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Abstract

The general linear group G over Z/2"Z acts transitively on the finite
upper half plane over Z/2"Z where Z denotes the ring of rational integers.
In this paper, it is showed that the pair of G and the stabilizer of a point
on the plane is a Gelfand pair.

1 Introduction

The finite upper half planes over finite fields and rings were introduced as fi-
nite analogues of the Poincaré upper half plane. The general linear groups act
transitively on the planes by the fractional linear transformation. In general, a
finite group G and the subgroup H is called a Gelfand pair if the permutaion
character of the action of G on the right cosets G/H by the multiplication from
the left side is multiplicity-free. It has already been well-known that in the case
of finite fields for all primes and finite rings for odd primes the general linear
group and the stabilizer of a point on the plane is a Gelfand pair (see (1) and
[5]). In this paper, we shall generalize the finite upper half planes over finite
rings for odd primes to that over all primes and then show that the general
linear group and the stabilizer of a point on the plane is a Gelfand pair.

2 The definition of finite upper half planes

First we review the definition of the finite upper half planes over Z/p"Z for an
odd prime p in order to define the planes over Z/2"Z. We denote the group of
units of a ring R by U(R).

Let p be an odd prime and Ra[T)] the polynomial ring over R, := Z/p™Z
with an indetermine T'. Fix a generator & of U(R,) and define Q(T) := T? - §.
Then, we consider the quatient ring M, := R,[T]/(Q(T)) where (Q(T)) denotes
the ideal of R,[T] generated by Q(T). M, becomes an extension ring of R,.
Under these notations, we define the finite upper half plane H,, for an odd prime
as follows:

Hp:={z+yT € M, |z € Ra, y € U(R,)}.

Then, H, is a subset of U(My,) (see [5]). Even if we take any other monic
polynomial of degree 2 which is not presented as a mulitiplication of two monic
polynomials of degree 1 and then make the extension ring with the polynomial
instead of the above Q(T), this ring is isomorphic to the above M, as R,-
algebras.,
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Next we shall consider the finite upper half planes over Z/2"Z in the similar
way to the case of odd primes.

Let R, := Z/2"Z. For convenience, we put Ry = 0. Let Q(T) be a monic
polynomiai of degree 2 which is not presented as a mulitiplication of two monic
polynomials of degree 1 and define M, := R,[T}/(Q(T)). Then, we shall define
the finite upper half planes as follows.

Definition 2.1. The finite upper half plane over Z/2"Z is defined by
Hp={z+yT € Mp |z € Rn,y € U(Ra)}.
Let G be the general linear group over R, that is to say,

G=0Cn :=GL(2,R,.)={( ‘; Z)Ia, b,c,d€ Ry, ad—bce U(R,.,)}.

In the same way to the case of odd primes, G acts transitively on H,, as follows:
gcz:=:7‘}_'7"forzeﬂnandg= ( Z Z eG.

By the following lemma, we sce that M, does not depend on how to take a
monic polynomial Q(T') of degree 2 which is not presented as a mulitiplication of
two monic polynomials of degree 1 similar to the case of odd primes. Therefore
the finite upper half plane is unique up to isomorphism of G-spaces.

Lemma 2.1. Let Q(T) be any monic irreducible polynomial of degree 2 which is
not presented as a mulitiplication of two monic polynomials of degree 1. Then,
as R-algebras

Ra[T)/(Q(T)) = Ra[T]/(T* - T +1).
Proof. We denote the polynomial obtained by taking mod 2 for Q(T')’s coeffi-
cients by Q(T). Put Q(T) = T? — AT + B. By Hensel’s lemma ([4], Theorem
8.3), Q(T) is not presented as a mulitiplication of two monic polynomials of
degree 1 if and only if Q(T) is irreducible over R,. So we see that both A and
B are odd.

In order to prove this lemma, it is sufficient to verify the existence of C
and D such that (CT 4 D)2 — (CT + D) + 1 = 0 in R,[T]/(Q(T)). Because
then, the mapping CT + D — T gives an isomorphism from R,[T}/(Q(T)) to
RaT)/(T? =T +1).

Substitute T2 = AT — B into (CT + D)2 —(CT + D) +1 = 0. Then, we get
(C2A+2CD —C)T 4+ (-C?B 4+ D? — D + 1) = 0. So we only have to look for
solutions C and D of the following simultaneously equations:

C(CA+2D—-1)=0, (1)
—C?’B+D*-D+1=0. (2)

From (2), C is odd. So from (1), CA+2D~-1 = 0. Substitute C = —A~1(2D-1)
into (2). Finally we obtain

D%+ D= (B - A%)/(4B - A?).

But it is easy to sec that any even number in R, can be written by the form
D? + D. This comletes the proof of the lemma. (]

From now on, we shall consider only Q(T) =T2 - T + 1.
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3 Gelfand pairs obtained from finite upper half
planes

We denote the stabilizer of T by K. Clearly,

K:= {geGig-T:T}:{( c+d jf)]c,de Ra, (c,d) 20 (mod2)}.

[

We define the affine group A as follows:
A=An:={( g f )IzeRm yeU(R,,)}.

The affine group A forms a complete set of representatives of the right cosets of
G by K, that is to say, G is decomposed into the right cosets by K as follows:

G=ZgK.

geEA

In gencral, for a group G and subgroup H, if HgH = zHg~'H holds for any
gin G, (G,H) is a Gelfand pair (see Theorem 1 in [6] p.308). Therefore, it is
sufficient to show KgK = Kg~'K for any g in A.

We obtain the following condition by an elementary calculation. For g; =

(‘g 5 )GA(i=l,2),
c+d —c
[+

KglK=K92K<=>3k=( d

) € K st kg1 K = goK <—

there exists (c,d) Z 0 (mod 2) such that

-z Zi-l-mz+yiy c\_ (0 (mod 2°)  (3)
Yi—¥2 Y1— g2 — Tay — Y27 d 0
In particular, put g» = g,7! and z; = 2'u, y; = v where 0 <! < n,

-1 -1 _ -1
and u, v € U(R,). Then since %’ :x;, = ylo :z;ly ! , the

existence of solutions (c,d) # 0 (mod2) of the equation obtained from (3)
shows Kg1 K = K¢, K:

2w (v +1) 2'u(l + 2'uw 1) 0 .
( v o+ 1)w-1) (v —ul)(l + 2luy~1) ) ( ; ) = ( 0 ) (mod 27)
)

In order to verify the existence of solutions, we define 2-adic valuation.

Definition 3.1 (2-adic valuation). Let a be a nonzero elememt in R,. If
2 || @ (ie. 2'| a and 21! { g), we define h(a) := I. When a = 0, define
h(a) :=n. We call k the 2-adic valuation of R,.

The following lemma follows [5].
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Lemma 3.1. Let A = ( 2;1 Z;: ) for ai; € R, and h the 2-adic valuation
1

of Rn. Assume that A is a nonzero matriz. We put h := min,<; j<2 h(ai;),

7 ’
a), @ .
aij = 2"al; and A' = 71 12 ) where al; € Rn_n. Then, there ezits a
g az 4

vector (z,y) # (0,0) (mod 2) such that A( : ) = ( 8 ) (mod 2%) if and
only if det A’ =0 (mod 2"~H).

By Lemma 3.1, the existence of solutions of (4) is verified by caluculating
the values of 2-adic valuation of the entries of the coefficient matrix.

When ! = 0, since h(v~1(v + 1)(v — 1)) € h(uv~ (v + 1)) and A((v — 1)(1 +
uv™1)) < h(u(l + uv™!)), the condition of Lemma 3.1 holds. When I > 1,

h{(1,1)entry) = 1+h(1+v),
h((1,2)entry) l

h{(2,1)entry) h(v+ 1)+ h(v - 1),
h((2,2)entry) = h(v-1).

By the four equations above, we see h((1, 1)entry) < h((1, 2)entry), ~((2, 1)entry) <
h({2, 2)entry), and so the condition of Lemma 3.1 also holds. After all, we obtain
the following by joining to the result of [5).

Theorem 3.1. Let p be arbilrary prime, G, the general linear group over
Z/p"Z, and K, the stabilizer of a point on the finite upper half plane. Then,
(Gn, K3) is a Gelfand pair.
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