Optimal Ternary (11,7) and (14,10)
Error-Correcting Codes

Michael J. Letourneau*and Sheridan K. Houghten'
Department of Computer Science
Brock University
Ontario, Canada

June 7, 2004

Abstract
We use exhaustive computer searches to show that there are ex-
actly 36 codewords in an optimal ternary (11,7) code and exactly 13
codewords in an optimal ternary (14,10) code. We also enumerate
inequivalent optimal ternary (14,10) codes and show that there are
exactly 6151 such codes.

1 Introduction

An (n, M, d), error-correcting code is a set of M codewords of length = in
which each symbol is an element of an alphabet of q elements; additionally,
the minimum distance of the code is d.

We denote the maximum number of codewords possible in an (n,d),
code by Ag4(n,d). An (n, M, d), code is said to be optimal if M = Aq(n,d).

Two codes C, and C}, are said to be equivalent if Cj can be produced by
permuting the symbols in one or more columns of C, and/or by permuting
the positions of one or more columns in C,. Equivalent codes have identical
error-correction properties.

A fundamental problem in coding theory is to determine the value of
Ag4(n,d) for non-trivial values of n and d. A further interesting problem
is the enumeration of inequivalent (n, d), codes. Since optimal codes are
more useful from a practical point of view, the enumeration of these codes
is of particular interest.

*Current address: School of Computing Science, Simon Fraser University, Burnaby,
British Columbia, Canada

tSupported in part by the Natural Sciences and Engineering Research Council of
Canada

JCMCC 51 (2004), pp. 159-164

2 Exhaustive Search

In this paper we consider several problems related to ternary codes. We
establish the exact value of A3(14, 10) and also enumerate optimal (14, 10)s
codes. We also establish the exact value of A3(11,7), although we do not
enumerate optimal (11,7)3 codes as this is computationally very difficult.
To solve the above problems we use exhaustive computer searches that are
a refinement of the process described in [4]. In all cases, we assume a
lexicographic ordering of the codewords during generation.

We begin the search for (n, M, d)s codes by noting that all such codes
with M > 1 contain a (n, M — 1,d)s subcode. One may obtain such a
subcode by deleting a codeword from the code, a process which has no effect
on the distances between the remaining codewords. Reversing this process,
we may obtain an (n, M, d)3 code by appending a suitable codeword to an
(n, M — 1, d)3 code.

We further note that for any (n, d)3 code C with » > d, we may obtain
up to three (n — 1, d)3 subcodes by partitioning the original code according
to the symbols in any one symbol column and then deleting that column.
Let C; be the (n — 1, d)3 subcode obtained by selecting all codewords of C
containing the symbol 7 in the partition column. We may assume, without
loss of generality, that |Co| > [C1]| = |C2|. Reversing this process, we may
obtain an (n, M,d)s code by adding a constant-filled symbol column to
an (n — 1, M, d)3 code. For our purposes, we assume that this column is
zero-filled.

In a search for all inequivalent (n, M, d)3 codes, we first create all in-
equivalent base codes. These codes are (n — 1, M, d)3 codes with [M/3] <
M, < As(n—1,d). We then append a zero-filled symbol column, and use
the resulting codes as starting points in a backtrack search. We need not
consider any codes with less than [M/3] codewords as base codes, since us-
ing these codes would produce (n, M, d)3 codes for which either |Cp| < |C}|
or ICol < |C2|

For each base code C within the backtrack search, we create a list L(C)
containing all vectors at a distance of at least d from all the codewords in C.
The vectors in this list are candidate codewords. For each vector v in L(C),
we create an (n, M, + 1, d)3 code by appending v to C, thereby producing
a total of |L(C)| codes from each base code C. We apply this process
recursively to each (n, M, + 1,d)s code, trimming the list at each step so
that it contains only those vectors which are also compatible with the most
recently added vector. We continue until either we obtain a code with the
desired number of codewords, or no vectors remain in the candidate list.

There are several reasons why we may prune a branch from the search
tree. A useful technique compares the size of the candidate list with the
number of vectors we require to complete the code. Suppose we have a

160

code C with candidate list L(C). Since our goal is to generate a code with
M codewords, we can prune the branch rooted at C if |C| + |L(C)| < M.

Since we are only interested in inequivalent codes, we can also prune a
code that is equivalent to one already found by the backtrack search. We
accomplish this by producing equivalence certificates for all codes produced
in the search and then using them for comparisons. We use nauty [5] to
create these certificates. Trimming all equivalent codes in this manner is
only useful up to a point, since many of the intermediate levels of the search
tree produce far more inequivalent codes, and hence far more certificates,
than can feasibly be stored at one time on a computer. This method is
fully described in [4], and is extended from a method in [7].

Recall that within each code, we order the codewords lexicographically.
Also recall that we can partition a code into 3 subcodes, Cy, C;, and C,
based on the symbol in any symbol column; furthermore, we assume that
|Col > |Ci| = |C2|. Therefore it is convenient during our search to assume
that first we generate |Cyp| vectors starting with 0, followed by |C}| vectors
starting with 1, and finally |Cy| vectors starting with 2, ensuring that the
above inequality holds.

3 New Results

The searches described above were applied to two open problems for ternary
codes. In both cases, the searches were written in C, and used rmath [3]
for efficient ternary representation.

3.1 As(11,7) = 36

In [8], it was shown that A3(11,7) > 36. This result was obtained by con-
structing an (11, 36, 7)3 code by manipulating a code obtained via a genetic
algorithm. In [1] and [4], it was independently shown that A3(10,7) = 14.
Since we also have A3(11,7) < 3. A3(10,7), therefore A3(11,7) < 42.

If A3(11,7) > 40 then any optimal (11,7)3 codes must contain at least
one (10, 14, 7)3 subcode. All 10 inequivalent (10, 14, 7)3 codes were created
as base codes for the search. The search attempted to extend them to
(11,36,7)3 codes. No such codes were produced, and thus we have 36 <
As3(11,7) < 39.

Similarly, if As(11,7) > 37 then any optimal (11,7)3 codes must con-
tain at least one (10,13,7)3 subcode. All 4613 inequivalent (10,13,7)3
codes were created as base codes for the search. We then attempted to
extend these to (11, 36,7)s codes. No such codes were produced, and thus
A3(11,7) = 36.

161

00000000000000
00001111111111
00110011222222
01012222001122
01220202112201
02212120120210
10021222222010
11122001020111
11202110202021
12211211010002
22100220221101
22101102002212
22122012111020

00000000000000
00001111111111
00110011222222
01021222001222
01212102022011
02122200210112
10122120102201
11202021110022
12210201101210
12221012012100
21201210220201
22010122120102
22102112201020

Figure 1: The two (14, 13, 10)3 codes produced from (13, 6,10)3 codes

In practical terms, the search took about 2 months of processor time
on a series of 300 MHz MIPS R12000 processors. The search processes
were distributed with the assistance of autoson [6]. These processes did
not apply the technique of pruning candidate codes which would not cor-
respond to the |Cp| > |C1| > |Cs| inequality. Using this additional pruning
technique reduces the running time to about 7 days.

3.2 As(14,10) = 13 and Enumeration of (14,13, 10); Codes

In [8], it is shown that A3(14,10) > 12; the authors directly construct
a (14,12,10)3 code and show it in their paper. In [2], it is shown that
A3(14,10) < 13; the authors show that a (14,14, 10)3 code cannot exist
by applying a maximum clique algorithm to a related graph. Therefore we
have 12 < A3(14,10) < 13.

If A3(14,10) = 13 then any such optimal code must contain a (13, M, 10)3
subcode with M > 5. Furthermore, no (13,7,10)3 codes exist. Therefore
we need to consider (13,6,10); and (13,5,10)3 codes as base codes. We
generated all 2703 inequivalent (13, 6,10)3 codes and all 1216 inequivalent
(13, 5,10)3 codes. We then attempted to extend each of these to (14,183, 10)3
codes. By extending the (13,6,10)3 codes, we obtained two inequivalent
(14,13,10)3 codes, which are given in Fig. 1.

By extending the (13,5,10)3 codes, we obtained an additional 6149
inequivalent (14,13, 10)3 codes. Those codes are too numerous to list here,
however one is given in Fig. 2. Thus, there are a total of 6151 inequivalent
(14,13,10)3 codes. This search took a total of about 4 months of processor
time on a series of 1.6 GHz Intel P4s.

162

00000000000000
00001111111111
00110011222222
00222222001122
01111222110200
10122102122001
11002120221220
12211110100022
12221001012210
21102210012012
21220020120111
22022211200201
22110102201110

Figure 2: The first (14,13,10)3 code produced from (13, 5,10)3 codes

4 Future Searches

Some time has been devoted by the authors to the problem of enumerating
the optimal (11,36, 7)3 codes, however the search is too large to undertake
at this time. This search can take advantage of a further equality con-
straint which is as follows: Since no (11,36,7)3 codes exist with either a
(10,13, 7)3 or (10,14, 7)3 subcode, then all columns of any (11,36, 7)3 code
must contain precisely 12 of each symbol. A note of interest is that the
only such code known to the authors, taken from [8], displays remarkable
symmetry and structure.

References

[1] Kaloyan S. Kapralov, The Nonexistence of Ternary (10, 15,7) Codes,
In Proc. seventh international workshop on algebraic and combinato-
rial coding theory(ACCT’2000), Bansko, Bulgaria, 189-192, 2000.

[2] Petteri Kaski and Patric R. J. Ostergird, There exists no (15,5,4)
RBIBD, Journal of Combinatorial Designs, 9:227-232, 2001.

[3] Michael J. Letourneau, rmath User’s and Technical Guide, Technical
Report CS-02-19, Department of Computer Science, Brock University,
St. Catharines, Ontario, Canada, August 2002. Also available from
http://wuw.cosc.brocku.ca/rmath,

163

[4]

(5]

(6]

[7]

[8)

Michael J. Letourneau and Sheridan K. Houghten, Optimal Ternary
(10,7) error-correcting Codes, Congressus Numerantium 155:71-80,
2002.

Brendan D. McKay, nauty User’s Guide (version 1.5), Technical Re-
port TR-CS-90-02, Department of Computer Science, The Australian
National University, 1990.

Brendan D. McKay, autoson — a distributed batch system for UNIX
workstation networks (version 1.3), Technical Report TR-CS-96-03,
Department of Computer Science, The Australian National University,
1996.

Patric R. J. Ostergird, Tsonka Baicheva and Emil Kolev, Optimal
Binary Error Correcting Codes of Length 10 Have 72 Codewords, IEEE
Transactions on Information Theory, 45(4):1229-1231, 1999.

R. J. M. Vaessens, E. H. L. Aarts and J. H. van Lint, Genetic al-
gorithms in coding theory — a table for As(n,d), Discrete Applied
Mathematics, 45:71-87, 1993.

164

