic curves are
given by dy/dx = —(y? + my). which has solution (w/(y +m)) Ym
Aloug such a curve. dz/dy = ~(1+ y)z/(y* + my). which has solution » =
lst((,')y-l/"'(y—{»-',",)""('"_n/'"’ = k(yl/m(y_}_.,")ml/rrr(r;r)!/—l/m(y_}_n,')—(m—l)/m
where & is an “arbitrary fnction®.  Applying the initial condition. we
obtain k(y'/™(y+m)=1"™) = y*/™ (y+m)m D/ or equivalently. k(s) =
smf(1 —s"). Then

=ce .

L
v \" m L Lm
])(_1:. ”) = (m) 4 (l_-:_-— U,m;) Yoo (,‘/ + "l) ™
Y wtm (6)
_ « T
= W-—:—-ﬁ (.t:.yGIR, £ +!/ Sn"l)

as in [2; Theorem 3]. Obviously. the analogous generating function for
{Vin(n k) } is (. my).
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Due to the nature of our arravs (see Lemma 1 and Lemnma 4). we choose
to use the method of Harper [9] to establish onr limit theorems. Harper's
method can be formalized as follows: Let {P,,(w)}">U be a sequence of
nonzero polynomials with nonnegative real coefficients, where u(wr) =

,?("(',) a(n. k)u* is of degree D(n) and all D(n) roots of P, (w) are real and
nonpositive. Then the array of coefficients {u.(-n.. By:n20,0<k< D(n)}
satisfies a central limit theorem with

ALY P | P (P,'.(l))"

2

oy = m and o), = P T PuD) (D)
if 0, = o>¢c as n — o (the derivatives are with respect to w). A proof of
Harper’s method can be found in [1: proof of Theorem 2] and a proof of
an extension of Harper's method can be found in [4: Theorem 1] (see [11]
for a survey of Pdlya frequency sequences). Both results use the natural
probabilistic interpretation P(X,, = &) = a(n.k)/P,(1). 0 < k < D). of
the array {a(u. k)}. Then (referring to (7). E(X,) = ptn and Var(X,) =
ay- The proofs of both results use the central limit theorem in an cssential
way to show (X, — t,)/0s, LN (0. 1) which is equivalent to (1) (see [7: p.
70}). If. in addition. the nonzero coefficients of each I %, (w) are consecutive,
then the array of coefficients satisfies a local limit theoremn on R with the
above yi,, and a2 provided 0, — x asn — . A (slightly incorrect) proof
can be found in [1: Theorem 2J; a correction can be found in [3; Theorem 11);
and a proof can found in [8; Theorem 7.1.4] when all a(n. k) are integers.

Forn > 0. let

(7)

Pp(w) = Py (w) = Z Upa (0. k)t ®)

k=0

so that Po(w) = L. Py(w) = 1+ w and Py(w) = 1 + (m.+ 2)w + 2w?. Note
that all coefficients of P, (w) are positive integers. For n > 1. (4) implies

Py(w) = (1 + w)P,_(w) + (mw + @), [ (w). 9)
n 1

Benoumhani [2] showed that all 7 roots of P,(w) are real and negative for
# 2 1. Our first result refines that of [2] and uses a different. approach.

Lemma 1. Fix m > 2. Then all n roots of P,(w) = P,,,(w) arc
distinet and in the interval (—=ne. 0) for > 0. Consequently, the sequence
U (n.0)..... Usw (0.0} is strictly logeoncave for n > 0.
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Proof. Our result is correct for n = 0.1, Suppose P, -1(w) has roots
- <y < & rl < 0 where n > 2. Then P)_(r,-1).. ,', ()
alternate sign with P! (r1) > 0. From (9), P,(r) = 7 (r +m) ) (k).
50 Pp(ra-1)..... Pu(r1) alternate sign with P,(r1) < 0 and P,(0) > 0.
By the Intermediate Value Theorem, P, (w) has a root in each interval
(Pami-Tn-2)."++ .(r2.71).(r1.0). From (9), P,,(—=m) = (—m+1)P, - (—m).
For odd u. P,(=m) < 0 and P,(r, 1) > 0. while for even n. Py(—m) >0
and P,(r,-1) < 0. In either case, P,(w) has a root in (—m.r,—1). Our
result follows by inductiononn. W

Remark. A slight modification of the proof shows that all »# roots of
B, 1 (w) are distinet and in the interval [—1.0) for n > 0. Consequently,
the sequence Uy(n.0)..... Uy (n.n) is strictly logconcave for n 2 0.

I view of (7). we now find asymptotic expansions for P,(1). P, (1) and
().
From (5). (6). (8).

>

x ;Il e~
h(z.w) = an(m) T = 1" =y ez 1)

nz==(}

which is analytic in € x C (see [10] for terminology) except for simple poles
where w = m/(e™* — 1). Let o = In(m + 1)/m and

(o) _ —net?

In(z) = hoz.1) =) Pu( |
n(z) = ha "Z_;' (1) n! (m+1)(',::.1_1)

x L\ 4 ao(mpl)z Loz
ha(z) = hp(az.1) = Zl’,’,(l) (”7:') (¢ ! )2
e e ()

((l:..)"

ha(z) = Doz 1) = Z P(1)

n=()

—2"!(?"(2"” 1)z _ 2(,"(m+l): +e"*

N 3
(n -+ 17 (555 - 1)
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Then hi(z) is analytic on 2] < 1+ 6 = (0? + 472)12 except. for a pole of
order kat 2 =1 (1 £ k< 3). Hence,

ow(2) = (= 1Fhe(z) = D brnl(z = 1)"

n 0
is analvtic on |z] < 1+48 (1 <k < 3). We have (g5.(1) = byp).

e toe®(z-1)+ -
—a(mn + 1) = %m(m +)E-1)+---

gn(z) =

s0 byg = —¢"fa(in + 1).

A+ aetm?(m+2)(z - 1)+
o2m?(m+ 12 + o3 (m+ 1)2(z - 1) + - -

g2(2) =

s0 bag = e JoP(m+ 1)% bay = 2¢" Ja(m + 1) and

=2¢"m® = 20¢ A (2m + ) (z = 1) — -
S m+ 10+ Falmt(m + 1)z~ 1) +---

gs(z) =

50 by = =2¢" o (m + 1) and by = —¢(mn + 6)/a?(m + 1)%.

By Darboux’s Theorem (see [12: Theorem 8.4]).

Py(1)y=nta™ {-b o+ o(n I)}

Pr() = nta " {bagn + (beo = bay) +o(n 1)}

(10)
b . 30
Pll)y=nta " {— % n? + (b:s.x - L;“—’-) n +0(1)}
as 1 — x. Henee,
(1) by bag — bay
= = ———== 4 0(1).
P (1) bio by .o )
1"(1)).2 Do o . 2030 — 2b20bsy

- = =N+ =+ 0(n). 11
(Pn(l) bi o 0o () ()

Pll(1) bso o Bbyg —2by,
Pu(1) — 2bpg " 2by o+ o(n)
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as n — . Consequently. (7). (11) give

s bag — by
n—- =2

fy =——n + o(l)
) by
. (12)
= = (n+1)- 2 +o(1)
(m+ 1) (i + 1) m+1
and
2 201 0ba,0 + 2byabsy — 3bygbs.o + 403 ) — Abg gba,
Ty == ~T n+ o(n)
2hy
(13)

m(m —n(m + 1))
(m+ 1)2m%(m + 1)

n+o(n) = oc

as n — o, since by ghyg — 21)3.(, = 0.

A consequence of our caleulations is the following limit theorems for

{U,,,(n. k) }

Theorem 2.  Fix m 2 1. The array {Un(n.k) :n > 0. 0 < k < n}
satisties a (vnual limit. theorem and a local linit thecorem on R with the
above fr,. a2 (given in (7). (12). (13)) and with P, = P,(1) (given in
(10)). =

A result of Darroch [5] (see also [11; pp. 281- 285]) implics that U, (1) =
max {U,,,(n k):0<k< n} oceurs for some & in the interval (g, — 1, p1,, +1)
given in (7). (12). Hence (10). (13). the local limit theorem in Theorem 2
and logeoncavity give the following.

Corollary 3. Fix m > 1. Then Uy, (n) oceurs for some k in the interval
(0 — L. pty, + 1] and

Ui(n) ~ Up(n. [pen]) ~ ml/)(m + l)l/'" [271‘11(111 = In(m + 1))] e
asn—x. B

The array {V,., (nk):n>20. 0< k< 'n} is handled similarly. hence.
we merely state the results. First. (3) implies

Vin(n k) = mkV,,(n — 1.k — 1) + (1 + mk)Vy (0 — 1, k) (14)
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for k.n > 1. For n > 0. let
n
Qu(w) = Qum(w) = Y Viu(m. k)
k=0

s0 that Qu(w) = 1. Q1 (w) = L+mw and Qa(1e) = 1+ (m2+2m)w +2m2w?.
Note that all coefficients of @, (w) are positive integers. Then, (14) implics

Qu(w) = (1 + mw)Qy -1 (w) + (mw + mw?)Q!, _, (w)

for n 2 1. An argument nearly identical to Lemma 1 gives the following
result which refines that of [2].

Lemma 4. Fix m 2 2. Then all 7 roots of Qu(w) = Qu.m(w) are
distinet and in the interval (—1.0) for » > 0. Consequently, the sequence
Vi (n.0).. ... Vip(n. ) is strictly logeoncave for n >0. W

Remark. All n roots of Q,, 1 (w) are distinet and in the interval [-1.0)
for . > 0. Consequently. the sequence Vi(n.0).....Vi(n.n) is strictly
logeoncave for n > ().

Caleulations nearly identical to Theorem 2 give the following limit theoreins
for {Viu(n. k) }-

Theorem 5.  Fix m > 1. The array {V,,(n.k) : 0 > 0. 0 <k < n}

satisfics a central limit theorem and a local limit theorem on R with

n 1-1In2
= — 1) . 2=
amz YOO - = e

n n+o(n) and P, = Q,(1). [ |

Let Viu(n) = max{V,,(n.k): 0< k < n} and 3 = (In2)/m.

Corollary 6. Fix m 2 1. Then V,,(») oceurs for some & in the interval
[ﬂ-n - lpn+ 1] and

Vin() ~ Vi (. L)) ~ 2V 2rnlne/2) V2 3 asn— . B
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