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Abstract
Two graphs are said to be flow-equivalent, if they have the same
number of nowhere-zero A-flows, i.e., they have the same flow poly-
nomial. In this paper, we present a few methods of constructing
non-isomorphic flow-equivalent graphs.

1 Introduction

Let G be a graph with vertex set V(G) and edge set E(G). F(G,)) is a
polynomial in A which gives the number of nowhere-zero A-flows in G inde-
pendent of the chosen orientation. Many properties of the flow polynomial,
as well as more details on nowhere-zero flows can be found in [3] and [4].
Let M be a multigraph. Let G(M) denote the graph obtained from M by
replacing every multiple edge by a simple edge. Two multigraphs M; and
M, are amallamorphic if G(M,) is isomorphic to G(M2). Two graphs R
and S are said to be flow equivalent if F(R, ) = F(S, A). For convenience,
we sometimes use A = 1 — w.

Figure 1: Amallamorphic graphs

In computing the flow polynomial of an amallamorph M of the graph
G(M) where the edges of G(M) become sheafs of edges (multiple edges),
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it is efficient to remove an entire sheaf in one step instead of removing one
edge at a time. Read and Whitehead[3] obtain the “SRF” or the Sheaf
Removal Formula:

mlw™ =1

F(M,w) = (1)

F(K,w)+ F(H,w)

In SRF, M is a multigraph having a sheaf of m edges, K is the graph
obtained from M by contracting the sheaf to a vertex, and H is the graph
obtained from M by deleting the sheaf. A letter labelling an edge in this
paper indicates the edge multiplicity of that edge. If G has a bridge, then
F(G,A) = 0. If e is any edge of G, then F(G,)) = F(G",\) — F(G', \),
where G’ and G” are obtained from G by deleting and contracting the edge
e, respectively. By a result of Jaeger [1], if G is planar, then P(G*,)\) =
A-F(G, ), where G* is the planar dual of G and P(G*, )\) is the chromatic
polynomial of G*.

2 A Theorem of Equivalence

Given P, the path on 2 vertices, let X,, be the multigraph of sheaf multi-
plicity a, whose underlying graph is P,. The reader can find F(X,,,\) and
more in [4]. We now present a result which can not be obtained through
planar duality of graphs.

: H'U(l)

Figure 2

Theorem 2.1 Let G be the graph in Figure 2, which is made up of a
(possibly nonplanar) subgraph B and a path of length n of edge bundles X,,
connecting 2 vertices of B. Then the flow polynomial of G is invariant
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under any permutation of the edge bundles,i.e, if o € S, applied to the edge
bundles a1, az,...an of G results in the graph H, then F(G,w) = F(H,w).

Proof: Let us proceed by induction on n, the length of the path. For
n = 1 the result holds trivially. Suppose that the result is true for n-1 and
consider the graphs G and H of Figure 2. Under the permutation o € S,,
given any 1 < i < n, we can find a unique j such that o(j) = i. Apply SRF
to the edge bundle a; of G and the the edge bundle a,(;) of H. This will
yield the following equations:

wai p—

FGw) = (-1 |4

Lrcw) + F(Gg,w)]

—-—w

F(H,w) = (—1)%® [w_f%_"lF(Hl,w) + F(Hz,w)]

Since o(j) = i and by inductive hypothesis, F(Gi,w) = F(Hy,w). We
also observe that

i—1 n
F(Gyw) = []F(Xepw): [[ F(Xaw): F(B,w)
k=1 k=i+1
i—1 n
F(H2,w) = H F(Xaa(k)’w) ' H F(Xaa(k)’w) - F(B,w)
k=1 k=j+1

This shows F(G3,w) = F(Ha,w) and therefore F(G,w) = F(H,w). W

3 Invariance Under Transposition

The planar duals of the graphs G and H of the Figure 3 are what Xu, Liu,
and Peng|6] called n-bridge graphs, which are graphs consisting of s paths
joining two vertices. Combined with the result of Jaeger(1], we obtain the
following corollary:

Corollary 3.1 Let C,, be the underlying simple graph of the graph G whose
edge multiplicities are @ = (a3, a2,...,a,). Pick any o € S, and apply o to
the edge bundles of G and call the new graph G,, whose edge multiplicities
now are 0(@) = (@o(1))@o(2)s+ - 1 @o(n)). Then the flow polynomial of G is
permutation invariant, i.e.,

F(G,w) = F(G,,w).
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Figure 3: H is G with a transposition applied to 2 bundles of G

The planar duals of the graphs G and H of the Figure 5 are what Read|2]
called broken wheels, depicted in Figure 4. While proving the strong log-
arithmic concavity of the wheels Wi, Read[2] proved the invariance of the
chromatic polynomial of W,, under any permutation of the outer rims. In
the language of colorings, Read [2] also found the chromatic polynomial of
W, which we state below. Here N = Zf=1 a;.

Figure 4: The Wheel W,, with n spokes

QM) =3 [0 =™+ (-1)7]

k
P(Wa,2) = AT] Qo)) + (-1)V2A(A - 2)

i=1

Combined with the result of Jaeger[1], we obtain the following corollary:

Corollary 3.2 Let W, the wheel on n+1 vertices, be the underlying simple
graph of the graph G, where the rim edges of G have multiplicity 1 and
the spokes of G have edge multiplicities @ = (a1,a9,...,a,). Pick any
o € S, and apply o to the spokes of G and call the new graph G, whose
edge multiplicities now are 0(@) = (ay(1),@o(2),---18o(n))- Then the flow
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polynomial of G is permutation invariant, i.e.,

F(G,)) = F(G,, ).

Figure 5: G and H with a transposition applied to 2 spokes of G

4 A Method of Construction

Proposition 4.1 Given positive integers a1,daz,...,an, @ family of non
isomorphic flow equivalent graphs can be constructed.

Proof: Start with 2"~ copies of X,,. For the first 2”2, we add two
single edges and an edge bundle of multiplicity az, while for the other
272 we add a single edge and an edge bundle of multiplicity a2, as shown
in the left side of Figure 6. We now repeat the same process: For the first
" and third 2”3, we add two single edges and an edge bundle of multiplicity
as, while for the second and fourth 2”3, we add a single edge and an edge
bundle of multiplicity az, as shown in the right side of Figure 6.

a a a a/ | \a
a Q, Pal o, fa, &y gy \’ 3 a, |a, ?

Figure 6

If we continue in this manner, we will arrive at a family of 2*~! many
graphs which were built on a starting subgraph and “bricks” of triangular
or square shapes. Since the deletion os any edge bundle of multiplicity one
will result in a graph which possesses a bridge, then The graphs obtained
in each step of this method of construction have the same flow polynomial.

Figure 7 depicts a generalization of the above procedure.
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Figure 7

Corollary 4.2 Given the graph shown in Figure 8, any one of the following
edge bundle exchanges will result in a flow-equivalent amallamorph:

1. Exchange a; with a; +1 and a; witha; —1forl <i<k
2. Exchange a) witha; +1and a; withay —1forl <i<k
3. Exchange a; with a; + 1 and @; withaj —1for1 <i,j<k W

Proof: The reader can verify the results by appling the SRF to the ap-.
propriate edge bundles of M.

Figure 8
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