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Abstract

We consider labeling edges of graphs with elements from abelian
groups. Particular attention is given to graphs where the labels
on any two hamiltonian cycles sum to the same value. We find
several characterizations for such labelings for cubes, complete
graphs and complete bipartite graphs. This extends work of [1, 8,
9, 10]. We also consider the computational complexity of testing
if a labeled graph has this property and show it is NP-complete
even when restricted to integer labelings of 3-connected, cubic,
planar graphs with face girth at least five.
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Introduction

Consider the weighted graph in Figure 1. Note the sum of the
weights on any hamiltonian cycle is 16. In [1, 8, 9, 10] studies
are made of weighted complete graphs having the property that the
sum of the weights on any hamiltonian cycle is constant,
independent of the choice of hamiitonian cycle. We note that given
this information about a weighted graph, solving the Traveling
Salesperson Problem is particularly easy. Further, [8] shows
that testing if a complete graph of order n has this property can be

done in O(n2) time, where the weights are all integers. In this

document we extend some of the work in [1, 8, 9, 10] to abelian
groups and consider families other than complete graphs.

For undefined terms and concepts the reader is referred to [4,7].
By graph we shall mean a finite simple graph. Further, G will
represent a graph of order n. By group we shall mean an abelian
group. We shall let (A,+) represent an arbitrary group. Given

X € A let 2x represent x+x. We shall refer to 2x as twice the
value of x. We shall say y is even if it is twice the value of some
group element. A vertex labeling of G is a mapping from V(G) into
A. An edge labeling is defined similarly. When clarity allows, we
will refer to an edge labeling simply as a labeling. An edge
labeling v is induced by a vertex labeling o if y(uv)=a(u)+o(v),
for each edge uv. We will say a labeling is induced if it is induced
by some vertex labeling. Given a labeled graph G, the weight of G,
denoted »(G), is the sum of the edge labels. This term will often
be applied to edges in a subgraph. Given a labeled graph G, if we



speak of a subgraph H we will mean that H is labeled with the
labeling on E(G) restricted to E(H). We wish to study labelings
which have the property that given any pair of hamiltonian cycles,
the cycles have the same weight.

Let us say a labeling is hamilton-stable if every pair of
hamiltonian cycles has the same weight. A circuit is a closed walk.
Suppose the vertices of a circuit appear sequentially as vi,vo, ...,

vk- We shall represent the circuit as (vi,vo, ..., vk). At times it

will be important to similarly represent a circuit by sequentially
listing its edges e.g. (e1,e2, ..., €k)- In a graph labeled by ¥, an

even cycle (e1,e2, ..., ek) is balanced if

v(e1)-v(e2) + ... -y(ek) =0. A labeling yis C4-balanced if each
4-cycle is balanced. Equivalently, for each (e1,e2, e3, e4) we
have y(e1)+y(e3 ) =y(e2 )+y(e4). As we shall see, in many cases
labelings are hamilton-stable if and only if they are C4-balanced .
Let us say the labeling of a circuit (e1,ep, ..., k) is even if y{e1,)+
y(e2,) +... +y(ek) is even. Equivalently for odd circuits, the labeling
is even if y(e1) - y(e2) + v(e3) - Y(eq)+... +y(ek)is even. If the labels

on any pair of k-factors have the same weight, we will say the
labeling is k-stable. Thus, if a labeling is 2-stable then it is
hamilton-stable.

Observation 1. Given r and s where 1<s<r, a labeling of an r-
regular graph is s-stable if and only if it is (r-s)-stable.



Proof. Suppose v is an s-stable labeling of an r-regular graph
G. Suppose, H is an (r-s)-regular subgraph. Let F be the edge
complement of H. Note that F is s-regular. Since each edge of G is
in H or F but not both we note w(F)+w(H)=w(G). Since each pair
of s-factors has the same weight we note

each pair of (r-s)-factors must have the same weight. O

We shall see that for several classes of graphs, stronger
statements are available.

Clearly, if a labeling is induced, then the sum of the labels on a
hamiltonian cycle will equal twice the value of any vertex labeling
that induce the edge labeling. Hence, if a labeling is induced then
it is hamilton-stable. Figure 1 shows the converse does not hold.
The labels on each hamiltonian cycle sum with regular addition to
16. We restate a result of [6] that shows the labeling in Figure 1
is not induced.

Theorem 2. An edge labeling y of G is induced if and only if both
of the following hold:

e Every odd circuit has an even labeling.

e Every even cycle is balanced.

We note that the first condition is not satisfied in Figure 1. Also,
it follows from this theorem that every induced labeling is



C4-balanced.

Cubes

Let Qn denote the n-dimensional cube.

Theorem 3. A labeling of Q p is induced if and only if it is C4-

balanced.

Proof. By Theorem 2, if Qn is induced then it is C4-balanced. So
suppose v is an edge labeling of Q i that is C4-balanced. We show

by induction on n that vy is induced by some vertex labeling. If n is
zero or one the result is clear. So suppose n22 and the resuit
holds true for all labelings of cubes with dimension less than n.

We may conceive of Q  as two copies of Q n-1 with a 1-factor

joining corresponding vertices. Let us denote these two copies of Q
n-1 as H and K. If we restrict y to H, the resulting labeling is C4-

balanced. So we apply induction and let o be a vertex labeling on H
that induces the restricted labeling. Let us extend a in the
following fashion. Given a vertex u in K, let v be the
corresponding vertex in H. Define a(u) to be y(uv)-a(v). Itis
clear that o induces the labels on all edges between H and K. So,
suppose xy is an edge of K. It remains to show that y(xy)=o(x)+o(y).
Let x’ and y’ be those vertices in H that correspond respectively to



x and y. By hypothesis, y(xx’)+y(yy')=y(xy)+y(x'y'). Thus,

Y(xy)=y(xx")+y(yy")-1(x’y’)=[o(x’)+a(x) ]+ [ a(y’)+a(y)]-
[l )+oly) o x)+odly). O

Consider the cube Q3 in Figure 2 labeled with elements from Z2.

Each hamiltonian cycle has weight 1. By Theorem 2, since this
labeling is not C4-balanced it is not induced. Thus, a cube may be
hamilton-stable yet fail to be C4-balanced. Our next result shows

that for larger dimensions, this is not the case.

Theorem 4. For n24, a labeling of Qn is C4-balanced if and

only if it is hamilton-stable.

Proof. If the labeling is C4-balanced then by Theorem 3 it is

induced and is hence hamilton-stable. So, suppose yis a
hamilton-stable labeling of Q. Suppose (u,v,s,t) are vertices in

a 4-cycle. We may mark the vertices of Qn with n-bit binary

words so that two vertices are adjacent if and only if they differ in
exactly one corresponding bit. Without loss of generality, suppose
u,v,s,t have only zeros with the following exceptions: v contains a
1 in its first bit, the first two bits of s are 1 and the second bit of t
is 1. Now, let x,y and z be those vertices that contain only zeros
with the following exceptions: x contains a 1 in its third bit, y
contains 1 in its first and third bit and z contains 1 in its first
three bits.



We claim there is a t-v path that contains all vertices of Qn except

u,x,y,2,s. We prove this by induction on n. In the base case where
=4 consult Figure 3. The upper and lower Q3 represent the two

hyperplanes where the fourth bit is 0 and 1 respectively. Take
the shaded edges and add the edges pp’ and vv'. This is a desired t-v
path for Q4. So, suppose n=5 and the claim is true for (n-1)-

cubes. As in the preceding proof we may assume Qn, is formed by
taking H and K, two copies of Qn - 1 and adding a 1-factor between

corresponding vertices. Without loss of generality we may assume
the vertices p,s,t,u,v,x,y,z all lie within H. By induction, there is
a t-v path in H, say P, that contains all the vertices of H except
u,x,y,2,5. Let a and b be vertices that are adjacent in P. Let a’ and
b’ be their counterparts in K. Note, there is a hamiltonian cycle
in K that contains the edge a’b’. Let us remove this edge from the
hamiltonian cycle. Remove also the edge ab from P. Now add to
this pair of paths the edges aa’ and bb’. This creates a t-v path in
Qn that contains all the vertices except u,x,y,z,s. Hence, the claim

is established.

Consider the path delivered by the preceding claim. If we add the
edges uv and st, together with the u-s path u,x,y,z,s, then we
create a hamiltonian cycle. We could create a second hamiltonian
cycle if we instead added the edges ut and vs, along with the same
u-s path. Given that these two cycles differ by a pair of edges,
together with the fact that the labeling is hamilton-stable, we may
conclude the labels on uv and st and the labels on ut and vs sum to
the same value. O



Thus, while being hamilton-stable is a global property, it is
equivalent to a local property.

Theorem 5. A labeling of Q3 with elements from the real

numbers is hamilton-stable if and only if it is C4-balanced.

Proof. The proof in one direction follows from Theorem 3. So
let us denote the edges of Q3 as in Figure 4. And suppose edge i is

labeled with x;j, an element of R. Further, suppose this labeling is

hamilton-stable but not C4-balanced. Suppose the labels on each
hamiltonian cycle sum to A. Suppose, without loss of generality
that x1+x3=x2+x4. Equivalently, x1-x2+x3-x4=p=0. By

rescaling, if necessary, we can assume A is either O or 1. This
provides us with a system of seven linear equations:

X4 +X3+X4+X5+X7+X8+X10+X11=A
X1+X2+X4+X5+XG+XG+X] 14X{ 2=A

X1 +X2+X3+X5+XG+XT7+XQ+X] 2=A
X2+X3+X4+XG+X7+X8+XQ+X] 0=A
X1+X3+XE+XGg+XQ+X{ 0+X1 {1+X12=A
X2+X4+X5+X7+XQ+X{ 0+X1 1+X12=A
X1-X2+X3-X4=p

Whether A is O or 1, the first six equations force B to be O.

10



Hence, the system is inconsistent. O

Given that the linear system described in the proof of Theorem 5
has no solution with real numbers, and the integers and rational
numbers are subsets of the reals, Theorem 5 implies
corresponding statements for Z and Q.

From Theorems 3 and 4 we note that for n>4, a labeling of the n-
cube is hamilton-stable if and only if it is induced. In this case
the cube must be k-stable, for ali k.

Theorem 6. If a labeling of Qn is 1-stable then it is hamilton-

stable.

Proof. The result is trivial for n=0,1,2 so suppose n>3.
Suppose yis a 1-stable labeling of Qn. Let (e1,e2,e3,e4) bea

cycle in Qn. Remove from Q, all vertices incident with the edges
e1, e2,e3,e4 and let F be the set of edges in a 1-factor of this
subgraph. Note, the labels on {e1, e3} \UF and the labels on {e2,
e4} UF sum to the same values. Thus, y(e1) +v(e3) =y( e2)
+7v(e4). As the labeling is C4-balanced we can apply Theorem 3

and conclude it is induced and hence our desired result. O

Theorem 7. For n24 and k fixed between 1 and n-1, a labeling
of Qp is hamilton-stable if and only if it is k-stable.
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Proof. If a labeling of Qn is hamilton-stable it is induced.

Hence, the labels on any k-factor sum to the same value. So
assume 7y is k-stable where k is fixed and 1<k<n-1. Let (e1,e2,

e3,e4) be a cycle in Qn. Remove from Qp all vertices in this 4-

cycle and let T be a 2-factor in what remains. Let U be a 1-factor
inT. LetRbeQp- ({e1,e2,e3,e4}U E(T)). WenoteR is

bipartite and (n-2)-regular. Such graphs are Type 1 (see [3],
page 93). So, edge color R with n-2 colors. Take k-1 of these
color classes and add to it the edges of U as well as e1 ande3. This

forms a k-factor. We could form a different k-factor by replacing
e1 and e3 with e2 and e4. Since y is k-stable we conclude y(e1)+

Y(e3)=
Y(e2)+7v(eq). Thus, Qn is C4-balanced, hence hamilton-stable.
O

Bipartite Graphs

Theorem 8. A labeling of Km n is induced if and only if it is C4-

balanced.

Proof. The necessity is immediate from Theorem 2. Suppose yis
a C4-balanced labeling on Km n. From Theorem 2 we need only

show every even cycle is balanced. We proceed by induction on k,
the cycle size. Consider the even cycle (v1,v2, ..., vk) . If k=4 then

12



by hypothesis the cycle is balanced. So suppose k=6 and every
even cycle of length less than k is balanced. Hence,
Y(v1v2)-y(vav3) +1(v3va) -y(v4v1)=0. Also,

Y(v1v4)-v( v4v5)+y(vsve)...-y( vkv1)=0. Adding the two
expressions shows (v1, v2, ..., vk) is balanced.

a

Let us say graphs G and H are degree similar if V(G)=V(H) and for
each vertex v in these graphs, degG(v)=degH(v). Now, suppose a

graph contains edges uv and wx but not vw nor ux. If we replace
the first two edges with the last two, we produce graphs that are
degree similar. Let us call this operation of replacement a
switching. Degree similar graphs are related in the following way.

Remark 9. If two graphs are degree similar, one can be
transformed into the other by a sequence of switchings.

A proof is available in [2] (page 151). We consider an alternate
proof which is similar to the proof of the Havel-Hakimi Theorem
(see {3], page 12).

Proof. First, we note that if G can be formed from H by a
sequence of switchings, then H can be formed from G. We proceed
to prove the remark by induction on n, the order of the graph.
Suppose the remark is true for all graphs of order less than n. Let
G and H be graphs of order n with degree sequence d1,d2,...,dn

where d1<d2<...<dp and having the same vertex set. Label the

13



vertices as V1, v2,..., Vp S0 that deg(vk)=dk. Let ube vn. If u has

the same neighborhood in G as H then G-u and H-u have the same
degree sequence. We can apply the induction hypothesis and
transform G-u into H-u by a sequence of switchings. Adding u and
incident edges, we can use the same switchings to transform G into
H. So suppose u does not have the same neighborhood in both
graphs.

We will transform G and H with switchings into graphs G’ and H’
where u has the same neighborhood in G’ and H'. Then, a sequence
of switchings moves G to G’, we follow this by a sequence moving G’
to H’ and then a sequence moving H' to H.

Set d=dp. If u is adjacent to vn-d, Vn-d+1s--» Vn-1 thenset G’
equal to G. Otherwise, u is adjacent to some vk where k<n-d-1
and not adjacent to some vj where n-d<js<n-1. Since
deg(vk)=deg(vj) and vk and u are adjacent but vj and u are
nonadjacent, there is some vm where v is adjacent to vj but not
tovk. Let us now perform the switching where uvk and vmvj is
removed and replaced with vkvm and uvj. If uis not adjacent to

Vn-d:Vn-d+1.---Vn-1 then repeat this process until it is adjacent to

exactly these vertices. Call the resulting graph G'.
Perform a similar argument to produce a sequence of switchings

that transform H into H’, a graph with the same degree sequence
where u is adjacent to vp-d, vn-d+ 15 Vn-1- O

14



We will not make immediate use of this previous remark.

Corollary 10. If a labeling of Km n is C4-balanced then any

two degree similar subgraphs have the same weight.

Hence, if a labeling of Kp n is C4-balanced it must be hamilton-
stable. Consider a labeling of the 4-cycle that is not C4-balanced.
This shows a labeling of K2 2 may be hamilton-stable yet not C4-

balanced.

Theorem 11. If n23, a labeling of Kn n is C4-balanced if and

only if it is hamilton-stable.

Proof. Suppose y is a hamilton-stable labeling of Kn n. Suppose
the partite sets of Ky n are labeled {v1,v3,...,v2n-1} and
{v2,v4,...,v2n}. Without loss of generality we will show
(v1,v2,v3,v4) is balanced and conclude our desired resulit.
Consider the paths (v2,vs,v4) and (v{,vg,V7,V8,V9...,v2n,V3).

We can now proceed as we did in the proof of Theorem 4 to reach
our desired resut. O

Corollary 12. If n23, a labeling of Kn n is induced if and only

if it is hamilton-stable.

15



By a slight modification of the proof of Theorem 8 we can show the
following.

Theorem 13. If n=3 and k is fixed, even and 4<k<2n-2 then a
labeling of Kn n is C4-balanced if and only if every k-cycle is

balanced.

We also have an analogue for Kn n of Theorem 7.

Theorem 14. For n23 and k fixed where 1 < k < n-1 then a
labeling of Kn n is hamilton-stable if and only if it is k-stable.

Proof. For n=3 the result is trivial. So suppose nz4. If the
labeling is hamilton-stable then it is induced and hence k-stable.
If the labeling is

1-stable then any hamiltonian cycle can have its edge set
decomposed into two 1-factors. Hence, the weight on any
hamiltonian cycle is twice the value of any 1-factor. If k>2 and
the labeling is k-stable, then proceed as in the

proof of Theorem 7 to show the graph is C4-balanced and hence

induced. O

Complete Graphs

Let us say a group is 2-torsion free if it contains no elements of
order two. For example, all groups of odd order are 2-torsion
free, as are the reals and integers. In a 2-torsion free group, x=y

16



if and only if 2x=2y. For an edge labeling vy, denote by 2ythe edge
labeling that maps e to 2y(e). If ylabels G with elements of a 2-
torsion free group, then y is hamilton-stable if and only if 2y is
hamilton-stable. The following extends a result of [8] from the
integers to all 2-torsion free groups.

Theorem 15. A labeling y of Kp with elements from a 2-

torsion free group is C4-balanced if and only if 2y is induced.

Proof. Suppose 2y is induced by elements from a 2-torsion free
group. Let us say a induces 2y. Let (v1,v2,v3,v4) be a 4-cycle

in Kpn. Note,

2y(viv2)+2y(v3va)=[a(vi)+a(v2)]+[a(v3)+a(vg)]=
[ofva)+o(va)+Ho(v4)+a(ve)]=27(v2v3) +27( v4V1).

Hence, y(v1v2)+Y(v3v4) =y(vav3)+y(vavq). Thus, yis C4-balanced.

So suppose a 2-torsion free labeling y of K, is C4-balanced. We

will see that both conditions of Theorem 2 are satisfied for 2y .
The condition for odd cycles is trivially satisfied.

We show by induction on k that every even cycle (e1,e2, ..., ek)

is balanced. By hypothesis, the statement holds true for k=4. So
suppose k=6 and this statement is true for each even cycle of size

17



less than k. Remove from this cycle the edges e1,e2 andek. This

creates a path with k-3 edges. Let e be the edge incident with the
end-points of this path. We apply the induction hypothesis and

note -y(e) + y(e3) -y(e4)... +Y(ek-1) is zero. By hypothesis y(e1)-
v(e2) +y(e) - y(ek) is zero. Adding the two expressions and doubling

each term shows each even cycle, labeled with 2y, is balanced.

O

We note the proof in one direction did not require the group to be
2-torsion free. That is, if a labeling y of K, is C4-balanced then

2yis induced.

By Remark 9, any labeling of Kp that is C4-balanced must be 2-

stable.

Our next two results are extensions of theorems found in [8]. It
applies to all abelian groups.

Theorem 16. A labeling of Kp is hamilton-stable if and only if

it is C4-balanced.

Proof. We will consider only the case where n>5.

Suppose y is a C4-balanced labeling of Kn. By the preceding

observation it is
2-stable and hence hamilton-stable.

18



So, suppose the labeling y of Kp is hamilton-stable. Let u,v,x,y
be vertices in Kp. Let P be a u-v path that contains all vertices of

the graph except x and y. Note, if we take the edges of P and add to
it ux, xy, and yv then we form a hamiltonian cycle. If we remove

ux and yv and replace them with uy and xv then we form a second

hamiltonian cycle which differs from the first by only two edges.

Hence, y(ux)+y(yv) = Y{uy)+y(xv). Accordingly, v is C4-balanced.

a

Corollary 17. A labeling of Kp is hamilton-stable if and only if

for some even k where 4<k<n, the labeling is Ck-balanced.

Using techniques similar to those above one can prove this by
showing that a graph is C4-balanced if and only if for some even k

where 4<k<n, the labeling is Ck-balanced.

Theorem 18. Given n and r where rn is even and 1<r<n-2, a
labeling of Ky is hamilton-stable if and only if it is r-stable.

Our proof is similar to one found in [8].

Proof. Remark 9 taken with Theorem 16 yield the necessity in
this proof.

So suppose v is an r-stable labeling of Kn where 1<r<n-2 and r n

is even. We wish to show yis C4-balanced and thus, by Theorem
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16, is hamilton-stable. In the argument that follows, u,v,w,y
shall denote distinct vertices in K and also in an r-regular graph

H that we will arrange to be an r-factor in Kp. Find two

nonadjacent vertices in H and call them u and v.

If N(u)=N(v) then N(u) cannot induce a complete graph, for
otherwise some vertex would be adjacent to at least r+1 vertices.
Let w and y be nonadjacent vertices in N(u). Let us rename, if
necessary, the other vertices of H so that V(H)=V(Kp). Hence, we

have an r-factor in K and if we remove the edges uw and vy and

replace them with uv and wy we create another r-factor which
has, by hypothesis, the same weight. Thus
Yuw)+y(vy) = Y(wy)+y(uv). Hence, yis C4-balanced.

If N(u)=N(v) then let w be an element of N(u) which is not
adjacent to v. Further, let y be an element of N(v) which is not
adjacent to u. Removing uw and vy and replacing them with wv and
uy produces another r-regular graph. Again, rename the
remaining vertices, if necessary to produce an

r-factor of Kn. If we remove the edges wu and vy and replace

them with wu and vy, we form a second r-factor with the same
weight. Thus, yuw)+y(vy) = y(wu)+y(yv). And again, yis C4-
balanced. O

The complete graph in Figure 1 is labeled with the integers under

normal addition. This is hamilton-stable. Yet, as observed
following the statement of Theorem 2, it is not induced. However,
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if we double the value on each edge, we produce an induced labeling.

Theorem 16, applied to 2-torsion free groups, along with
Theorem 15 yields the following.

Corollary 19. A labeling y of Kn from a 2-torsion free group is
hamilton-stable if and only if 2yis induced.

Suppose a labeling y of a graph from the group of real numbers
has the property that 2yis induced. Then yis also induced.
Hence, the following result which was discovered and partially

discovered in a variety of forms [1, 9, 10].

Corollary 20. The complete graph labeled with real numbers
is hamilton-stable if and only if it is induced.

Theorem 16 along with Remark 9 gives the following.

Corollary 21. A labelingof Kp is hamilton-stable if and only if
for every G and H, subgraphs of Kpn which are degree similar,
o(G)=w(H).

Computational Complexity

In this section, we will assume that group operations can be
performed in a fixed unit of time. From Theorems 4, 11 and 16
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we see that for cubes, complete graphs and balanced complete
bipartite graphs, hamilton-stable and C4-balanced are equivalent

notions, provided the graphs are large enough. Hence, we can test
labeled graphs of order n in these families in O(n?) time to see if
they are hamilton-stable. From [6] (Proof of Theorem 4) we
know that a labeled graph can be checked in O(nZ) time to see if it
is induced. Hence, in the case of cubes and complete bipartite
graphs, we can test in O(nz) time for hamilton-stability. This

holds true for complete graphs when labeled with elements from a
2-torsion free group.

Suppose G is a graph with a hamiltonian cycle which contains the
edge uv. If we replace uv with the subgraph shown in Figure S let
us call the resulting graph Gyy. Note, Gyy has at least two

hamiltonian cycles. Now, suppose G has e edges and we label them
using each of the integers 21,22,23,...,2€. Using normal addition,

if G has two hamiltonian cycles, their weights will be different.
Hence, with this labeling, G will be hamilton-stable if and only if
it contains at most one hamiltonian cycle. If we select a designated
vertex, say v, and look at each vertex u adjacent with v, we can
form Gyy in polynomial time. Thus, if there is a polynomial time

algorithm that accepts all labeled graphs and determines if they
are hamilton-stable, then we can determine in polynomial time if
a graph is hamiltonian.

This leads us to define the following problem.
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HAMILTON STABLE

Instance: A labeled graph G.
Question: Is G not hamilton-stable?

Theorem 22. With the preceding notation, the Hamilton Stable
problem is NP-complete.

Proof. As noted, the problem of determining if a graph is
hamiltonian reduces in polynomial time to the Hamilton Stable
problem. Now, given two hamiltonian cycles, we can check their
weights in polynomial time. Hence, we can demonstrate in
polynomial time if the answer to Hamilton Stable is yes.

O

We know (see [5], page 199) that showing a graph is hamiltonian
remains NP-complete for bipartite graphs. But if G is bipartite,
then Gyy is as well. Hence, the Hamilton Stable problem remains

NP-complete when restricted to bipartite graphs labeled with
integers.

It is also known [5] that determining if a graph is hamiltonian
remains NP-complete for planar, cubic, 3-connected graphs
where no face is bounded by fewer than five edges. Consider now
the graph in Figure 6. Note, there are at least two xy paths that
contain all vertices except z. The same can be said about xz and yz
paths. Further, if v {X,Y, 2} is a vertex in this graph, then
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there exist vx,vy and vz paths that are pairwise disjoint, except
for v. So suppose G contains v, a vertex of degree three, that is
adjacent to x,y and z. Let us replace v with the configuration in
Figure 6 and call the resulting graph G’. Note, G is hamiltonian if
and only if G’ contains at least two hamiltonian cycles. Further, if
G is planar, cubic and 3-connected where no face is bounded by
fewer than five edges, then so also is G’. Hence we have the
following

Theorem 23. The Hamilton Stable problem remains NP-
complete when restricted to integer labeled graphs that are
planar, cubic, 3-connected and have face girth at least five.

Open Questions

Given a labeled complete graph, can we check in 0(n2) if the

graph is hamilton-stable, even if the group contains elements of
order two?

This leaves open similar questions for other classes of graphs
such as grids in the plane as well as on other surfaces, such as the
projective plane, cylinder and torus. More generally, for which
families of graphs and which groups will hamilton-stable be
equivalent to C4-balanced or induced? Is there a simple way to

characterize such families? Is there a simple way to characterize
families of graphs that are hamilton stable if and only if they are
induced? This extends a question posed in [10]. We can show that
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if H and K are degree similar subgraphs of Km n, then H can be

transformed into K with a sequence of switchings using only edges
in Km,n. For which other families does this hold?

In [8] hamilton-stable complete graphs with distinct integer
weights are studied. That is, no distinct edges are given the same
integer. Can this be extended to other groups? In particular, if a
complete graph can be labeled with distinct real numbers so that
the labeling is hamilton-stable, can it be similarly labeled with
the integers?
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