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Abstract

The rainbow Ramsey number RR(G1,G2) or constrained Ram-
sey number f(G1,G2) of two graphs G; and Gs is defined to be
the minimum integer N such that any edge-coloring of the complete
graph Ky with any number of colors must contain either a subgraph
isomorphic to G1 with every edge the same color or a subgraph iso-
morphic to G2 with every edge a different color. This number exists
if and only if G, is a star or Gz is acyclic. In this paper, we present
the conjecture that the constrained Ramsey number of nK2 and mKo>
is m(n — 1) + 2, along with a proof in the case m < 3(n — 1).

keywords: rainbow Ramsey, constrained Ramsey, generalized Ram-
sey

1 Introduction

The rainbow Ramsey number RR(G, G2) or constrained Ramsey number
f(G1,G>) of two graphs G, and Gs is defined to be the minimum integer
N such that any edge-coloring of the complete graph Ky on N vertices
using any number of colors must contain either a subgraph isomorphic to
G with every edge the same color or a subgraph isomorphic to Gy with
every edge a different color. Both terms have been used in the literature.
For instance, see [11] and [12] for rainbow Ramsey number and [15] for con-
strained Ramsey number. Since constrained Ramsey number seems to be
the more commonly used terminology, we will use constrained in this paper.
Both of these terms are generalizations of a parameter RM(G) defined by
Bialostocki and Voxman [1], so we adopt their more descriptive notation
RM(G1, G2) instead of f(G1,G3) for the constrained Ramsey number of
G1 and Gs.

The following existence theorem appears in both [15) and [11], and fol-
lows quickly from an earlier result by Erdés and Rado (see [13, p. 129]).

Theorem 1. The constrained Ramsey number RM(G1, Ga) exists if and
only if Gy i3 a star or G2 is a forest.
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For simplicity, we will say that a graph is monochromatic if all of its
edges are colored the same color, and we will say that a graph is rainbow if
all of its edges are colored different colors. Thus, the constrained Ramsey
number RM(G,, G2) is the minimum N so that any edge-coloring of Ky
constains either a monochromatic G; or a rainbow G5. We call a 1-regular
graph a matching. Notice that any 1l-regular graph consists of n disjoint
copies of the complete graph on 2 vertices, for some integer n. Such a graph
is commonly denoted by nKo.

The constrained Ramsey number is the natural off-diagonal generaliza-
tion of a parameter defined by Bialostocki and Voxman[l]. They defined
RM(G) for a graph G to be the minimum integer N such that any coloring
of the edges of the complete graph Ky with any number of colors must
contain either a monochromatic or a rainbow copy of G. This number ex-
ists if and only if G is an acyclic graph. One of the major results in (1] is
the following.

Theorem 2 (Bialostocki, Voxman). For every positive integer n, the
number

RM(nKs3)=n(n—-1)+2.
In this paper, we will consider the natural generalization of this result
for the constrained Ramsey number, that is, we consider RM (nKs, mK>).
1.1 Constrained Ramsey Numbers and Matchings

In (8], Cockayne and Lorimer presented a formula for the generalized Ram-
sey number for matchings:

Theorem 3 (Cockayne,Lorimer). For any positive integers c,ny,na, ..., N,
where ny > n; for 2 < i < ¢, the generalized Ramsey number

r(n1 K2, n2 Ky, ... ncKa)=n1+1+ Z(n,- -1). 1)

i=1
In particular, if ny = ng = ... = n., we have
Corollary 1. If n is any positive integer, then
r(nKz,nKy,...,nK3) = (c+1)(n-1)+2.
We also have the following corollary.

Corollary 2. For any positive integers n and m,

RM(nK;,mKy) 2 m(n—1)+2.
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Proof. A graph colored with ¢ or fewer colors cannot possibly contain a
rainbow copy of (c+1)Kj. If the graph is colored with ¢+ 1 or more colors,
then such a subgraph is possible. Thus, taking m =c+1,

RM(nKs,mKs3) > r(nKa,nKa, .. nKp) = m(n -1 +2
a

We may also easily see the inequality RM(nKso, mKz) > m(n—1) +2
directly. Color the graph Kyn(n—1)+1 &s follows. Color all of the edges of a
subgraph isomorphic to Ko,_; with color 1. Choose n—1 additional vertices
and color all of the edges among these vertices and between these vertices
and those already colored with color 2. For each color i = 3,4,...m — 1,
choose n — 1 additional vertices and color the edges among those vertices
and between those vertices and the part of the graph already colored with
color i. The resulting graph has 2n — 1+ (m —2)(n —1) =m(n-1)+1
vertices and contains no set of n independent edges in the same color. Since
only m — 1 colors appear, it also cannot contain a set of m independent
edges in different colors.

In the case when m = n, Theorem 2 shows that this inequality is in fact
an equality[1].

We suspect that this result can be generalized as follows:

Conjecture 1. For every pair of positive integers n and m, where n > 3
and m > 2,
RM(nKy,mKz)=m(n—1)+2.

First, we handle the trivial special cases n = 1, n = 2, and m = 1
not included in the conjecture. Any graph with at least one edge must
contain both a monochromatic and a rainbow K3, so RM(Kz,mK>z) =
RM(nK,, K3) = 2. If a graph contains at least n independent edges, then
either two of the edges are different colors or all of them are the same
color. Thus, RM(nK2,2K3) = 2n. Similarly, if a graph contains at least
m independent edges, then it must contain either a rainbow mKj or a
monochromatic 2K5. However, a graph with fewer than 2m vertices could
be colored with every edge a different color to avoid these two graphs.
Therefore, RM (2K5, mK3) = 2m.

Bialostocki and Voxman’s proof can be adapted to show Conjecture 1
in the case m < n.

Theorem 4. For any two positive integers n and m, where 2 < m < n,

RM(nKs,mKp)=m(n—1)+2.
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Proof. We will proceed by induction on m. The formula holds when m = 2,
as discussed above. For some m > 3, suppose the edges of Konn—-1)+2 are
colored with any number of colors. If fewer than m colors are used, then
we may apply Corollary 1 with ¢ = m —1 to see that some monochromatic
copy of nKs must appear. Thus, we may assume without loss of generality
that at least m colors are used.

Choose one edge of each of m different colors that appear in such a
way that the number of independent edges in this set is maximal. Let
H represent these edges and let V(H) represent the vertices incident with
these edges. If |V(H)| = 2m, then we have a rainbow copy of mK», and we
are done. Assume that |[V(H)| < 2m —1.

Let M = V(Km(n-1)+2) — V(H). If there is any color which appears
in the graph induced by M and not in H, then the number of independent
edges in H is not maximal, which contradicts our choice of H. If every color
which appears in H also appears in M, then we may choose some color in
H which does not appear on an independent edge and replace that edge
with an edge of the same color in M to produce a set of representatives of
the colors with more independent edges than H. Again, this contradicts
our choice of H. Thus, the colors appearing in M must be a proper subset
of the set of colors appearing in H.

Since m < n, the set M contains at least

M| 2 (r-1m+2-(2m-1)
= nm—-3m+3
nm—-2m-n+14+3

v

n=2)(m-1)+2

vertices. Therefore, by the inductive hypothesis, the subgraph generated
by M contains either a monochromatic copy of (n — 1)K> or a rainbow
copy of (m — 1)K>. Since H contains one edge of each color appearing in
M and at least one edge of a color not appearing in M, we may add an edge
from H to the subgraph in M to produce either a monochromatic nKs or
a rainbow mKo. o

Next we will show that the same formula holds for m = n+ 1. Two of
the smaller values must be shown separately.

Theorem 5. The constrained Ramsey number RM(3K>,4K3) = 10.

Proof. By Corollary 2, we know that RM(3K5,4K53) > 10. Suppose the
edges of Ko are colored with any number of colors. Consider any set of 5
independent edges, say ab, cd, ef, gh and ij. If 4 or more colors appear,
or if some color appears at least 3 times, we are done. Without loss of
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generality, we may assume that the edges ab, cd, ef, gh and ij are colored
with colors 1,1, 2,2, and 3, respectively.

Notice that if color 3 is used on any of the edges ac, bd, ad, bc, then
it cannot be used on any of the edges eg, fh, eh, fg without creating
a monochromatic 3K2 in color 3. Thus, we may assume that this color
appears on at most one of these sets of four edges. Assume without loss
of generality that color 3 does not appear on the edges ac, bd, ad, bc.
Notice that color 2 cannot appear on these edges either without creating a
monochromatic 3K5.

Case 1. One of the edges ac, bd, ad, bc is some new color. Suppose
without loss of generality that ac is a new color, color 4. Since ac, bd, ef,
and zj are independent edges, edge bd must be one of the colors 2,3 or 4,
or else we have a rainbow 4K5.

We may assume that bd is color 4. If the edge ce is any color except
2 or 3, then we have a rainbow 4Kj, using either ab or bd along with ce,
gh, and ij. Similarly, we may assume that df is colored either 2 or 3. If ce
and df are the same color, then together with either gh or i they form a
monochromatic 3K,. Thus, without loss of generality, ce is color 3 and df
is color 2.

By the same argument, one of the edges ag and bk is color 2 and the
other is color 3. However, we now have 3K in color 3.

Case 2. The edges ac, bd, ad, bc are all color 1. If any edge from
the set of vertices a, b, c,d to the set e, f, g,k is a new color, then we have
a rainbow 4K,.

Consider the edges ae, cg, bf, and dh, colored in the three colors 1, 2, 3.
If color 1 appears twice, then we have 3K, in color 1. Similarly, if color
3 appears twice, we have a monochromatic 3K5. If color 2 appears twice
incident with ef or twice incident with gh, then we have 3K> in color 2.
We may assume that color 2 appears twice, once incident with the edge ef
and once incident with gh. Without loss of generality, edges ae and cg are
color 2, edge bf is color 1 and edge dh is color 3.

Consider edge ai. If this edge is in some new color, then ai, cg, bf and
dh form a rainbow 4 K. If it is color 1, then it forms a monochromatic 3K
along with bf and cd. If it is color 2, then it forms a monochromatic 3K
along with ef and gh. Thus, we may assume without loss of generality that
edge ai is color 3. Similarly, we may assume that edge ¢j is color 3. But
then edges ai, ¢j and dh form a monochromatic 3Kj. O

Theorem 6. The constrained Ramsey number RM(4K,,5K,) = 17.
Proof. The lower bound follows from Corollary 2.
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Figure 1: Possible Location for Edge of Color 5 in Theorem 6

Suppose that the edges of K7 are colored with any number of colors.
If 4 or fewer colors are used, then by Corollary 1, there is a monochromatic
subgraph isomorphic to 4K>. Thus, we may assume that at least 5 colors
are used.

Since RM(4K>,4K5) = 14 < 17, we may also assume without loss of
generality that there is a rainbow subgraph isomorphic to 4K5; we will
label the colors 1, 2, 3, and 4. Some color 5 must appear somewhere in
the graph. If color 5 appears on an edge independent from the edges of the
4K,, we are done.

Suppose an edge of color 5 appears incident with two of the edges of the
4K3, as shown in Figure 1. Since RM(3K2,3K>) = 8 < 9, there must be
either a monochromatic or a rainbow 3K, on the remaining 9 vertices. If
there is 2 monochromatic 3K in some new color, then we have a rainbow
5K, in colors 1, 2, 3, 4, and this new color. If there is a monochromatic
3K in one of the colors 1, 2, 3, 4, or 5, then we may add the appropriate
edge to obtain a monochromatic 4K3. Thus, we may assume wlog that
there is a rainbow 3Kj, necessarily using three of the four colors 1, 2, 3,
and 4. In particular, there is an edge in color 3 or an edge in color 4, so, up
to interchanging colors, we may assume that we have a subgraph as shown
in Figure 2.

Let N = V(K17) — {a,b,c,d,e, f,g,h,i}. If N contains an edge in
any color other than 1, 2, and 3, then we have a rainbow 5K,. Since
[N| = 8 = RM(3K32,3K3), there must be either a monochromatic 3K> in
color 1, 2, or 3 or a rainbow 3K3 on colors 1, 2, and 3 on N. If N contains
a monochromatic 3K, then we have a monochromatic 4K, in the original
graph. Thus, we may assume that N contains three independent edges in
colors 1, 2, and 3, respectively. The remaining independent edge in N must
be color 1, 2, or 3, say wlog color 1. Without loss of generality, we have
the graph shown in Figure 3.

Let M = V(Ki7) —{a,b,c}. Since [M| = 14 = RM(4K,4K>), we may
assume wlog that M contains a rainbow 4K5. If this 4K5 does not contain

180



Figure 2: Other Possible Location for Edge of Color 5 in Theorem 6

an edge of color 4 and an edge of color 5, then we may add edge bc or edge
ab to obtain a rainbow 5K>. Thus, we may assume that an edge of color 4
and an edge of color 5 appear in M.

If the color 4 edge appears anywhere in M besides the edges ng, nf,
og, of, pd, pe, qe, and/or qd, then we have a rainbow 5K,. Without loss
of generality, we may assume that edge ng is color 4.

Consider edge op. If op is color 1, then we have a 4K in color 1. If op
is color 2, 4, or 5, or some new color, then we have a rainbow 5K,. Thus,
op must be color 3. Similarly, oq, oe, od, fp, fq, fe, and fd must all be
color 3.

Consider edge gd. If qd is color 1, we have a monochromatic 4K, in
color 1; if gd is color 2, 4, or 5, or some new color, then we have a rainbow
5K>. Thus, gd and, similarly, edges ge, pe, and pd must all be color 3.

Now, if any edge on the vertices k, 1, 7, k, 1, and m is color 3, we have a
4K, in color 3. If any one of these edges is color 2, 4, or 5 or some new
color, then we have a rainbow 5K,. Thus, we may assume that vertices
h,1,4,k,1, and m induce a complete graph in color 1.

Finally, consider the six edges kd, ie, j f, ko, lp, and mgq. If two or more
of these edges are color 1 or if two or more are color 3, then we have a
monochromatic 4K5. If any one of these edges is color 2, 4, or 5, or a new
color, then we have a rainbow 5K,. There are no other possibilities; we
must have either a monochromatic 4K5 or a rainbow 5Ks. O

The proof for n > 5 and m = n + 1 actually shows a slightly more
general case. First, we will need a few technical lemmas.

Lemma 1. Assume that RM(nKa,(m — 1)K3) = (m — 1)(n — 1) + 2.
Suppose Km(n—1)+2 i3 edge-colored with any number of colors. Then ei-
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Figure 3: Subgraph Which Must Exist, WLOG, in Theorem 6

ther Km(n—1)+2 contains a monochromatic nKy or a rainbow mKa, or any
set of independent edges in a given color can be extended to a set of I'%]
independent edges in that color.

Proof. Suppose there is a set of k independent edges in the same color, say
color 1. Let M be the set of 2k vertices incident with these edges. If

2k £ mn-1)+2—- RM(nKz,(m-1)K3)
= mn-1)4+2-[(m-1)(n-1)+2]
= n-1,

then we may assume that there is either a monochroematic nK> or a rainbow
(m — 1)K3 on the remaining vertices. If the rainbow (m — 1)K, does
not contain color 1, then we may add an edge in color 1 to produce a
rainbow mKy. Otherwise, the rainbow (m — 1)K, contains an edge in color
1 independent from the edges in M. We may add the vertices incident with
this edge to M and repeat the argument. Continuing in this fashion, we
can extend the set M until |M| = 2k, where 2k > n — 1, that is, until
k>(m-1)/2. O
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We will primarily use this lemma in the following form.

Corollary 3. Assume RM(nKsz,(m — 1)K3) = (m — 1)(n — 1) + 2 and
n 2> 5. If Kmn—1)+2 8 edge-colored with any number of colors, then either
the graph contains a monochromatic nKs or a rainbow mKs, or any edge
or pair of independent edges in a single color can be extended to a set of
three independent edges in that color.

Lemma 2. Assume that RM(nKz,pK2) = p(n — 1) + 2 for every positive
integer p < m. Suppose Kpyn—1)42 8 edge-colored with any number of
colors and suppose the resulting graph does not contain either a monochro-
matic nKo or a rainbow mKy. If M is a set of vertices and S is a set of ¢
colors, ¢ > 1, such that

(1) there is a set of c independent edges on the vertices of M containing
an edge in each color of S and

(2) IM| <c(n-1),

then there is an edge in Kpn(n—1)4+2 independent of M colored with one of
the colors of S.

Proof. Let M be such a set. Since
M| < ¢(n-1)
= (mn-1)+2)-(m—-c)(n-1)+2)
(m(n —1)+2) — RM(nKaz, (m — c)K?2),

il

the remainder of the graph must contain either a monochromatic nKs or
a rainbow (m — c¢)K,. If none of the colors of S appear in the rainbow
(m — ¢)K3, then it can be extended to a rainbow mK,. Thus, we may
assume that there is a rainbow (m — ¢) K3 independent from M containing
an edge in one of the colors of S. O

We are now ready to prove the main result. Notice that for n > 5, we
haven+1< %(n -1).

Theorem 7. Forn > 5 and 2 < m < $(n — 1), the constrained Ramsey
number
RM(nKz,mK2)=m(n—-1)+2

Proof. Notice that RM (nKs,mK3) > m(n — 1) + 2 by Corollary 2, so we
only need show RM(nK,,mK>) < m(n — 1) + 2. We proceed by strong
induction on m, using Theorems 2 and 4 as the base. Thus, we assume
that the formula holds for RM(nKa2,pK3) for all p < m and that m > n >
5. Suppose Kmn(n-1)+2 is edge-colored with any number of colors. Since
m(n—1)+2 > (m—1)(n-1)+2 = RM(nK>,(m —1)K;), we may assume
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without loss of generality that there is a rainbow (m — 1)Kj, say in colors
{1,2,...m —1}. Now, since m < 2(n — 1), it follows that there are at least
mn-1)+2-2(m-1) > (m-2)(n-2)+2 = RM((n— 1)Kz, (m —2)K3)
vertices remaining. If a monochromatic (n — 1) K> appears in a new color,
then we may add an edge in this new color to the rainbow (m — 1)Kj to
produce a rainbow mKa,. If a monochromatic (n — 1)K, appears in one
of the colors 1,2,...m — 1, then this subgraph along with the appropriate
edge from the rainbow (m — 1) K> yields a monochromatic nKo.

Thus, we may assume without loss of generality that a rainbow (m —
2)K, appears, independent from the (m — 1)K5. If any new color appears
on this (m — 2)K», then we have a rainbow mK,. Thus, without loss
of generality, we may assume that the (m — 2)Kj is colored with colors
1,2,...m-2.

Since m < (3/2)(n — 1), there are at least m(n — 1) +2 — 2(m — 1) —
2(m —2) 2 (m—3)(n-3)+2 = RM((n — 2)Ka,(m — 3)K,) vertices
remaining. If there is a monochromatic (n — 2) K> on these vertices in one
of the colors 1,2,...m — 2, then we have a monochromatic nKj. If, on the
other hand, there is a monochromatic (n — 2)K> or a rainbow (m — 3)Kj,
containing some new color, then we have a rainbow mKs. Thus, we may
assume, without loss of generality, that we have one of the following three
cases.

Case 1 There is a monochromatic (n—2)Kj, in color m—1. Label
the vertices as shown in Figure 4, so that edges u;v; and w;z; are color i
forl<i<m-2.

From corollary 1, if only m — 1 colors were used to color the edges of
Km(,,_l)_,_g, then there must be a monochromatic nK,. Thus, we may as-
sume that there is some new color, say color m, appearing on these vertices.
According to corollary 3, we may also assume that this color appears on
at least 3 independent edges. If any edge in color m is not an edge u;w;,
u;Ti, viw; or v;x; for some i, 1 < i < m — 2, then we have a rainbow
mK,. At most 2 of the 3 independent edges in color m can appear incident
with v;, v;, w; and z; for any given i. Thus, we may assume without loss of
generality that edges vyw; and vows are color m.

We will proceed by induction. Let

Mg; = {uj,vj,wj,7;]1 < j <1}

Then the graph induced by M<2 contains a pair of independent edges in
any two of the three colors 1,2, and m, that is, it contains two independent
edges in colors 1 and 2, two independent edges in colors 1 and m, and two
independent edges in colors 2 and m.
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Suppose, for any i, 1 < ¢ < m — 2, that the graph induced by Mc;
contains a set of ¢ independent edges in any i of the colors 1,2, ..., and m.
Since |M<;| = 41, we may apply lemma 2 with c =i and S = {1,2,...1}.
Since n > 5, we have 4i < ¢(n —1). Thus, there must be some edge
independent from Mc; in one of the colors 1,2,...i. If this edge is not
u;w;, Ui, v;w; Or v;T; for some j, where ¢ < j < m — 2, then we have
a rainbow mK3 using this edge in, say, color k, a matching on Mc; in the
colors {1,2,...4,m} —{k}, and a matching in the remainder of the graph in
colors i+1,i+2,...m—1. Thus, we may assume without loss of generality
that the new edge in color k, 1 < k < i, is the edge v;11w;;1. Let C be any
subset of ¢ + 1 colors from the set {1,2,...i+ 1,m}. If C contains color
i+ 1, then the graph induced by M<;; contains a set of independent edges
in the colors of C, since M; contains a set of independent edges in colors
C — {i+ 1}. If C does not contain color i + 1, then C = {1,2,...4,m}.
Since the graph induced by Mc; contains a set of independent edges in
colors {1,2,...4,m} — {k}, the graph induced by Mc;, contains a set of
independent edges in the colors of C.

Continuing inductively, we may assume that M<m,_» contains a set of
m — 2 independent edges in any m — 2 of the colors {1,2,...m — 2, m}.
If we apply lemma 2 with c = m — 2 and § = {1,2,...m — 2}, then
we may assume that there is an edge independent from Mc,,—» in one of
the colors 1,2,...m — 2. Then this edge, say in color k, an independent
edge in color m — 1, and a set of independent edges in M<,;,—2 in colors
{1,2,...m —2,m} — {k} form a rainbow mKj.

Case 2 There is a rainbow (m — 3)K; not containing color m — 1.

Without loss of generality, we may assume that there is a subgraph as
shown in Figure 5. As in case 1, we may assume that some new color, say
m, appears on at least three independent edges. If any edge in this new
color is not adjacent to either the edge in color m — 1 shown in Figure 5
or both of the edges of color m — 2, then we have a rainbow mKs. Since
at most two independent edges can be adjacent to the edge in color m — 1,
we may assume that at least one edge of color m appears adjacent to both
edges of color m — 2.

Let M be the set of vertices incident with the edges of colors m — 2
and m — 1 shown in the figure. We may apply lemma 2 with ¢ = 2 and
S ={m-2,m-1}. Since 6 < 2(n — 1) for n > 5, we may assume that
there is an edge in color m — 1 or color m — 2 independent from M. If an
edge in color m — 2 appears, then we have a rainbow mK,; we may assume
that an edge in color m — 1 appears. Let M’ be the set of vertices in M
along with the two endpoints of this new edge of color m —1. Apply lemma
2to M’ withc=2and S ={m—2,m -1}, since 8 < 2(n—1) for n > 5.
Thus, there must be another edge in color m — 1 independent from M’.

Now, from corollary 3, we may also assume that there is an edge in
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Figure 5: Case 2 of Theorem 7

color m — 2 independent from the two edges in that color shown in Figure
5. If this edge is not adjacent to the edge in color m — 1, then we have
a rainbow mK5,. So we may assume that there is an edge in color m — 2
adjacent to the edge of color m — 1. Since there are two independent edges
in V(Kn) — M in color m — 1, there is an edge in color m — 1 independent
from this new edge in color m — 2. Consider these two edges in colors m —1
and m — 2, respectively, and the edge of color m. If there is still a set of
m — 3 independent edges in colors 1,2,...m — 3 on the remainder of the
graph, then we have a rainbow mKa.

Since we are using three vertices of V(Ky)— M, it is possible that these
three vertices are incident with three different edges in the same color, say
color m — 3. Let L be the set of vertices in M along with the 6 vertices
adjacent to the edges in color m — 3. We may apply lemma 2 to L with
S ={m-3,m—2,m—1}. Since 12 < 3(n — 1) for n > 5, there must be
some edge independent from L in one of these three colors. Observe that
with this edge and the edges in L, we can obtain an independent set of
edges in colors m — 3, m — 2, m — 1 and m. There must be an independent
set of edges in colors 1,2,...m — 4 on the vertices remaining, so we have a
rainbow mKjs.
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Figure 6: Case 3 of Theorem 7

Case 3 There is a rainbow (m — 3)K; containing color m—-1. We
may assume that we have the graph shown in Figure 6, with edges u;v; and
wiz; incolor i, fori=m—-3,m-2,m—1.

As in the previous two cases, we may assume that there is some new
color, say color m, appearing on at least three independent edges. If any
edge in color m is not one of the edges u;w;, uix;, viw; or viz; for i =
m —3,m — 2, or m — 1, then we have a rainbow mK,. Since at most
two independent edges can be chosen from {u;w;,uiz;, viw;, v;2;} for each
i, we may assume without loss of generality that edges vy,—owm—2 and
Um—1Wm—1 are color m.

Let M = {um-2,%m—2, Wm—2,Tm-2,Um—1,Ym-1,Wm—1,Tm—1}. If we
apply lemma 2 to M with ¢ =2 and § = {m — 2, m — 1}, we have some
edge in color m — 2 or m — 1 independent from M. If this edge is not
one of the edges um_3wm—3, Um—_3Tm—3, Ym-3Wm—3 OT VU;m_3Zm—3, then
we have a rainbow mK,. Assume wolog that edge v,,_aw,,_3 is color
m—2orm—1. Let M’ = {u;,v;,wi,zi[i =m — 3,m — 2,m — 1}, and let
§ ={m—3,m—2,m—1}. According to lemma 2, there is some edge in
one of the colors m — 3, m — 2,m — 1 independent from M’. Thus, there is
a rainbow mKo. O
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We have seen that the formula

RM(nKp,mKz)=m(n—-1)+2

from Conjecture 1 holds for m < %(n —1). In general, for n > 2, we have
m(n—1)+2 < RM(nK3,mK3) < 2(n—1)m

The lower bound was discussed previously. Notice that the upper bound
holds for n = 2 and for m = 1 provided n > 2. For any n > 3 and
m 2> 2, suppose RM(nKj,(m — 1)K2) < 2(n — 1)(m ~ 1) and RM((n —
1)K3,mK3) < 2(n — 2)m. Consider any edge-coloring of Kymn-1)m- If
the resulting graph does not contain a rainbow mKj, then without loss of
generality it must contain a monochromatic (n — 1)Kj,. If we remove these
2(n —1) vertices, there are 2(n — 1)(m — 1) vertices remaining. Thus, there
is either a monochromatic nKj or a rainbow (m — 1)K, on the remaining
vertices. Without loss of generality, then, we have a monochromatic (n —
1)K3, say in color ¢, and a disjoint rainbow (m —1)K,. Either the rainbow
(m — 1)K contains an edge in color c or it does not. If it contains an edge
in color c, then this edge along with the monochromatic (n — 1)K, form
a monochromatic nKj,. Otherwise, an edge in color ¢ from the (n — 1)K,
may be added to the rainbow (m — 1) K> to produce a rainbow mKo,.
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