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Abstract

X-proper edge colourings of bipartite graphs are defined. These
colourings arise in timetables where rooms have to be assigned to
courses. The objective is to minimize the number of different rooms
in which each course must be taught. An optimum assignment
is represented by a k-optimum edge colouring of a bipartite graph.
Some necessary conditions for a k-optimum colouring are obtained,
in terms of forbidden subgraphs. An algorithm based on removing
these forbidden subgraphs to obtain improved colourings is described.

1 Introduction

Many kinds of timetabling problems can be formulated in terms of graphs.
Both edge colourings of graphs (see Dempster [1]) and node colourings (see
Welsh (3] and Wood [5]) have been used in solving these problems.

We consider a timetabling problem where there are n courses (subjects)
which may require different numbers of teaching hours. There are m
timeslots each of which represents a unit of time (e.g. 1 hour) in which
courses can be taught. A timetable consists of an assignment of courses to
the timeslots. Such an assignment can be represented by a bipartite graph.

For example, consider the graph shown in Figure 1. The courses are
represented by the nodes Cj, C2, C3 and the timeslots by the nodes T
and T,. In this timetable all three courses are taught in timeslot T}, and
similarly in timeslot T5.
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Lemma 1 The minimum number of colours in an X -proper edge colouring
of G is
A(X) = max d(z),

the mazimum valency of nodes in X.

In this paper we will follow the usual graph-theoretic terminology found,
for example, in Harary (2]. In particular a walk may have repeated nodes

and edges, while a path has no repeated nodes.

2 Efficient X-proper edge colourings

Definition 2 An X-proper edge colouring £ of G is called efficient if it
has A(X) colours and cg(Y) = |Y|, i.e. the edges incident with any node
in Y have only one colour.

In terms of our initial problem of assigning rooms, if the bipartite graph
G has an efficient colouring, then rooms can be assigned to courses in such a
way that each course meets in only one room. In seeking to minimize cg(Y)
for an edge colouring £, we are seeking to find the “best” way to assign
rooms in the timetable, i.e. we wish to minimize the number of different
rooms in which each course is taught.

Certain families of bipartite graphs always have efficient X-proper edge
colourings. For example, complete bipartite graphs can always be coloured
efficiently, simply by colouring all edges incident with each node in biparti-
tion Y with the same colour. Also acyclic graphs have efficient colourings.
The following result can be proved by induction.

Theorem 1 Let G be a bipartite graph with bipartition (X,Y). If G is
acyclic, then G has an efficient X -proper edge colouring with A(X) colours.

Not all bipartite graphs have efficient X-proper edge colourings. It can
easily be verified that the circuit on six nodes and the 3-cube, shown in
Figure 2, do not have efficient colourings.

For clarity, we will often draw the bipartite graph embedded in the plane
where the o denotes a node in X, and the e denotes a node in Y. Thus
different colours must be represented at nodes labelled o. X-proper edge
colourings with A(X) colours giving the minimum value of c£(Y) for the
circuit on six nodes and the 3-cube are shown in Figure 2.

The problem of deciding whether a bipartite graph has an efficient X-
proper edge colouring can be reduced to a problem of node colourings as
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follows. Let G be a bipartite graph with bipartition (X,Y) representing
some timetable. We define a new graph G’ with node set V(G’) = Y such
that y1y2 € E(G’) if and only if there is a node = € X such that yz € E(G)
and zyz € E(G). It can easily be verified that G has an efficient X-proper
edge colouring with £ = A(X) colours if and only if G’ is k-node colourable.
The colours used to colour the nodes of G’ will correspond to the colours
assigned to the edges incident with these nodes in the X-proper colouring
of G.

For the graphs shown in Figure 2, the corresponding graphs G’ will be
the complete graphs, K3 and K, which are not 2-node colourable nor 3-
node colourable, respectively. Thus the analogy with node colourings shows
that the graphs in Figure 2 do not have efficient X-proper colourings.

The problem of determining whether a graph is k-node colourable is
known to be VP-hard. We suspect that the problem of deciding whether a
bipartite graph has an efficient X-proper colouring is also N P-hard. How-
ever, proving this is not the aim of this paper. If a polynomial time
algorithm is found for deciding whether a bipartite graph has an efficient
X-proper colouring, this would also solve the problem of determining the
chromatic number of a large family of graphs (those that can be obtained
from bipartite graphs as described above) in polynomial time.

For problems of this complexity it is useful to have “approximate” or
heuristic techniques for solving practical problems. Such techniques do not
always yield the best solutions but can be executed in polynomial time.

Notice that in the 3-cube of Figure 2, if 4 colours are available we can
colour the edges to obtain a lower value cg(Y) = 4. However, in many
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practical situations the number of colours (corresponding to the number of
rooms for the timetable problem) is predetermined, and it is not possible
to reduce cg(Y') simply by increasing this number.

In the next section we look at the minimization of cg(Y") when the num-
ber of colours is fixed. At each step of the recolouring process we maintain
an X-proper edge colouring. Unfortunately, it is not possible to carry out
a recolouring of nodes of the reduced graph G’ that corresponds to this
recolouring of edges of G. A colouring of the nodes of G’ that is not proper
will not correspond to any X-proper colouring of the edges of G. A proper
node-colouring of G’ will (as described earlier) correspond to an efficient
edge-colouring of G. In some sense, the reduced graph G’ cannot carry
enough ‘information’ to represent the intermediate states in G of X-proper
colourings that are not efficient.

3 k-optimum colourings and bi-alternating sub-
graphs
Definition 3 An X-proper edge colouring of G is called k-optimum, if it

has the minimum value of cg(Y), for all X-proper edge colourings with k
colours, k > A(X).

The following lemma is obvious.

Lemma 2 Let G be a bipartite graph with bipartition (X,Y), and let £ be
an X -proper k-edge colouring of G. If £ is efficient, then £ is k-optimum.

The graphs in Figure 2 show a 2-optimum colouring of the circuit on
six nodes, and a 3-optimum colouring of the 3-cube, respectively.

Definition 4 Let a and b be two colours in an edge colouring of G. A
bi-alternating walk with colours a and b is a walk in which the edges are
coloured abaabbaabb....

Thus, in a bi-alternating walk, the first two edges are coloured differ-
ently, and then the colours alternate after a single repetition.

Example 1 In Figure 3, zoyoz1y1Z2y2Z3Y1T4Y4T5Y2T6Y1 is a bi-alternating
walk. The sequence of colours is abaabbaabb.....

In Figure 4, Zoyo%1¥122Y223Y121Y0L4YaTsY1TeY2 is a bi-alternating walk.
The sequence of colours is abaabbaabb.....

52



o Yo )
Figure 3:
£e
b a
a b a a b b
o 9 o—
To 0 T Y €2 Y2 T3
b b a
a a
® ol
Tq Ya s

Figure 4:

53



The initial edge of a bi-alternating walk plays an important role in the
following definitions. Although it would seem that a simpler definition of
a bi-alternating walk is possible without our initial edge, it would then be
more difficult to distinguish between an open and a closed bi-alternating
walk because in a closed bi-alternating walk the initial edge zoyo and not
Jjust the node yp must be repeated.

Definition 5 The bi-alternating subgraph of G with colours a and b, and
with initial edge xgyo, is the union of all bi-alternating walks with colours
a and b, and with initial edge zoyo.

An open bi-alternating walk is a bi-alternating walk in which the initial
edge zoyo is not repeated.

A closed bi-alternating walk is a bi-alternating walk in which the initial
edge zoyg is repeated.

The bi-alternating walks in Example 1 are both open. Figures 5 and 6
show examples of closed bi-alternating walks with initial edge zoyo.
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Figure 5:

Definition 6 A closed bi-alternating subgraph of G is a bi-alternating
subgraph with initial edge zoyo, which contains as a subgraph, a closed
bi-alternating walk with initial edge zqyo.

An open bi-alternating subgraph of G is a bi-alternating subgraph which
is not closed.
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Thus in an open bi-alternating subgraph there is no bi-alternating walk
that begins and ends with the initial edge.

4 Necessary conditions for k-optimum colour-
ings

We will proceed to show that open bi-alternating subgraphs are “forbidden

subgraphs” for k-optimum colourings. This is because the colours in an

open bi-alternating subgraph (except for the initial edge) can be switched

to produce an improved colouring. We will explain why it is necessary to

use the entire bi-alternating subgraph and not only a path contained in it.
We will need the following lemmas.

Lemma 3 Let G be a bipartite graph with X -proper k-edge colouring €. If
S is an open bi-alternating subgraph with colours a and b, and with initial
edge Toyo, then every edge xyo (x # xo) in S has colour b.

Proof. Assume that there is an edge zyg of S, with colour a, T # xg.
Then, zyp belongs to some bi-alternating walk with initial edge zoyp. Since
zyo and yoxo have the same colour a, this walk can be extended to include
the edge yozo. Thus the initial edge is repeated. This contradicts the fact
that S is open. Hence, :oyp is the only edge of S incident with g that has
colour a.
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Lemma 4 Let G be a bipartite graph with X -proper k-edge colouring £. If
S is an open bi-alternating subgraph with colours a and b, and with initial
edge xoyo, then zoyo is the only edge of S incident with xo.

Proof. Assume that there is an edge of S, yzo (¥ # yo). Then yzo cannot
have colour a, since £ is an X-proper edge colouring and zgy already
has colour a. Therefore, yz¢ has colour . But yz( belongs to some bi-
alternating walk with initial edge zoyo. Since yxzg has colour b and zoyo
has colour a, this walk can be extended to include the edge zoyo. This
contradicts the fact that S is open. Hence, zoyo is the only edge of S
incident with zg.

|
The following theorem gives the desired necessary condition for a k-
optimum colouring.

Theorem 2 Let G be a bipartite graph with X -proper k-edge colouring .
If € is k-optimum then G has no open bi-alternating subgraph.

Proof. (We prove the contrapositive)

Suppose G has an open bi-alternating subgraph, say S, with colours a
and b, and with initial edge 2qyo. Then zoyo has colour a.

We can recolour the edges of S as follows. Leave zgyo coloured a. For
every other edge of S, replace colour a by colour b, or replace colour b by
colour a. We call this new colouring &’.

&’ is also an X-proper edge colouring of G because

1. By Lemma 4, zoyo is the only edge of S incident with zo, and therefore
the colours of the edges incident with zo remain unchanged.

2. Ifx € X, (z # o) isin S, then there is at most one edge incident with
x with colour a and at most one edge incident with = with colour b.
Interchanging the colours of these edges results in another X-proper
edge colouring of G.

Let zy be an edge of S, (y # yo). If zy has colour a, then every other
edge with colour a incident with y is also in S. (This is so because any
bi-alternating walk with the edge xy can be extended using such an edge.)
Therefore, replacing colour a with colour b cannot increase the number of
colours represented at y. Similarly, if zy has colour b, replacing colour b
with colour a cannot increase the number of colours represented at y.

Every edge with colour b incident with yo is in S. Since (by Lemma 3)
Zoyo is the only edge of S incident with yp with colour a, it is clear that
if we replace colour b with colour a at all the edges incident with yo and
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leave xgyo unchanged in colour, the number of colours represented at yg is
reduced by 1. Thus,
cer (Y) <cg (Y)

and £ is not k-optimum, |

It should be clear from the above proof that every edge (except the
initial edge) in the bi-alternating subgraph must have its colour switched
in order to reduce cg(Y). Consider an edge xy # zgyo in S. If zy is
changed in colour then any other edge of S incident with x must also be
changed in colour, otherwise the two edges incident with z will have the
same colour, contradicting the X-proper edge colouring of the graph. If
zy is changed in colour then any other edge of the same colour (before the
change) incident with y must also be changed in colour else the number of
colours represented at y may not be reduced. Since bi-alternating subgraphs
are connected, once we switch the colour of one edge (# zoyo) we must
switch the colour of all other such edges to reduce cg(Y).

Theorem 2 gives a necessary condition for an X-proper k-edge colouring
to be k-optimum. Using the following results, which involve arguments on
the lengths of bi-alternating cycles, we are able to find a family of bipartite
graphs for which the necessary condition of Theorem 2 is also sufficient for
a k-optimum edge colouring.

Definition 7 A bi-alternating cycle with initial edge zoyo in a bipartite
graph G, is a closed bi-alternating walk

ToYor1Y1 - - - YnToYo
in which no nodes except xg and yg are repeated.

Theorem 3 Every closed bi-alternating walk contains a bi-alternating cy-
cle.

Proof. We prove this result by induction on the number of nodes of the bi-
alternating walk. The closed bi-alternating walk with the smallest number
of nodes is the walk on 6 nodes shown if Figure 5. Clearly, this is itself a
bi-alternating cycle.

Assume that the result is true for bi-alternating walks on less than m
nodes (m > 6), and let W be a closed bi-alternating walk on m nodes.
Without loss of generality, we will assume W is minimal, in the sense that
the initial edge appears exactly twice, as the first and last edges. (Every
closed bi-alternating walk must contain such a minimal one.) Thus W is
either
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(2) zoyoxiy1i...ThYoTo Tn F To,

or
(b) zoyoTi¥1---Yn—1T0Y0
with colours a and b.

Suppose (a) that ypxp is the last edge. Then z,yo and yoxo both have
the same colour a. Then the walk

TnYoT1Y1 .. Yn—1Tnlo

has colours abaabb...bb and is a closed bi-alternating walk with initial edge
Z,yo on m — 1 nodes. By the induction hypothesis this walk (and hence W
itself) contains a bi-alternating cycle.

Now consider (b) the case where W is

ZoYoT1Y1 .- - Yn—1T0Y0

with colours a and b. W — {yg} is the walk ;¥ ... Zp_1¥n~1To Which must
contain a path (no repeated nodes)

N St J ’
P = z112%Ys - - - -1 Yp—1%0

where yi._; = yn_1. If the edges z}y; and y;z},, have the same colour for

i=1,..,k —1 (where 2} = 21, y; = ¥1, &), = Zo) then the cycle

! ! 1 s
ToYor1Y1T2Yz - . - Ty—1Yk—170

is a bi-alternating cycle with colours a and b and the inductive step is
proved. Otherwise assume that for some j (1 < j < k — 1), z7y} and
Y3741 have different colours, say a and b respectively.. Then these cannot
be consecutive edges along W. We will assume, without loss of generality,

that zy; precedes y;x’,, along W. Then there is a subwalk of W

TrlYrlrg1Yr41.--Ls—1YsLs
' M .
such that Iy,. =y, = y;, either ¥, = xj or x.41 = x}, and either ;1 = T,
Or Ts = ;4. Then the walk
Ls—1YrTr4+1Yr+1.--Ts—-1Ys

is a closed bi-alternating walk with colours b and a. Clearly this walk has
fewer nodes than W (since it must be missing either nodes z; or zo) and by
the induction hypothesis, this bi-alternating walk (and hence W) contains
a bi-alternating cycle. This completes the inductive step and the result
follows.
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Lemma 5 Let £ be an X-proper k-edge colouring of G. Then, any bi-
alternating cycle in G has length =2 (mod 4).

Proof.

Let C be the bi-alternating cycle xoyoz1y; . .. TryrZoyo With colours a
and b. The edges are coloured abaabb. .. bba.
At nodes y1,¥s, ..., yr—1 only colour a is represented.
At nodes y3,¥4, ..., yr only colour b is represented.
At yo both colours a and b are represented. Clearly, k is even and the
number of nodes of C'is 2(k+1) =2k +2=2 (mod 4).
|

Corollary 1 Every closed bi-alternating walk contains a cycle of length
=2 (mod 4).

Proof.

By Theorem 3 every closed bi-alternating walk contains a bi-alternating
cycle. By Lemma 5 this must have length =2 (mnod 4).
|

The following results give a family of bipartite graphs for which the
necessary condition in Theorem 2 is also sufficient for a k-optimum edge
colouring.

Theorem 4 Let G be a bipartite graph with bipartition (X,Y), and let G
have cycles only of length = 0 (mod 4). Also, let £ be an X -proper k-
edge colouring of G. If G has no open bi-alternating subgraph, then £ is
k-optimum.

Proof.

We will assume that G has no open bi-alternating subgraph.

Let zoyo and yox; be edges in G (29,21 € X,yo € Y such that zqye
and yox; have different colours, say a and b. Consider the bi-alternating
subgraph with colours a and b, and with initial edge zgy. Since G has no
cycles of length = 2 (mod 4), it follows from Corollary 1 that G has no
closed bi-alternating walk. The bi-alternating subgraph with initial edge
Toyo must, therefore, be open. This is a contradiction to the hypothesis
that G has no open bi-alternating subgraph. Hence, there cannot exist
edges xoyo and ypz, incident with a node yo € Y, which have two different
colours. £ must, therefore, be an efficient edge colouring of G and hence,
by Lemma 2 is k-optimum.

|

The following corollary is immediate from Theorem 4.
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Corollary 2 IfG is a bipartite graph with no cycles of length =2 (mod 4),
then a k-edge colouring € of G is k-optimum if and only if it has no open
bi-alternating subgraph.

5 Algorithm and Computer Implementation

The necessary condition given in Theorem 2, for k-optimum colourings,
can be used in a practical situation to show that a given assignment of
rooms in a timetable is not optimum. A computer search for open bi-
alternating subgraphs can be done, and if one is found, the subgraph can be
removed by switching colours of the edges of this subgraph (except for the
initial edge). This results in an improved colouring (assignment of rooms).
This technique will result in a bipartite graph with no open bi-alternating
subgraph. We state the algorithm more formally as follows.

Algorithm 1
Input: A bipartite graph G with an X-proper edge colouring.

Iteration:
Repeat

{ k=0 [A counter for the number of open bi-alternating
subgraph found.}
For each edge zoyo (with colour a)
For each colour b (# a)
{ Find the bi-alternating subgraph S with colours a and b and
initial edge zoyo.
If S is non-trivial and open
{ Interchange the colours a with b for all edges of S except

ToYo.
ke—k+1

}

}

Until k=0 [i.e. Stop when all the edges are searched with no open
bi-alternating subgraph being found.|



Output: Final X-proper edge colouring.

The necessary condition of Theorem 2 is not sufficient for a k-optimum
colouring and the above algorithm may not produce a k-optimum colouring.
The graph with colouring shown in Figure 7 (a) has no open bi-alternating
subgraph but this colouring is not 2-optimum. A 2-optimum colouring is
shown in Figure 7 (b). This shows that there are small examples for which
the algorithm will not yield an optimal colouring.

b b b b
o . o o— . o
a a a a
b a a b
b b a a
O L O O & O
a a b b
(a) ()
Figure 7:

Our technique of searching for bi-alternating subgraphs will have com-
plexity of O(n®) where n is the number of nodes of the graph. (See West
(4] for complexity of alternating path algorithms, for example.) By using
appropriate data structures, more specific to bipartite graphs, it might be
possible to obtain lower bounds than this. To perform the search for a
bi-alternating subgraph with initial edge zoyg, a breadth first search can
be performed. Successive steps will yield sets of nodes in the subgraphs
at distances on more than in the previous step. If the initial edge zoyo is
repeated at any step, the search can be terminated because it will yield a
closed bi-alternating subgraph.

The algorithm based on removing bi-alternating subgraphs has been
implemented in a computer program used to generate timetables for the
Faculty of Agriculture and Natural Science at the University of the West
Indies. We will not discuss here the programming details which are mostly
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routine. In a typical example there were 187 courses, 39 rooms and 50
timeslots. Even for timetables of this size the searching for bi-alternating
subgraphs is rapid enough for the technique to be used in an interactive
manner. We think it is best to use the technique in an interactive man-
ner since it gives the user a choice of either removing or not removing the
bi-alternating subgraph found. In most timetables there are many consid-
erations of which reducing the number of rooms for each course is only one
of these. Using the algorithm in an interactive mode allows the flexibility
of taking other considerations into account. Our program will display, for
example, the following.

Timeslot 5 BL38H

Rooms 114 113
Timeslot 4 M12B BL38H
Timeslot 6 M12B BL38H

Here the course BL38H is taught in timeslot 5 in room 114, and in
timeslots 4 and 6 in room 113. The user can then prompt the computer to
make an interchange of rooms, in which case the courses M12B and BL38H
will interchange rooms in timeslots 4 and 6, but BL38H will remain in the

same room (114) in timeslot 5. This results in an improvement for course
BL38H as shown below.

Timeslot 5 BL38H

Rooms 114 113

Timeslot 4 BL38H MI12B

Timeslot 6 BL38H MI12B

Notice here that the course BL38H in timeslot 5 corresponds to the

initial edge of a bi-alternating subgraph, illustrating the usefulness of the
initial edge in our definition of a bi-alternating subgraph.

Although this study of bi-alternating subgraphs was motivated by
timetabling problems, it is quite possible that they will have applications
in other problems of an operational research character.
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