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Abstract

A graph G of order n is pancyclic if it contains a cycle of length ¢ for
every £ such that 3 < ¢ < n. I( the graph is bipartite, then it contains
no cycles of odd length. A balanced bipartitc graph G of order 2n is
bipancyclic if it contains a cycle of length € for cvery cven £, such that
4 < €< 2n. Agraph G of order n is called k-semipancyclic, k > 0, if there
is no “gap” of k+1 among the cycle lengthsin G, i.c., forno £ < n—kisit
the case that cach of Cq,...,Ceyx is missing from G. Generalizing this to
bipartite graphs, a bipartite graph G of order n is called k-semibipancyclic,
k > 0, il there is no “gap” of k+ 1 among the even cycle lengths in G,
i.c., for no £ < n — 2k is it the case that each of Ca, ..., Caz42x is missing
from G.

In this paper we generalize a result of Hakimi and Schmiechel in sev-
cral ways. [First Lo k-semipancyclic, then to bipartite graphs, giving a
condition for a harmillonian bipartite graph to be bipancyclic or onc of
two exceptional graphs.  Finally, we give a condition for a hamiltonian
bipartite graph Lo be k-sernibipancyclic or a member of a very special class
of hamiltonian bipartite graphs.
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1 Introduction

A graph G of order n is pancyclic if G contains a cycle of length ¢ for every
€ such that 3 < € < n. If the graph is bipartite, then it contains no cycles of
odd length. Generalizing the concept of a pancyclic graph, a balanced bipartite
graph G of order 2n is bipancyclic if it contains a cycle of length ¢ for every
even ¢, such that 4 < € < 2n.

In this paper, we also consider another such property and its bipartite ana-
logue. A graph G of order n is called k-semipancyclic, k > 0, if there is no “gap”
of k + 1 among the cycle lengths in G, i.e., for no € < n — k is it the case that
cach of Cy, ..., Cgyx is missing from G. In addition, a bipartite graph G of order
n is called k-semibipancyclic, k > 0, if there is no “gap” of k+1 among the ecven
cycle lengths in G, i.e., for no ¢ < n—2k is it the case that each of Cyy, ..., Cop ok
is missing from G. Thus every pancyclic graph is k-semipancyclic and every bi-
pancyclic graph is k-semibipancyclic for all k > 0. Note, 0-semipancyclic and
0-semibipancyclic graphs are just pancyclic and bipancyclic graphs, respectively.

In Section 2 we give a gencralization of a result by Hakimi and Schmiechel [2]
to k-pancyclicity. In Section 3 we give several examples of hamiltonian bipartite
graphs which are not bipancyclic, and in certain’cases, not k-semibipancyclic.
These examples will be the limiting examples of the results presented in Sections
4 and 5. In Section 4 we further generalize a result of Hakimi and Schmicchel
Lo bipartite graphs and give a condition for a hamiltonian bipartite graph to be
bipancyclic or one of two exceptional graphs. In Section 5 we will generalize
the result of Section 2 to bipartite graphs and give a condition for a hamiltonian
bipartite graph to be k-semibipancyclic or an element of a very specific class of
hamiltonian bipartite graphs.

2 k-Semipancyclic hamiltonian graphs
In [2] the following result on pancyclic graphs was given.

Theorem 1 Let G be a graph of order n with V(G) = {v,, ..., v,} and hamillo-
nian cycle vy,...,v,,v,. Suppose that deg vy +deg v, > n. Then G is cither
puncyclic, bipartile or missing only an (n — 1)-cycle.

Here we establish the following extension for k-semipancyclic graphs, k > 1.
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Theorem 2 Let G be a graph of order n > 9 with V(G) = {v1,...,un} and
hamiltonien cycle vy,...,v,,v1. Suppose deg v, + deg v, > n — k for some

integer k satisfying 1 < k < n/2. Then G is k-semipancyclic.

Proof. Suppose, to the contrary, that G is not k-semipancyclic. Then for
some £ satisfying 3 < € < n — k, G contains none of the cycles Cy, ..., Cpi.-

Case 1. Suppose that £ < n/2 — k. (The case £ > n/2 + 1 is handled by a
symmetric argument.)

Since Cy, ...,Cpsx € G, it follows that v, is not adjacent to v; , for € <
it<l+kandn—¢-—k+2 <i<n-E€+2 Let A= {vg,...,ve1}, B=
{Verksts s Vnot—ks1})r C = {vn_g43, s ¥n_1}, A = {veoy, .o, V2e—asi}, B' =
{v2e4k-2, ..., ¥n—2} and C’ = {w, ..., ve~2+«}. Note that all adjacencies of v, are
in AU BU C with the exception of vy,.

Let a,b, and ¢ be the number of adjacencies of v; in A, B, C, respectively.
Let vy, v4,,...,v;, With 2 <1 <ip < ... <i, < €—1 be the adjacencies of v; in
A. 1t follows that v,v;, +¢-3, VnVi, +£-3, ---, aNd V,v;, 4¢3 are not edges of G for
otherwise an ¢ - cycle would result. Furthermore, for ¢t = 1,2, ..., k, we see that
Uni, +£-3+¢ 1S Not an cdge of G since a cycle of length £4-¢ would result. Observe
that these a+ & nonadjacencics of v, are all in A’. Similarly, the b adjacencics of
vy i B force b+ k nonadjacencics of v, in B’. Finally, if v;,, vi,, ..., vi, With n—
€43 <4 < iy < ... < iy < n—1 arc the adjacencies of v; in C then it {ollows that
UnUg—(n-i, +1) 18 NOt an edge of G since vy, va, ..., v, Un, Upn—1, ..., ¥, ¥ Would form
an £- cycle. Similarly, vave_(n_iz4+1)s s UnVe—(n—io_, +1) 3Dd VnVs_(n_i +1) aT€
not edges of G for again an £ - cycle would result. Additionally, fort = 1,2, ..., k,
we see that vnvi 4¢-3+¢ is not an edge of G since a cycle of length € + ¢ would
result. Note that these are c+k nonadjacencies of v, in C’. Now the deg v; = a+
b+c+1,and degv, < (n—1)—(a+k+b+k+c+k—m), where m is the cardinality
of the intersection of A’ and C'. Since |A’ n c'| = (E+k—2)—(£=1)+1 = k, we

have that degvn < (n—1)—(a+k+b+k+ctk—k) = (n—1)—(degvy +2k—1),
so that deg vy + degv, < n ~ 2k, which is a contradiction since k > 1.

Casc 2. Suppose n is even and € =nf2 — ¢ for 0 < ¢ < k/2 — 1. (The case
kf2 -1 <t < k—1is handled by a symmetric argument.)

Since Cy,...,Cosx € G, it follows that v; is not adjacent to Un/2-11 1+
Un/2+t+2- Let A = {'Uz, ‘-'rvn/Q—l—l}; C= {vn/2+t+3: vy Un—l}’ A= {vn/2—-t—l.
ooy Un—2t-ask} and C' = {vy, ..., Unj2-1-24&}- Note that all of the adjacencies
of vy are in AU C with the exception of v,,. Arguing as before, since G is not
k-semipancyclic, the a adjacencies of v in A force a + k nonadjacencies of v,
in A’. Likewise, the ¢ adjacencies of vy in C force ¢ + k nonadjacencics of vy,
in C’. Note that if the adjacencics of v in A arc not consecutive, this forces
another previously uncounted nonadjacency of vn. For example, if v;v, ¢ E(G)
and v, vy € [5(G), then v, is adjacent Lo neither v, 4.9 NOT vi4e. .
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Define A4(A¢) to be 1 if the adjacencics of vy in A (respectively C) are not
consecutive along the hamiltonian cycle and 0 otherwisc. Now the degv; =
a+c+1, and as above, deg vy, < (n—1)—(a+k+c+k+Ap+Ac—m), where mis
the cardinality of the intersection of A’ and C’. Since |[A'NC’| = (n/2—-t -2+
k)—(n/2—t—1)+1 = k, we have that degv, < (n—1)—(a+c+k+As+Ac) =
(n—1)—(degvy —14+k+ A4+ Acg). Sodegy; +degv, <n—k— (As+Ac),
which is a contradiction unless A4, = Ac = 0 and degv; + degv, = n — k.
Hence, we may assume the adjacencies of v; in A and C are consecutive.

Thus v, is adjacent to the vertices v, ..., vg41 in A and v, is adjacent to the
vertices vp_j,...,n_c in C. This gives us cycles of lengths n — (e +c+ 1) + 2
up to n. Now, we can assume degv; > (n — k)/2 and, that degv, < (n —k)/2.
Thus we have cycles of lengths n — (n — k)/2+2 = n/2+ k/2 42 and larger and
this case is complete if L < k/2—1orif t =k/2 -1 and degv, > (n - k)/2. So
we can assume that { = k/2 ~ 1 and deg vy = degv, = (n — k)/2. Note, since
n 29, it follows that. (n — k)/2 > 4.

Suppose v; has all of its adjacencics, except vy, in A. As previously noted, v,
is adjacent to g, v3, ..., U(n--k)/2. This yields cycles of length 3 up to (n—k)/2 and
from (n + k + 4)/2 to n. Now consider the adjacencies of v,,. Since deg v,, > 3,
it follows that v, is adjacent Lo cither v, 3 or v, which implies that G contains
a cycle of length (n + k 4 2)/2 or a cycle of length (n — k + 2)/2, either case
being a contradiction. Consequently, we can assume that cach of v; and v, have
adjacencies to both A and C. Now the cycle vy, Un—c, Un—c41, .- Un, U2, ..., U1 has
length (n — k + 2)/2 thus completing this case.

Case 3. Suppose nisodd and €= |[n/2] —t for 0 <t < k/2—1. (The case
k{2 -1 <t <k —1is handled by a symmetric argument.)

Since Cg, ...,Cepx € G, it follows that v; is not adjacent to the vertices

Yn/2)-ts - Vns2)+43 - Lot A = {vg,,0ns2)-1c1}y € = (V24144

ceUno), A = {v[n/2j—t~h ---uvn-2l—5+k} and C' = {‘02, -~wv[n/2j-l.—2+k}-
Note that all adjacencies of vy are in AUC with the cxception of v,. Further,
if the adjacencies of v, in A are not consecutive, then, as beforc, this forces
another previously uncounted nonadjacency of v,. Define Aa(Ac¢) to be 1
if the adjacencies of v; in A (respectively in C) are not consccutive on the
hamiltonian cycle, and 0 otherwisc.

Let a be the number of adjacencies of w; in A and let ¢ be the number of
adjacencies of vy in C. Then, as above, degvy = a+c+1 and degv, < (n—1)—
(a+k+c+k+Ax+Ac —m), where m is the cardinality of the intersection of A’
and C’. Since |[A'NC'| = (|n/2) —t—2+k)—(|n/2) -t ~1)+1 = k, we conclude
degv, < (n—1)—(a+k+ct+hk-k+Ap+A¢) = (n—1)—(at+c+k+Ax+A¢) =
(n—=1)—(degv, =1+ k+Ar+A¢). Sodegyy +degv, < (n—k)—(As+Ac),
which is a contradiction unless Ay =0= A¢ and degvy + degov, =1 — k.

The remainder of Lthe proof of Case 3 is identical to that of Casc 2. =
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The requirement that = > 9 in Theorem 2 and the following two corollarics
can be seen to be a necessary condition from the graph Cg, with k =4 = n/2
which fails to be 4-semipancyclic.

Corollary 38 Let G be a hamitonian graph of order n > 9 with §(G) > (n—k)/2
Jor some k satisfying 1 < k <n/2. Then G is k-semipancyclic.

Let 02(G) = min{degu + deg v}, wherc the minimum is taken over all pairs
u, v of nonadjacent vertices of G.

Corollary 4 Let G be a hamilonian greph of order n > 9 with 03 > n—k for
some k salisfying 1 < k < n/2. Then G is k-semipancyclic.

Proof. Let C : v,vy,...,vs,v) be a hamiltonian cycle of G. If any pair
of consccutive vertices of C has degree sum at least n — k, then the proof is
complete by Theorem 2. Fix the pair v,,v; and beginning with vq, v4 consider
the [%zj disjoint consecutive pairs. If for one such pair v;, vi4 it is the case
that v,v:,; and vy9; are not edges of G (alternately, if v,v; and U1 V;4q are not
edges of G) then

2n—k) < (deg vn + deg viy1) + (deg vy + deg v;)
= (deg vn +deg vy) + (deg v; + deg v;41) < 2(n — k),

a contradiction. Thus, there are at least two edges from vy, v to v;, vi4;. Hence,
deg v, + deg vy > |252] +2 > n — 1, and the result follows by Theorem 1. m

3 Hamiltonian bipartite graphs that are not k-
semibipancyclic

In this section we present several classes of graphs that will be the exceptional

cases for results presented in the next two scctions. In each of these examples,

the resulting graph is bipartite, with partite sets X and Y having | X| = Y| = n,
and hamiltonian cycle

C= TLYLT2, 92 InyYn L -

Examplc 1 Consider the family of graphs F, conlaining the graphs I, =
(X,Y, ), with the hamiltonian cycle C, addilional edges z1y3 and ynzn—-2 and
Jor ecach i =4,5,...,n — 2, exaclly one of the edges z,y; or ynzi_;.
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Each member F, of F, is a hamiltonian bipartite graph with deg z, +
deg y, = n + 1 containing all possible even cycle lengths, with the exception of
2n—2. To see that I, doesn’t contain a cycle of length 2n—2, note that if a cycle
of length 2n —2 was contained in any such graph, then the edges 131, 122, T2y
and yoz3 as well as the edges YnZn, Zn¥Yn-1,Yn-1Tn-1 and Zp_1yn_2 would
necessarily be contained on the cycle. But then the only way to leave off exactly
two vertices would require that both edges z,y; and y,,r;_; were included for
some i = 4,5, ...,,n — 2. To see that F,, contains all other even cycle lengths, let
2 <t <n—2be an integer and we want to cxhibit the cycle of length 2¢. If
Ty, is an edge, then the 2i-cycle results immediately, hence y,z,-1 must be
an edge. Similarly, if y,z, is an edge, the 2i-cycle results immediately, hence
Z1Y41 Must be an edge. But now looking at the pair z,y.42 and y,z,,; we
ECL Yny ey, Yea2- T1 Yig 1y Top1s Yn fOrming a 24-cycle when y,x, . is an edge
and 1, ¥14-2, Te42..., T4, Y3, L) forming a 2t-cycle when z3y,,2 is an edge.

Example 2 Let Hy, = (X,Y, ££), be the bipartite graph with the hamillonian
cycle C and addilional edges

Z1Y2: T1Y3s - T1Y -1,

YnZT2, YnZ3,y ..y YnZLe—1
and
YnZn-1YnTn-2y -, YnT2—1,

where L is an integer such that (n + 3)/3 < t < n/2.

The graph Hy, is a hamillonian bipartite graph with deg z, = ¢ and
deg yn = n -t + 1. Consequently, deg z; + deg yn = n+ 1 and it is casy

to see that Hn; contains all possible even cycles lengths, with the exception of
2L.

Example 3 Let Inrs = (X, Y, E), be the graph with the hamillonian cycle C
and the additional edges

1Y, Z1Y3s -1 T1Yr,y
Z1Yn-1,T1Yn -2y -, T1Yn-s41,
InTn-1YnIn-2y s YnTn-s541,
and
YnL2 YnLdy ooy Yndr -1, YnTr,

with r and s pesilive inlegers and k o non-negalive inleger, such thal r + s =

(n+1-k)/2.
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Example 4 Let Jpr, = (X,Y, E), with X = {z1,....,z2},Y = {11, .-, yn} be
construcled as follows: starl with a Krys_y i between the sets {z,, zq ,...,
Try Ty Tty ooy Tnsi2) 00 {Y1, Y20 s Yry Yns Yn—1y s Yn—s+1}. Add the edge
YnTn—_s+1 and the edges of the palh yr, Tr, Yri1y Trt1 o eees Yn—s, Tn-s+1s Yn—s+1-

The graphs I,.r s and Jy. 4 arc hamiltonian bipartite graphs with “short”
cyclesofl length, 4, 6, ..., 2(r+s~1) and “long” cycles of length 2n—2(r + s)+4,
2n—2(r+ s)+6, 2n — 2, 2n. In the case when r+ s = (n+ 1)/2, and n is odd,
we note that these graphs contain cycles of all even lengths, with the exception
of n+1. When r+ s = (rn+1)/2 — k, the graphs do not contain the k + 1
consecutive even cycle lengths n —k+1,n—k+3,....,n+ k+ 1. We also note
that I, , is a subgraph of J,, and for any G with /.., C G C J,.r.s, then
G must also have cycles of lengths as described above.

These examples will be exceptions for the conditions given in the results
presented in Sections 4 and 5 and will oceur if the graph is in fact not bipancyclic
or k—semibipancyclic.

4 Hamiltonian graphs that are bipancyclic
In [2] the following result on pancyclic graphs was given.

Theorem 5 Lel G be a graph of order n with V(C) = {vy, ..., v} and hamillo-
nian cycle vy, ...,vn, 1. Suppose thal deg vy + deg v, > n. Then G is cither
pancyclic, bipartite or missing only an (n — 1)-cycle.

In [1], Amar gives the following generalization for bipartite graphs.
g I g

Theorem 6 Let G be a bipartite hamilonian graph of order 2n with two verlices
vy and vy which lc e distance lwo apart on a hamillonian cycle of G, with
deg vi+deg v2 2 n+1. Then G is cither bipancyclic or one of several special
graphs.

Here we establish the following version for hamiltonian bipartite graphs
which considers the degree sum of consceutive vertices of a hamiltonin cycle, as
did Hakimi and Schmeichel.

Theorem 7 Let G = (X,Y,E) be a bipariite graph with X = {z,,...,z,},
Y = {y1,....yn} and hamiltonian cycle 1, 1, T2, Y2 ..., Tn, Yn, 1. If dog =, +
deg yn 2 n+ 1 then cither
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i. G is bipancyclic,
. [, C G for some I, € Fn, thus G is missing al most the 2n — 2 cycle,
. Hny C G, thus G is missing al most the 2L cycle or,

W. Inys CG with2(r + s) =n+1 and n odd, thus G is missing al most an
(n+1)-cycle.

Proof. We proceed by induction on n. It is clear that if n = 2 then G
is bipancyclic. When n = 3, then G is either a Cg, and thus G = I3, or G
is bipancyclic. When n = 4 it is again clear that G is bipancyclic, while when
n =5, it [ollows that G is bipancyclic, G = Hs;3, G = Is;2,) or G = I5,1 2. Let
C be a bipartite graph, with partite sets X and Y having | X| = |Y| = n, and
hamiltonian cycle
Con = L1, 0 T2, 25 oo Tny Yns T1.

Furthermore, assume that deg =) + deg y, > n+ 1. We define the € — pairing
of possible cdges from z) and y,, as Ziyn..¢ 4) is paired with yuz; if 1 <i < ¢,
and z1y;._(e—1) is paired with ynz, il €+ 1 <7 < n—1. Observe that a cycle
of length 2¢ results if for some i both edges of the € — pairing are cdges of
G. Suppose that G is not bipancyclic. It follows that for some € satislying
4 <2< 2(n~1), the graph G docs not contain a cycle of length 2¢ and thus
not both pairs from the € — pairing can be cdges.

Claim 1 Ifdeg z; 4+ deg y, > n + 2 then G is bipancyclic.

Proof. Suppose that deg z, + deg yn > n+ 2. By the € — pairing, it must
be the case that for cach 4, at least one of those pairs are not an cdge of G. But
this implies that

deg 7, n—(degyn - 1)

n+1,

IN 1A

deg z, + deg yn
which contradicts the assumption. =

Hence we may assume that the deg z; + deg yn = n + 1. This also implics
that if G is not bipancyclic and docs not contain a cycle of length 2¢ then, for
cach 1 <1< n—1, exactly one of the edges in the £ — pairing must be an edge
in G.

The proof of Theorem 7 will be completed by considering the possible cases
for the inclusion of the edges xy1y,. ) and yuxy in ¢,

Claim 2 If G is nol bipuncyclic and both ,yy, -y and y,zy are edges of G, then
Inirs ©C with2(r + s) =n+ 1.
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Proof. Supposc G is not bipancyclic. As noted above, since G docs not
contain a cycle of length 2¢, for some £ then it follows that exactly one of the
cdges in the £ — pairing must be an edge in G. Also note that £ < n — 1 since
having y,z2 in G implies that a (2n — 2) — cycle is contained in G.

Casc 1. Suppose € < 3.

Since G contains no cycles of length 2¢, it follows that ypZn_g41 is not an
edge of G. By the € — pairing, this implics that z,y,_2¢,2 is an edge of G since
€ < 5. Now if ypz,_, were an cdge of G then

YniIn-,Yn—2-1,Tn—L—1) -+ Yn-2£+2, L1, Y1, L2, Yn

would be a cycle of length 2¢. Thus z1yn—2¢+1 is an edge of G. Continuing
this argument, it must be the case thatl ynZy_g—1, ..., YnTe41 are not cdges of G,
hence it must be that z,yn e, ..., 172 are edges of G. Consequently, it follows
that z,y, is an edge, since £ < &, which implics that G contains a cycle of length
2¢, a contradiction. Thus we may assume Lhat 3 < L.

Case 2. Suppose § < €< 3.

Again since G contains no cycles of length 22, it follows thal y,2, .. is
not an edge of G. By the € — pairing, this implics that 2,9, 2242 is an edge
of G since € < 5. Arguing as in the previous case, it follows that y,Z,_g is
not an edge in G while z,y,,..9¢,. is an edge in G. Tlence it follows that z, is
adjacent L0 ¥y, ¥, ..., Yn—224.2. Since € < 3 implics that 2 < n — 2¢+ 2, the edge
YnTn-g+2 1S NOL an edge of G for otherwise

Yns Tn-£424 Yn-242,Tn—-243---Yn-1,T1, Y2, T2, Yn

would form a cycle of length 2¢. But y,z,_s.2 not an cdge implics that
T1Yn-2¢4-3 is an cdge of G. Continuing Lo argue in this fashion, it follow that
Yn is not adjacent L0 Ty (g. 1), Zn .(6-2)r Tn.. (6=3)» ++» T2, iMplying that z, is
adjacent tO Yn_2012, Yn-2243, ..., Yn -2, fOr otherwise a 2¢ — cycle results.  Since
n— ¢ > ¢, it follows that zyye is an cdge and thus a 2¢ — cycle results, a
contradiction. Thus we may assume that ¢ > %,

“Case 3. Suppose 2§ = ¢.

In this case clearly y,, is not adjacent Lo z(n41)/2 and z(,_1)/2. Since ynzs is
an edge then y,x(n.3)/2, is not an edge, for otherwisc a 2¢-cycle would result.
This non-edge implics that z,y; is an edge. 1lence we may assume that zT1y; is
an edge for j = 1,2, ...r and z,y-4+1 is not an edge for some r < (n—1)/2. By the
€ — pairing we get that y, is not adjacent to Z(n+1)/2) F(n+3)/21 - Trg(n=1)/2
and is adjacent L0 Zy i (n41)s2. Now il 13,42 were an edge, the cycle

IZHYraHLrih Yrid o Eri(na 1)/ Ynn 2,00, )
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would be a 2¢ — cycle. Now using ¢-pairings and the edge ynz; it follows
that z, is not adjacent to ¥ry1,¥r42, .- Y(n+2)72 @nd consequently y, would be
adjacent t0 T,414n/2,Tri24n/2: - Tn. If either z; or y, had an adjacency
among the collection of vertices yri1, Tr+2, Yr+2, Tra.2 5oy Tryns2, Yrens2 then
a 2¢ — cycle results. Since deg z, + deg yp, = n+ 1, it must be the case
that z, is also adjacent LO ¥ry14n/2: Urq 24n/2, ---» Un and yy is also adjacent to
Zy,T3,...,Tr. Thus Iy, € C with 2(r + s) = n+ 1 and n odd.
Case 4. Suppose € = %2

In this case it follows that yy, is not adjacent L0 Z(n4.2)/2, Tn/2, aNd T(ny4)/2,
the later non-edge implying that x,y, is an edge. Hence we may assume that
z)y; is an edge for j = 1,2, ...r and z,yr4 is not an edge for some r < (n—2)/2.
By the ¢ — pairing we get that y, is not adjacent Lo T(n4.4)/2, T(n+6)/2) - Frin/2
and is adjacent to x,,.ns2. Now il 19,42 were an cdge, the cycle

ZHYr+23Tr+ Yrids oo Trilan/2Yns T2, Y1, T

would be a 2¢ ~ cycle, thus x, is not adjacent Lo ¥ 1,%r 12, ... Y(ni2)72 and
yn would be adjacent Lo Ty yin/2, Try24n/2s - T 1l cither 2y or 3, had an
adjacency among the collection of verlices ¥ry1, Try2, Yre2: Zri2 »-or Tron/2s
Yr4ny2 then a 2¢ — cycle results. But this ‘enplics that deg zy + deg yn <n, a
contradiction.

. o ni3 2n
Casc 5. Suppose 24 < ¢ < 22

Since G contains no cycles of length 2¢, it follows that 3, is not an cdge
of G. By the € — pairing, this implics that y,z2_» is an edge of G. As in the
previous cascs, if z1y.—; were an edge a 2€ — cycle would result.  Hence, ¥, is
adjacent L0 Topp,Zop-n-1,--., T2 and x;. But since it is the case that %ﬂ <,
it [ollows that y, is adjacent Lo z3, but this implies that z;y,-; is not an edge,
and thus ¥, Zoe_n 41 is an edge. Conscquently, ¥y, T, —g.1 is an cdge, resulting in
a 2¢ — cycle, again a contradiction.

Casc 6. Suppose 281 < ¢ <n—2.

Since G contains no cycles of length 2¢, iL follows that z,y, is not an cdge
of GC. By the € — pairing, this implics that y,z9¢_, is an cdge of G. As in the
previous cases, if z,y,_; were an edge a 2€ — cycle would result.  Hence, ¥, is
adjacent to Tog_n,Z2g-n_1,..., T2 and ;. But since it is the case that £’13+_1 <¢,
it follows that y,Zn_¢4) is an edge of G, which results in G containing a cycle
of length 2¢, a contradiction.

With all cases considered the claim follows. =
Claim 3 If G is not bipuncyclic and czaclly one of )yn-1 and y,x2 is an edge

of G then G conlains Hy, for nf3 < €< nj2, thus G is missing al most Lthe 2L
cycle.
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Proof. Without loss of gencrality let y,z2 be an edge of G, while z1y,-1
is not. If G is not bipancyclic, then we may assume that G contains no cycle of
length 2€. Arguing as in the previous claim, for all cases with the exception of
Case 2 and Case 3, the edge z,y,-1 is unused, thus the proofs for those cases
follow as above. When £ = %l a contradiction arises with the inclusion of the
edges to z; as in Case 3. Thus we only need to consider the case 3 < € < 3.
Observe that z,y,.; not an edge of G implics that y,z,_; is an edge of G, by
the € — pairing. If ynze+1 € I then yn, zes1, ye, .- T2, yn Would form a cycle
of length 2¢, thus yn,ze4 & E and hence by the € - pairing have that z,y, € E.
If yyn—2 € E then the 2¢ — cycle;

ITHYn—Tn-1Yn- 11T Yn  T8-1,Y2-2,TE-2, .-+, T3, Y2, T1

results. Consequently, we may assume that z,y, .o € 2 and thus that y,ze_» €
E. Continuing irr this fashion, we get that z) is not adjacent to 1n.q, Yn.-2,
coeYn--g and yn._po and that y, is adjacent w0 zy, 29, ..., 2.1, Since yn, To. 1,
Ye—1, Tty oo Y223, T1, Y Would form a cycle of length 2€ it follows that 2 yze_3 &
2. Arguing in a similar fashion, we get that z; is not adjacent Lo ye_4, Y2e-.5,
.oy Ye and by the € — pairing that gz 1., € Flort =0,1,...,n—204+1. Also
observe that ypzge. (€ 15 for L= 1,...,€ = 1 for otherwise yn, Tos- 1, Y26 ¢ -1,
Zg. 11, ¥n Would form a cyele of length 2€. By the €-pairing it lollows that x, is
adjacent Lo ye..1, Ye. 2, ..., 1. With all pairs exhausted, it follows that deg z; = €
and the deg y, = n+ 1 — £ and thus /1, C ¢ and the claim follows. =

So we may assume that neither 21, | nor ¥, 2 arc cdges of G.

Claim 4 If G is not bipancyclic and neither T1yn-1 nor ynx2 arc edges of G
then for some I € F,, FF C G, thus G is missing al most the 2n — 2 cycle.

Proof. By the ¢ — pairing, since neither zyy,-1 nor y, 29 are cdges of G, it
follows thatl y,zs-1 and zyyn.-e, 2 are edges of C.
Casc 1. Suppose £ < 242,

By the € — pairing exactly one of z1y¢..1 O ypzos..2 is an edge of G. In the
former case,

N\Yn-212%n 2 3Yn 13- TnlnZe. \Yr 1T
would form a cycle of length 2, while in the later casc,
YnZe- 1Y 1T¢. Y28 3T2¢.-2Yn
would form a cycle of length 2¢, a contradiction.

\ y nid 2n
Casc 2. Suppose 2= < €< 3.
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By the ¢ — pairing, the cdge ynZ2s-n is in G since the edge 1y is clearly
not in G. Also, by the € — pairing and the range of £ for this case, exactly one
of Z1y2¢_n and ynZar—n-1 is an edge of G. In the former case,

Z1Yn—£42Tn—243Un—2+3---TnYnT28—nY2£-nT)

would form a cycle of length 2¢, while in the later case,

YnT2U-nY2t—nZT2U-n+1.--Y3t—n-2T3¢-n—-1Yn
would form a cycle of length 2¢, a contradiction.
Case 3. Suppose 28l < ¢< n -2,

Suppose for some 1 <t <n—1—¢, that y,z24, € E. Since

T1Yn—£42Tn—£+43-- YnT2+Y2+¢T1

would form a cycle of length 2¢, it follows that y2,4,z) € 2. By the €~ pairing,
it follows that y,Zs, .42 is an edge of G, but this gives the 2¢ cycle

YnE2 Y24 - Lh 10 2

Sonsequently, for cach 1 <L < n—1—¢ it must be the case that ynzoy, € F,
and by the €— pairing, it follows that )yn.-e424¢ € /5. A symmetric argument
shows that for 2 <t € n =€,z 1yn... € I while ypze-, € F.

Suppose yoz,—1 € E. Since y, is adjacent to the vertices zo_j,Ts_3, ...T20—n
and y, is not adjacent Lo Tn.g41, there is a first place in this range, say r, such
that ypzy, € F and ynz,_1 € . By the ¢— pairing we get that 21y _p4r—1 € E.
But now

UnTrl¥Yr—1ZTr—1 . T1Yn—Lir-1Zn—L+r-Tn-1Yn

forms a cycle of length 2¢. Thus we may conclude that y,z,_; € % and that
Z1Yn—2 € E. Note since € < i — 2 and gy, is not adjacent to z,_¢ there is a first
place say r, such that ynz, € I and ynzr.-1,YnZr—2 € F. Arguing in a similar
fashion, it [ollows thal ypz,-o & /5.

For each necighbor of y,, say =, withn - €+2 <t <n -3, it follows that
x) is not a neighbor of .4, since

IiYn--£Tn-—-L+1--TYnTn.- Yt +1Z1

would form a cycle of length 2¢. Also note that z; is not adjacent to yn—;
and yn_g+1, both not excluded by the previous argument and that all of the
neighbors of y, lic in the range of ¢ above, with the exception of z; and z,,.
Hence we get

deg £y < n—2—(deg ¥, — 2)



which implies that
deg z; +deg yn < m,

a contradiction, thus leaving only the possibility o[ £ =n — 1.
Case 4. Suppose ¢ =n — 1.

Since £ =n — 1, it follows that both z,y3 and y,z,—2 € E. In addition, by
the ¢ — pairing exactly one of z¥; or y,zi—; is an edge of G. This results in
the desired conclusion, that for some F € F,,, FF C G, thus G is missing at most
the 2n — 2 cycle. =

Consequently, with all cases exhausted, the theorem follows. [

5 Hamiltonian graphs that are k-semibipancyclic

In this section we establish the following version of Theorem 2 for bipartite
graphs:

Theorem 8 Let G = (X,Y, E} be a bipartlile graph with X = {z1,..,zn}, Y =
{v1, -am}, n = 7, with hamillonian cycle z1,y1,%2, ..., Tn,Yn, T1. Suppose
deg )+ deg yn 2 n+ 1 — k for some inleger k salisfying 1 < k < n/2. Then

either G is k-semibipancyclic or l5;p s C G C Jnypy with2(r+5)=n+1—k.

Proof. Let G be a bipartite graph, with partite scts X and Y having
|X| = |Y| = n, and hamiltonian cycle

C2n =ILYLIZLY2L o TnyUn, Ty

Furthermore, assume that deg zy + deg yn > n+ 1 — k. Supposc that G is not
k-semibipancyclic. It follows that for some € satislying 4 < 2¢ < 2(n — k), the
graph G does not contain any cycles of length 2¢,2¢ + 2, ..., 2(¢ + k).

Case 1. Supposc that € < n/2 — k. (The casec £ > n/2 + 1 is handled by a
symretric argument.)

Since G does not contain any cycles of length 2¢,2¢ + 2, ..., 2(€ + k), it follows
that z; is not adjacent toy;, for £ < i < €+kand forn—0~k+2 <i<n—0+2.
Let A= {y1,...,ve-1}, B= {yesrrrsontm-e-k}, C = {yn-r12, s ¥nr }, A’ =
{:l:g,...,l‘gu.k_‘}, B = {zu,,.“],...,zn..l} and C' = {:Bz, ~--1-73l+k—-l}- Note
that all adjacencies of zy arc in AU I3 U C with the exception of y,.

Let a, b, and ¢ be the number of adjacencics of z; in A, 3, and C, respectively.
Let yi,, ¥ig, -0 ¥i, With 2 < 4 < i3 < ... < i3 < €—1 be the adjacencies of
z; in A. 1t follows that ynZi, +e-1, YnTiz4+2~1, -, YnZi,+¢~1 are not cdges of G
for otherwise a cycle of length 2¢ would result. Furthermore, for ¢t = 1,2, ..., k,
we see that ynzi,4e-14¢ is not an edge of G since a cycle of length 2(¢ + ¢t)
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would result. Observe that these a + k nonadjacencies of y, are all in A’
Similarly, the b adjacencies of z; in B force b 4 k nonadjacencies of y,, in B’.
Finally, suppose that yi,,%i,,...%i, Withn —€+3<i)1 <ia <..<i<n-1
are the adjacencies of z; in C. It follows thal ynzs_(n-i,) is not an edge
of G since 1, Y1,Z2, Y21 To—(n—i;)» ¥n, Tny» Yn—~11 -1 iy, T1 Would form a cycle
of length 2¢. Similarly, ynZe—_(n-iz)s --» YnTe—(n—ic_,) ANd YnTe_(n—i,) are not
edges of G for again a 2¢ - cycle would result. Additionally, for L = 1,2,...,k,
we see that ynTs_(n—i)+¢ is NOL an edge of G since a cycle of length 2(¢ + ¢)
would result. Note that these are ¢ + k nonadjacencies of y, in C’. Now the
degzy =a+b+c+1,and degyn < n—(a+k+b+k+c+k —m), where
m is the cardinality of the interscction of A’ and C’. Note that B’ does not
intersect either A’ or C’. Since IA' nC" =l+k-2)—-(-1)+1=k, we

have that degyn, <n—(a+k+b+k+c+k—k)=n~(degz, — 1+ 2k), so
that degz) + degyn, < (n+ 1) — 2k, which is a contradiction since k > 1.

Case 2. Supposc niscven and €=n/2 -t for 0 £ ¢ < k/2 - 1. (The casc
k/2-1<t <k -1ishandled by a symmetric argument.)

Since G does not contain any cycles of length 2¢,2¢ + 2, ..., 2(2 + k), it [ol-
lows that z; is not adjacent L0 yn 2. ¢, oo Yns24ee1. Lot A = {y1, .., Yny2-1-1},
C = {yns24t42s-¥n-1h A" = {vnj20, . Vn_24k-2} and C’' = {32 , ..,
Yn/2—t+k—2)- Note that all of -the adjacencics of z; are in AU C with the
exception of y,. Arguing as belore, since ¢ is not k-semibipancyclic, contain-
ing no cycles of length 2¢,2¢ 4 2, ...,2(¢ + k), the a adjacencies of z; in A force
a + k nonadjacencies of y, in A’. Likewise, the ¢ adjacencies of z; in C force
c+ k nonadjacencies of ¥, in C’. Note that if the adjacencies of z; in A are not
consecutive, this forces another previously uncounted nonadjacency of y,,. TFor
example, if T1y:4) € I and z,3 € F, and y; is not the last adjacency of z; in
A then it is clear that y, is adjacent Lo neither x5 nor =i, ¢41.

Define Aa(A¢) 1o be 1l the adjacencies of =, in A (respectively C) are
not consecutive on the hamiltonian cycle and 0 otherwisc. Now the degz; =
a+c+1, and as above, degy,, <Sn—-(a+k+c+k+Ap+ Ac —m), where m
is the cardinality of the intersection of A’ and C'. Since |[A'NC'| = (n/2 -t +
k=1)-(n/2—-t)+ 1=k, we have that degyn, <Sn—(a+c+k+As+Ac) =
(n+1)—(degz1+k+ A4+ Ac). Sodegz+degy, <n+1~k—(Aps+Ac),
which is a contradiction unless Ay = Ac =0 and degvy +degv, =n41—-k.

Hence, we may assume the adjacencics of z; in A and C are consccutive
vertices of Y on the hamiltonian cycle and further that the adjacencices of y,, are
conscecutive vertices of X on the hamiltonian cycle. Without loss of generality
we can assume that degzy, > (n+ 1 — k)/2 and, that degy, < (n+1 - k)/2.
Suppose z; has no adjacenies in C, that is that ¢ = 0. Also assume that =, is
adjacent to the vertices ¥y, ...,7a in A. Thus, G contains cven cycles of length
4,6,...,2a as well as 2n —2a + 2, ...,2n. I the degzy > (n+ 1 — k)/2, then
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it follows that G is missing at most k consecutive even cycle lengths, and thus
it would follow that G is k — semibipancyclic. Hence, we may assume that
degz; = (n+ 1 ~ k)/2 and, consequently, degy, = (n+ 1 — k)/2, and that
G is missing at most even cycles of length n + 1 — k through n + 1 + k. Since
n 2 7, it follows that degyn, > 3. If y, is adjacent to z,_;, then a cycle of
length n + 1 + k results, and G would be k- semibipancyclic. Thus it must
be the case that y, is adjacent to z,,z;,z,,za, ..., and z,. Clearly it follows
then that Ina) € G C Jn,q,1 since any additional edge in the bipartite graph G
between a vertex in ym, i, ¥1,...,ZTa,Ya aNd @ Vertex in Zop1,Yasi, o Yne1,Zn
would give a cycle in the rangen+1—-kton+1+k.

A similar argument results if the only adjacency of z; in A is y. If y, is
adjacent to z; then a cycle of length nn 4 1 — k results and it would follow that
G is k — semibipancyclic. Again, it would be the casc that It €CG C Jniay-
Thus we may assume that a > 2 and that ¢ > 1.

Let z; be adjacent to the vertices y1,...,9, in A and yn_1,...,n—c in C.
Il y» is adjacent to z3 then even cycles of length 4,6, ...,2(a + ¢) as well as
2n—2(a+c+1)4+4, ..., 2n occur in G. Thus, as above, the only even cycle lenglhs
that arc possibly not in G aren+1—k, n+1—k+2, .., and n+ 1+ k. It follows
that 2¢ =n —2L = n+ 1 — k, which implics that k — 1 = 2¢, but this contradicts
the assumption that L < k/2 — 1. Conscquently, ¥, cannol be adjacent to z,
thus it must be the case that yy, is adjacent 1o 21, Zn, Tn-1, ...Tn_gs1. Hence we
have cycles of even lengths between 2re—~ (n+1 — k) +4 = n+k + 3 and 2n and
this case is complete if ¢ < k/2 -1 orift =k/2—1and degz) > (n+1 —k)/2.
So we can assume that ¢ = k/2 — 1 and degz; = degyn = (n+ 1 — k)/2. Note
this implies, that since n is even, that k must be odd.

Thus it follows that G is missing preciscly k + 1 cven cycle lengths. Now
consider the adjacencies of y,. Since deg y, = deg z, it follows that either
Yn is adjacent to x,_», which yiclds an n + k + 1—cycle or y, is adjacent to
T2,Z3, ..., Z(n—1-k)/2, Which implies that G contains I, ,, with r = (n—1—k)/2
and s = 1. If z; has adjacencies Lo both A and C then it is easy Lo sec that the
graph would necessarily contain cycles whose lengths are between n —k +1 and
n + k + 1. This completes the proof of this case.

Casec 3. Suppose nis odd and £ = |n/2} —tfor 0< L < k/2— 1. (Again,
the case k/2 ~ 1 <t < k -1 is handled by a symmetric argument.)

Since Cyy, ..., Coerxy € G, it follows that z; is not adjacent to
Yins2y 6 "'1.7/ln/'2_| it 1.
Let A= {y1,uyns2)-c-rh € = {Wns2pei2r - tna b A = {Zpns2)-r s
Tp_gi-2pk} and C’ = {z,, 1 Zyns2) - t-11-k}. Note that all adjacencics of z, are

in AUC with the exception of y,. Further il the adjacencies of z; in A are not
consceutive, then, as before, this forces another previously uncounted nonadja-
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cency of y,. Define A4(Ac) to be 1 if the adjacencies of vy in A (respectively
in C) are not consecutive on the hamiltonian cycle, and 0 otherwise.

Let a be the number of adjacencies of z; in A and let ¢ be the number
of adjacencies of z; in C. Then, as above, degx) = a+c+ 1 and degy, <
n—(a+k+c+k+ A5+ A —m), where m is the cardinality of the intersection
of A and C’. Since [A'NC'|=(|n/2) -t -1+k)-(|n/2}-t)+ 1=k, we
conclude degy, < n—(e+k+c+k—k+A,+Ac) =n—-(at+ctk+Ap+Ac) =
n—(degzi —1+k+As+Ac). Sodegz) +degy, < (n+1-k)-(As+A¢),
which is a contradiction unless Ay =0 = Ac and degz) +degy, =n+1—k.

The remainder of the proof of Case 3 is identical to that of Case 2. ®m
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