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Abstract
In this paper we solve the existence problem for covering the 2-
paths of I\, with 4-paths. This also settles the spectrum of 3-path
systems of the line graph of I',. The prool technique allows the
embedding problem for (4, 2)-path coverings to be settled.

1 Introduction

There has been considerable interest in finding for some graphs G and H
whether or not there exists a partition of the edges of H, each element
of which induces a copy of G; this is known as a G-decomposition of H.
For example, necessary and sufficient conditions have been found for the
existence of a G-decomposition of Ky, in the cases where G is a cycle [1, 18,
11], a path [20], a star [19] and a small graph [3]; see also [17] for a survey.
‘Block designs also fall into this category, being Ki-decompositions of AN,
- (where AH is the multigraph formed from H by taking each pair of adjacent
vertices and joining them with X edges). Allowing H to be a multigraph is
also common (19, 20], and directed versions also exist (see (5] for example).
Sometimes additional structure is also required of the decomposition (see
(7] for example).

Let a k-path denote a path of length k. In this paper we consider
the existence of a collection S of 4-paths in I, with the property that
each 2-path in K, occurs in exactly one 4-path in S (see Theorem 2.4).
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This extends results in the literature that solve the problem of finding
sets of 3-paths, 4-cycles and hamilton cycles that cover the 2-paths in K,
(8, 9, 13, 15]. The problem of finding k-paths that cover all the k — 1-paths
in K, has also been solved [15)].

As a corollary of Theorem 2.4, we settle the existence problem for 3-
path decompositions of the line graph of A’ (see Corollary 2.5). This is a
companion result to that of Colby, Heinrich, Nonay and Rodger [6, 9] that
finds the integers n for which there exists a 4-cycle decomposition of the
line graph of I,,.

It has also been a focal point in this area to take partial or complete
decompostions and to embed them in larger complete decompositions of
K,. One classic unsolved result in this area is the embedding problem
for partial triple systems (/3-decompositions of K,) [2, 10], but many
other decompositions have also been considered (see {12, 14] for example).
Recently the embedding problem for 3-path coverings of the 2-paths in K,
was settled [16]; the proof of Theorem 2.4 allows this result to be extended
here (see Corollary 2.6).

More generally. for any simple graph ' let AT (/) be the multiset i
which each 2-path in G occurs A times: il A = | then denote this simply by
T(G). Define a (4,2)-path covering of (i of index A to be a multiset F(())
of 4-paths in G that satisfies

{(a,b,¢), (b,e,d),(c,d,e) | (a,b.c,d,e) € F(G)} = AT(G)
(So each 2-path in G is a subgraph of exactly A 4-paths in F(G).)

2 Existence of the 4-path covering

The proof of the main result relies on the existence of certain quasigroups
(a quasigroup is an ordered pair (V. o), where V7 is a set and o is a binary
operation defined on V' such that for ecach a. b € V' there exist unigque
elements ¢ and d in V' for which ¢ o¢c = b and doa = b so they are
equivalent to latin squares). This quasigroup is said to be tdempotent if
aoa =a for all « € V' and is said 1o be anlisymmelric if aob # boa for all

a®binV.

Theorem 2.1 There exists an idempolenl antisymmetric latin square of
order v for all v > 4.

Proof:

It is not hard to construct such latin squares recursively. FHowever, it
suffices to note that il v # 6 then there exists a self~orthogonal latin square
of order v {4]. Such a latin square L square is necessarily antisynnmnetric,
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and each symbol must appear exactly once on the diagonal. So, the symbols
in L can be permuted to make the resulting latin square L’ idempotent;
clearly L’ is also antisyminetric. The following is a solution when v = 6.

o]l 2 3 4 5 6
111 4 2 5 6 3
215 2 4 6 3 1
3(6 5 3 1 4 2
413 1 6 4 2 5
512 6 1 3 5 4
614 3 5 2 1 6

O

Let T(v,u) be the following set of 2-paths defined on the vertex set.
(Zy x {0}) U(Zy x {1}):

T(v,u) = {((e,0),(6,1),(c,0)),((¢,0). (e,0),(b, 1)), ((e,0),(c,0), (b, 1))
[{a.c} CZia<e,beZ,).

Then T(v, u) contains exactly 3((v(v — 1)/2)(u) 2-paths.

Lemma 2.2 [fv > 5 and w = | then there cxists a sel I of 4-paths such
that the multiset of 2-paths that occur in A-paths in F is precisely T(v, u)

Proof: Let (Z,,0) be an antisymmetric idempotent. quasigroup. Define a
set F of 4-paths as follows.

F = {((a0b,0),(a,0),(0,1).(6,0), (bo a,0)) | {a,b} C Zy,a < b}.

Notice that since (Z,, o) is idempotent and antisymmetric, each 4-path in F
does indeed contain 5 distinct. vertices. | i is easy to check that each 2-path
in T(v,1) is in at most one 4-path in /. Clearly I' contains v(v — 1)/2
4-paths each of which contains exactly 3 2-paths. Also. 3v(v — /2 =
Juv(v — 1)/2, where v = 1, which is the number of 2-paths in T(v, u). So
the result follows. O

Proposition 2.3 Suppose n > 5. If there exists a (4,2)-path covering of
Ky then there exists a (4, 2)-path covering of K, 1.

Proof: Let Fy be a (4,2)-path covering of K, on the vertex set N. Let
M be a set of size 1 with M NN = @. There exists a (4, 2)-path covering
F3 of T'(n,1) formed by using Lemima 2.2 and then renaming the vertices
(Zn x {0}) and {0} x {1} with N and A/ as respectively. Then F, U F. is
a (4,2)-path covering of N, 4, on the vertex set. A UN. O
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Theorem 2.4 There exists a (4, 2)-path covering of K, if and only ifn ¢
{3,4}.

Proof: To prove necessity, note that K's and K4 contain 2-paths, but no
4-paths.

To prove sufficiency, we begin by noting that K; and K contain no
2-paths, so the result follows vacuously. So, we can assume that n > 5.
We begin by finding a (4, 2)-path covering of K. Define a (4,2)-path
covering of K5 with the vertex set V(Ns) = {0,1,2,3,4} and defining
F(Ks) = {(4,0,2,1,3),(0,3,2,4,1),(0,4.1.2,3),(4,3,1,0,2),(3.4,0, 1, 2),
(4,2,0,3,1),(3,0,4,2,1), (0,1,4,3,2),(0.2,3,1,4),{1,0,3,4,2)}.

Now, Suppose that n > 6 and that for any 2 < n there exists a (4, 2)-
path covering of K;. In particular, there exists a (4,2)-path covering of
Kn_1, so by Proposition 2.3 there exists a (4,2)-path covering of K,,. So
the result follows by induction. O

We can now obtain two corollaries that supplement results in the litera-
ture. As described in the introduction, there has been considerable interest
in finding for some graphs G and H a G-decomposition of H. H is of-
ten taken to be one of a family of graphs, such as KN,, Ny or, as in the
following case, the line graph L(i,) of I,

Corollary 2.5 There exists a 3-path decompostion of L(K,) if and only «f

v #3.

Proof: Since the line graph of K3 contains 2-paths but no 3-paths, the
necessity follows. Since L(K,) contains no 2-paths when v € {1,2}, the
result follows vacuously in these two cascs.

If v = 4 then the required decomposition is provided by the following
set of 3-paths: {({0,2}, {0.1},{1.3},{2.3}).({0,3}, {0, 1}, {1,2},{2.3)}),
({0,2},{2,3},{0,3}, {1,3}), ({0,3},{0,2},{1,2}, {1,3})}.

For v > 5 the result follows from Theorem 2.4 by taking the following
set of line graphs of 4-paths: set:

{L(p) | p € I, Fis a (4,2)-path covering of N,}.

(This works because the line graph of a 2-path is an edge, and the line
graph of a 4-path is a 3-path.) |

A second focus of attention in the literature has been on embedding
decompositions of various sorts into similar larger structures. The [ollowing
result follows others detailed in the introduction.

Corollary 2.6 For all v,w > 1, any (4,2)-path covering of K, can be
embedded into a (4,2)-path covering of N,yw if und only if v+ w ¢ {3,4}
whenever v € {1,2}.
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Proof: If v € {1,2} then the result follows from Theorem 2.4, since any
(4,2)-path covering of K, 4 provides the required embedding.

If v € {3,4} then the result follows vacuously.

If v > 5 then begin with a (4, 2)-path covering of K, and recursively
apply Proposition 2.3 w times. Then clearly, we have a (4, 2)-path covering
of K, that contains the given covering. O

It is also worth mentioning the following corollary. A G-decomposition
of H of index X is actually just a G-decomposition of AH. Such objects
are also considered, often because in many graph decomposition problems

there may be no G-decomposition of H, yel there is one of AH for some
value of A.

Corollary 2.7 There ezists a (4,2)-path covering of AK, if and only if
n¢ {3,4}).

Proof: This follows immediately from T'heorem 2.4 by taking A copies of
each 4-path, and by noting that AKX, contains 2-paths but no 4-paths when
n € {38,4}. a
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