Scheduling with Taboo Search on Parallel
Architectures

Malek RAHOUAL' Rachid SAAD?

! LaMI, Université d’Evry Val d’Essonne, 91000 Evry - France.
Email: mrahoual@lami.univ-evry.fr

? Laboratoire d’Informatique Fondamentale et Appliquée
Université de Boumerdés, 35000 Algérie
Email: rachid_saad2003@yahoo.com

Abstract. Scheduling static tasks on parallel architectures is a basic problem
arising in the design of parallel algorithms. This NP-complete problem has been
widely investigated in the literature and remains one of the most challenging
questions in the field. Among the resolution methods for this type of problems,
the taboo search technique is of particular interest. Based on this technique, two
algorithms are proposed and tested on a sample of instances in order to be
compared experimentally with other well known algorithms. The results clearly
indicate good overall performances of our algorithms. Next, some NP-
completeness results are established showing that this problem is intractable for
approximation, even for some restricted cases bearing a clear relation to the
instances treated experimentally in this work.

Key-Words. Scheduling, Taboo search, NP-compiete, parallelization.

1. Introduction

Responding to an ever-increasing demand of computing power, parallelism
[8][23][27] appears over the years, as a realistic and promising solution in the design
of computer systems. However, such a computing power is bought at a price.

For one thing, scheduling concurrent processes on multiprocessor architectures
(which is our main concern in this paper) is difficult [25], that is NP-hard, except for a
few particular cases. In fact, most of the assisting tools for programming parallel
architectures [6][16][26] compel the user to define by himself his own mapping [26]
by means of specific primitives, which is not an easy task. Should the program be
executed on another configuration of the interconnection network, it would have to be
rewritten, which questions the portability of the programs and highligts the
importance of achieving an automatic schedule by some heuristic means.

There are two different approaches to scheduling, depending on the time when the

mapping decision is taken. While a static schedule determines mapping at compile
time, a dynamic schedule performs its mapping at execution. In both cases,

JCMCC 51 (2004), pp. 65-88

scheduling consists of assigning a processor and a start time to each task. It also
entails the verification of the precedence constraints. The assignment should
maximize the use of parallelism by loading the different processors as fairly and
equally as possible. Moreover, it should minimize the communication costs
[71[18][20] in the system.

Static assignment [3][18][26][27], dealt with in our present work, can be thought of as
a starting point for a dynamic assignment algorithm. It is used for real time and
graphic applications as well. Static assignments have many applications in scientific
computation and linear algebra, such as computing the product of two matrices or
solving linear systems of equations [22].

An instance of the static scheduling problem is describely by the following inputs,
whose full details will be given subsequently:

- the set of tasks or processes

- the processing time of each of the tasks
the precedence constraints to which these tasks are subjected
- the transfer times of outputs and how communication is taken into account
the topology of the architecture on which the application will run.

Our main tool for tackling this scheduling problem is the well known Taboo Search

(TS) method. TS is one of the many resolution methods for this type of problem. It is

a general iterative method in combinatorial optimization, which was introduced by

Glover [11][12] and extended later to a broader context. Taboo search is a2 meta-

heuristic which is well known for its ability to escape from local optima. Due to the

success of these methods as regards optimization problems, TS was the subject of

many works in the last decade. It has also been successfully used in combination with

other heuristics and methods for the scheduling problems [14], resources allocation

problems {1] and telecommunication problems [12] as well.

Our choice of this particular method from among the many other methods is

motivated by the following features of TS [12]:

- Utilization of a short term and a long term memory (the taboo list)

- Utilization of symbolic data. Just as is the case with genetic algorithms, TS is not
constrained by the type (integer or not) of the variables used.

- Minimal a priori information is necessary: TS requires only that some means is
available to evaluate the quality of a solution

- Introduction of diversification and intensification mechanisms [9]

Most of the algorithms proposed for the scheduling problem in the literature are
sequential [2][15]{17]{20]{24][26].

The aim of this work is to extend previous results by applying the taboo method to the
static scheduling problem. Our assumptions throughout are:

- The tasks are non-preemptive (no duplication is allowed)

- The architecture is that of a multiprocessor, shared memory structure [24].

The objective is to minimize the total makespan. To this end, two taboo algorithms
are designed, a sequential and a parallel one. The latter explores the space of solutions
in parallel. These search processes automatically and dynamically compute the search

parameters (referred to as strategies): the size of the taboo list and the maximum
number of iterations between two improvements of the solution.

The proposed parallel algorithm is independent of the architecture on which it is
executed. Moreover, no assumption is made on the structure of the application. The
implementation and the evaluation of the performance of our algorithm have shown
an almost linear speed-up together with good overall performances (in terms of the
quality of the solution and the execution time).

The second section of this paper is devoted to the presentation and formulation of the
problem under study. The third section presents two sequential taboo search
algorithms. As for the fourth section, it presents the parallel algorithm. The fifth
section presents the different experimental tests undertaken along with their analysis.
The sixth section provides a comparative study between the different algorithms
proposed. Last, but not least, we conclude with a study of the complexity of our
problem. We prove that the problem under investigation is intractable for
approximation even for the particular case when the “topology of the architecture” is
that of a complete graph with as many vertices as tasks (unlimited supply of
processors with all the possible links available). This latter result justifies in our view
the use of heuristic methods to deal with our problem.

2. Presentation and formulation of the scheduling problem

A computer processing is a sequence of elementary transformations of an initial
set of inputs. These transformations may be grouped to form a set of partial
processings referred to as tasks. Tasks are treated as entities by the system.

If one of those tasks outputs results to another one, it must precede it, which induces a
partial order relation on the set of tasks.

2.1 Notations and definitions

Gr : tasks graph; ¥7: set of vertices of G with |V7{=n; E7: set of arcs
of Gr

T, : denotes a task

& : duration of 7 (the time needed to execute 7; once it is started)

r : starting time of 7;

Yy : number of units exchanged or transferred between 7; and 7;

G, : graph representing the architecture; ¥, set of vertices
(processors) of G, with |V, |=m

E, : set of edges of G,

P, : denotes a processor

Cu : transfer time of one unit of information from P, to P, (distance
from P, to P, in weighted graph G,)

Crax : total execution time of the application

67

fu@)
Jip())

Proc_source

Num_task
Proc_dest
AS(P)
Ind

size_list_taboo
nbmax

normal_size_taboo
nb_locall
nb_local2
nbr_search_iter

large_size_taboo
tenure_step

S

S *

T

: completion time of 7.
: completion time for processor P;.
: source processor of the task being moved. It is the processor on

which the task was mapped before the move

: task concerned by the move

: target processor (or destination) of the move

: set of tasks currently mapped on processor P;

: position (or topological rank) of num_task in the new solution.

This position refers to a rank of num_task in AS(proc_dest)
after the move. ind can be computed by any topological sorting
algorithm

: size of the taboo list
: maximum number of iterations between two improvements of

the best solution s*

: normal or small size of the taboo list

: maximum number of iterations of the intensification phase

: number of iterations of the diversification phase

: number of iterations of the process of local intensification and

global diversification

. large tenure with which the diversification process is initialized
: incrementing step of tenure during diversification

: asolution

: best solution encountered between two improvements

: taboo list

2.2 The task model

The basic concept for representing a parallel algorithm is the precedence graph

of the tasks, where an elementary task is a set of instructions defined by its inputs,
outputs and its execution time. Transfer of outputs induces a precedence relation on
the set of tasks. A task receives its inputs from its immediate predecessors, performs
computations on them and outputs the results to its immediate successors.

Transfer of output from task 7; to task 7; takes some (non-negligible) time if the two
tasks are assigned to different processors. This communication cost depends on the
pumber of words transferred as well as on the distance between the processors
assigned to T; and T; [2][3]{5][7][18]).

An application is described by an oriented graph G/=(Vr, Er). This is a connected
circuit free graph, where:

- The set of vertices V' corresponds to the set of tasks (including a start task and an
end task). An arc from 7; to 7; means that 7} cannot start before 7; is completed.

- The value associated to 7, refers to the execution time ¢; of T,. The value associated
to an arc (7;,7;) indicates the number of units Y transferred from 7; to 7.

68

2.3 The architecture model

MIMD, which stands for Multiple Instruction Multiple Data, is a type of multi-
processor computer architecture, where each processor has its own built-in Data and
Program memory. In this model, each processor can execute different processes, and
communicates with the other processors by sending messages, the inter-processor
communication being asynchronous. The processors are connected by fixed links
provided by a network of a topology that could be either fixed (grid, tree,
hypercube...) or reconfigurable (Crossbar’s, Clos’, Benes’ network) [30].

The most powerful parallel machines presently on the computer market are essentially
of the distributed memory MIMD type, such as Cray T3D, Intel Paragon, IBM SP2 or
NEC Cenju.

The interesting point in this model lies in the fact that the networks of work-stations
(which are growing so pervasive nowadays) operate basically on the MIMD mode,
where communication occurs through the forwarding of messages (typically
controlled by PVM: Parallel Virtual Machine) on a local or interconnection network.
In fact, a network of work stations often consists of a hybrid architecture where a
combination of any amount of work-stations and multiprocessors (managing their
own their internal parallelism by a shared memory or by a bus or network device) are
connected in a local network.

The class of architectures of interest to us is one in which many identical processors
work in parallel, each of which is made of a control unit, & processing unit and a local
random access memory. These processors communicate by exchanging messages
through an interconnection network. This class of architectures is referred to as a
distributed memory MIMD [21][29][30]. A classical example is a network of
workstations communicating through an interconnection network. The latter
characterizes the communication facilities provided for the processors and has
therefore a crucial impact on the performances of the architecture.

The configuration of the system is described by a non oriented connected graph
Gp=(Vp,E,). The set of vertices ¥, corresponds to a set of processors. There is an edge
between two vertices if the two processors are physically connected. An edge)€ £,
is weighted by C,. The representation of these values by a |V,,|x| V, | matrix is
straightforward.

2.4 Formulation of the scheduling problem

To formulate our problem, we need one more definition. Let (7; , 7;) be an arc of
Gr. Let us say that a processor P, knows (7; , T;) at time ¢ if either P, has already
executed 7; or the output necessary to execute T, from 7; has already been transferred

to P, at time ¢. Now, we can state our static assignment problem as follows:

Given a set of tasks and a network G of processors, to schedule all the given tasks
in a minimum makespan, subject to the following constraints:

69

(1) The tasks are non pre-emptive

(2) A processor can be in either one of the following mutually exclusive states:
(a) Processing a task, (b) Idling, (c) Transfering outputs to another processor

(3) A processor P can execute a task 7; only if P knows all the arcs internally
incident to T; (that is, all arcs (7, T)))

(4) A processor can not communicate with more than one processor
simultaneously

(5) If T;is assigned to P, and T; is assigned to P, , the communication cost of

transfering 7; to 7j is: Y; * Cp, , Where Cy, is the distance from P, to Py, in the
weighted graph Gp .

The following example of a feasible schedule illustrates how communication is
taken into account in our type of schedule.

architecture Gp
Processors
A
P; Yp*C 1 T
T~ 7
P, o B*Cp L T
Ty ”
P,
T, T; R
Feasible schedule time

Fig. 1. Example of a feasible schedule for a particular instance

70

3. Application of the taboo method

This technique guides an iterative optimization process which, starting from an
initial solution, searches the best solution encountered in a complex solutions space
using local information to progress [11][14].

In our case, this local information consists of a triple (7}, P,r;) of the current solution
such that 7; is the task whose execution on processor P, starts at time r;, for all task 7;.

Given a function f to optimize, TS iteratively moves from one solution to another
until some specified condition is satisfied. Thus, every iteration of TS gives rise to an
elementary move denoted by move. In our case, a move may be viewed as an
elementary transformation operating on local information.

For every solution S, we define the neighborhood ¥(S) of S; to be the set of all the
solutions that can be reached from S, in a single move (that is, in one iteration of TS).
TS adopts a strategy of modifying V(S;) as search proceeds, thus giving rise to a new
set V'(S). To carry out this modification, TS uses special structures of memory (see

figure 2).

Taboo Search
Main components

/ \

Short term memory Aspiration Criterion
Avoiding cycles (taboo list) Backtracking
| 4
Medium term memory Long term memory
Intensifying search Diversifying search

Fig. 2. The main components of TS

Other ingredients are built in our algorithm to allow for search to either intensensify
or slacken in more or less promising regions. A diversification ingredient is also
provided to cover the most part of the search space. Both ingredients are addressed in
the forthcoming paragraphs.

7

3.1 Determination of the parameters of TS

3.1.1 Determination of an initial solution: a list_scheduling Algorithm

To start taboo search, we need to generate an initial solution. For this purpose, we
use a straightforward parallelization of the well known critical path method. In a first
step, we rank the tasks according to some order of priority which is specified in our
algorithm as the increasing order of their late start times, as if they were executed by a
single machine. Next, at any one given time, we use a sort of parallelization of the
well known list scheduling algorithm (which is a greedy algorithm) to schedule, at
any one given time, the tasks that are ready to be executed in parallel.

List_scheduling Algorithm
begin
Step1: - Ensl=0 /*the set of tasks that are ready to be
executed in parallel */
- Ens2= {tasks of the application} /*set of tasks
not assigned yet*/
- Initialisation and data entry;
- Determine the minimum (sequential) makespan of
the set of tasks
Step2: Determine the (sequential) late start time of each
task and order the tasks in the increasing order L
of their start times
Step3: while Ens2<0 Do
- Determine the tasks that are ready to be executed
in parallel;
- Add these tasks to Ensl ;
- While (Ensl<>@ and 3 available processors) DO
* Pick the task T, in Ensl with the highest
priority in the priority list L and Assign
T, to a processor,
* Update the state of the processors (a
processor p completes its current task T,
and becomes free at time: legth of T, +
start time of T)

* Ens2 : =Ens2-{ T, };
* Ensl : =Ensl-{ T, };
Done
Done
End

72

3.1.2 Determination of the neighborhood

The neighborhood ¥(s) of a solution s is defined via the transformation move

encoded as move=(proc_source, num_task, proc_destind).. A move consists of
transferring task num_task mapped on proc_source to proc_dest at position ind,
where ind is the topological rank of num_task in AS(proc_dest) (set of tasks
currently mapped on processor proc_dest).
The neighborhood ¥(s) describing all the feasible moves from s is too large in general
and the only way to determine the solution s’ minimizing the objective function on
V(s) is to explore the set ¥(s) entirely, which is too costly in terms of time and space.
In order to narrow down the set of solutions examined in a given iteration, we use the
so-called strategy of the candidate list: at any point in time, only a fraction of the
current ¥(s) is examined and those “candidates” of ¥(s) are carefully chosen. In view
of the importance of these strategies, efficient rules should be judiciously selected in
order to generate and evaluate the good candidates. A few definitions are necessary
before introducing our candidate list. At any point in time, let p be a processor and ¢
be a task mapped on p. Let us say that ¢ is a high level task in p if ¢ has no predecessor
among the tasks (currently) mapped on p. Now, given current solution s, our
candidate list is generated by all the feasible moves in the form move=(proc_source,
num_task, proc_dest,ind),where num_task is a high level task for proc_source. Moves
of this type are, intuitively, among the best moves we can hope for in a neighborhood
in a given iteration, and represent therefore the elements of our candidate list.

In order to avoid cycling, a memory of visited solutions is maintained, forming the so-
called taboo list. It has limited size and each of its elements represents a series of
attributes characterizing the solution.

The active taboo state is assigned to the attributes occurring in recently visited
solutions. The taboo solutions are those that either contain or share taboo attributes,
which prevents recently visited solutions from occurring in the neighborbood. For the
scheduling problem under consideration, every feasible solution is described by a set
of attributes whose attribute structure is (processor, task, position).

If a move move(P,T,P,ind) is applied to a solution s, all moves from 7; to P, are
forbidden in the next t iterations, which is supposed to prevent cycling, Parameter t is
then referred to as the taboo tenure.

A move is said to be taboo if it creates a solution having one attribute in common with
taboo list 7. Every time a move move(P, T, P, ind) is applied to a solution s, the
attribute (P, T, position,) is inserted in 7, where position, stands for the rank of 7; with
respect to P,. The aspiration criterion is an important element of the flexibility of
taboo search. The taboo state of a solution is not absolute and may be ignored subject
to some specified conditions referred to as aspiration criteria.

if a move produces the best solution found so far in terms of its cost, its taboo state is
ignored and the solution is accepted. This aspiration criterion is called “objective
aspiration”.

The so-called aspiration by default is activated when all the moves available in the
candidate list are taboo and not eligible for the aspiration by objective. This criterion
causes the first move to lose its taboo state. An aspiration function denoted by (4sp) is
defined practically on all the values of the objective function. When a solution s’ is

73

part of T and satisfies the aspiration (that is: f{s)< Asp(f(s))), the taboo state of this
solution is lifted and, as a result, s> besoms a candidate when the best neighbor of s is
selected. In general, Asp(f(s)) assumes the best value s* currently encountered.

Taboo search is stopped after a certain number nbmax of iterations between two
consecutive improvements of the best solution s* encountered.

Neighborhood determination algorithm:

begin
for (all P, of G,) do
- determine the lowest level min_niv of the tasks
assigned to P, ;
- for (all T, mapped on P, at level min_niv) do
for (all other processors P, of G,) do
for(all subscripts ind (topological rank)of P,) do
* Generate the tuple depl =(P, ,T, , P, , ind)
* if (feasible (depl)) /*tests the feasibility
of the solution generated by the move depl
then insert depl in the candidate list endif
done ;
done ; done ; done ;
end.

Algorithm Taboo_aspiration

Stepl : select solution s in S ; s* :=s ; k := 0;

Step2 : k:=k+1l; Generate a subset S* of solutions in V{(s)

Step3 : select a best solution j in S* such that
f(j)<=Asp(f(s)) or J &T; s:=j;

Stepd4 : if f(s)<f(s*) then s*:=s;

StepS : Update conditions for taboo and aspiration.
Step6 : if the halting condition is satisfied then
stop else go to Step 2.

END.

3.2 Intensification and diversification

The intensification strategy is based on the modification of the selection rules in order
to promote the attributes that proved good historically. De Werra and Hertz [9] define
the compromise to be held between intensification and diversification as: “an
intelligent search, which should not only explore the regions of good solutions
entirely but should also have an overall view of the search space and make sure that
no region has been ignored”. Diversification refers therefore to the set of ways in
which new regions are explored. Those mechanisms often consist of the modification
of the selection rules in order to introduce attributes rarely used otherwise. Those
attributes may be introduced either partially or totally or as a result of a penalization
of other solutions with more frequently used attributes. The time when diversification

74

takes place is also crucial, for instance when the search process is getting close to a
local optimum or after a given number of iterations. Taboo search can also utilize the
tenure of the taboo attributes as a diversification means: when the search slows down,
that tenure is increased.

In our case, we have chosen the strategy that uses the short-term memory. We have
also introduced the aspiration criteria (by default and by objective) designed to allow
for search to depart from local optima.

The proposed function passes through two steps. The first one corresponds to the
intensification process, which consists of applying the iterative process of TS with a
usual tenure for a maximum of nb_locall improvements of s*. A test is then carried
out to check whether progress in the current region has significantly slowed down
(that is, whether we are converging to a local optimum). If the test is positive, the
diversification step is triggered. This latter step is a recursive function allowing for
search to depart from the current region.

If after nb_iter iterations search has not detected a strong aspiration of s* and all the
moves of the list are not taboo (which accounts for the fact that the current large
tenures are not “aggressive” enough), then the tenure will be increased and the
number of iterations will be decreased. This recursive process will be stopped when a
strong aspiration is satisfied or all the moves of the neighborhood are taboo.

Algorithm diversif_intensif

BEGIN
Step 1: /*Initialization
- List_scheduling Algorithm(s) /*gene. initial solution
- 8* := 8§ ;
- £* := f(s);
- tenure:=normal_size_taboo /*Initial. taboo list
Step 2: /*iterative process of intensification and
diversification
for (i:=1 to nbr _search_iter) do
- /*intensification process
Taboo_intensif (tenure,nb locall);
- /* encounter of a local optimum (slow progression)
- /* initialization of a large tenure
large_tenure := large_size_taboo ;
- /*diversification process
nb_iter=nb_local2 ;
Taboo_diversif (large_tenure,nb_iter) ;
- /* getting taboo list tenure back to normal
tenure = normal_size_taboo ;
done
END

4. Parallelization of TS

Classification of the approaches to parallelization of TS can be done in many
ways, depending on the criteria taken into account, e.g., the number of initial
solutions, the constant or variable feature of the search parameters such as the taboo

75

list size, tenure of the taboo attributes..., or the strategies of control and
communication.

Talbi, Hafidi and Geib [28] classify these approaches into two broad categories:
Domain decomposition and multiple task TS (figure 3).

Parallel TS
Domain multiple task
decomposition TS
Decomposition of Neighborhood Independent Cooperating
the search space decomposition (. J
—~
identical or different parameters

Fig. 3. Classification of the parallel TS algorithms

The implemented parallel algorithm, Parallel taboo, starts a parallel search of the
space of the solutions thanks to search processes that automatically and dynamically
compute the parameters of search (referred to as strategies): the size of the taboo list
size_taboo_list and the maximum number nbmax of iterations between two
consecutive improvements of s*.

The parallelization in the master/slave mode proposed, consists of creating different
parallel independent processes called parallel search paths. A path is an execution of
Taboo_aspiration with an initial solution sy and a strategy given by (size_list_taboo,
nbmax). One of the processor has the master status. It controls the other (slave)
processors by modifying dynamically the parameters that govern the search. This type
of parallelization has the advantage of minimizing the communication costs between
the different processes and is well suited to our distributed memory MIMD
architecture.

The master process executes an iterative program. At each iteration, P slave processes
are started. In the beginning of search, the master provides each slave with an initial
solution (generated by the implemented list heuristic) along with a strategy to
intensify the search in the different regions reached. When progress in the region
explored by, say, process i slows down or gets stuck, the master changes strategy s, to
diversify the search and it does so by using size_list_taboo with a larger tenure
(large_size_taboo) and by decreasing nbmax; to nb_local. The increase of tenure and
the decrease of the maximum number of iterations will continue until a strong
aspiration of the best solution found s;* will be satisfied.

At that time, the diversification phase is stopped and the intensification phase takes
over in the new region. A normal sized value is then again assigned to tenure

76

size_taboo_list; and the value nb_iter; is assigned to nbmax;. The initial solution of
iteration & is set to the best solution found in iteration - 1.

Each slave process executes Algorithm Taboo_aspiration with aspiration with the
initial solution and the strategy supplied by the parent process. Thus, Aigorithm
Taboo_aspiration is used as a diversification function for some strategies and as a
intensification function for others.

Convergence is ensured by the two types of tenure: the small and the normal one. The
master process has to run two slave processes, one with strategy
st;j=(small_tenure_taboo, nb_iter;) and the other with st;=(normal_tenure_taboo,
nb_itery).

Master process

begin

Step 1l: /* generation of the initial solution of the P slaves
algorithm _liste(s*) ;
£* = cout (s*) ;

Step 2: /* initialization of the solutions of the P slaves
s'=s', Vi=1..P

Step 3: /* initialization of search parameters (strategy) of
the P slaves
st, = (taille liste_tabou, , nbmax,) ;
st = (taille_liste_tabou, , nbmax) ;

;t = (taille_liste_tabou_ , nbmax,) ;
Step 4: for (i=1 to nb_ search_iter}do

Step 4.1: if (i #1) then
- Generate the strategies of theP slaves,

- Assign the new initial solutions:s, -s ‘Vi=1..p;
endif
Step 4.2: send the new solutions and the solutions to the slaves
Step 4.3: Recover the best solutions found by the slaves s,
Step 4.4: Determine the solution (s_min) of mlnlmum cost
(cout_min)among the solutlons (s,),
If (cout_m;n < £) then s’ =s_min;
f' =cout_min; endif
done
End.

S. Experimentation

In order to analyze the performances of our algorithms, a series of tests have been
performed on instances of our problem, some of which were drawn from literature
[51[7]{22][24]. The tests were carried out on a network of workstations (PC of type
Pentium 133 MHZ, 16.0 Mo RAM) operating under C/PVM. Due to the lack of
theoretical results regarding our problem, we had no choice but to set the parameters
of our algorithms empirically. They are indeed set as a result of our experiments. The
values selected are those for which a compromise has been observed between the
quality of the solution and the execution time of our algorithms.

77

Thus, a sample from our population of instances is used to (empirically) tune our
parameters before our taboo search is run.

5.1 Comparison between the heuristics

Our benchmark of instances is that of [22). The parameters used in
diversif_intensif are ; large_size_taboo =1, step_tenure = 5 , normal_size_taboo = 5.
For the sake of conciseness, the Y;’s are omitted. The values assumed by the
remaining parameters are as follows:

W KRB G el abloct? ireserh e
1 15;16 Hypercube of 8 2 2 3
2 15;14 Torus of 9 2 5 4
3 16:15 Complete of 4 2 7 5
4 16;15 Ring of 7 2 4 2
5 17;23 Grid of 9 2 4 4
6 31,30 Torus of 12 3 3 1
7 9:14 Grid of 9 2 2 4
8 13;24 Torus of 12 5 4 2
9 13;24 Hypercube of 4 2 4 3
10 11;12 Ring of 7 3 7 5
1t 17;21 Torus of 16 5 8 5
12 9;8 Complete of 6 3 8 3
13 11;10 Complete of 6 3 10 1
14 10;9 Complete of 6 2 5 2
15 9;14 Complete of 4 2 6 5
16 12;12 Complete of 4 2 6 2
17 8,7 Complete of 4 2 5 4

Table 1. The parameters of algorithm diversif_intensif

The implemented heuristics have been tested on a certain number of instances and
compared with the results obtained with genetic algorithms and simulated annealing
[24]. The results are displayed in table 2.

78

. dbersif ensif - Parallel tuboo Genetle Algorithm 24] _simlated annealing [24]

'1':; cost_sol Tou(s). ‘cost 50l Toyu(s) comtsol Topufs) costsol To(s)
1 9 027 8 020 7 068 7 0,81
2 17 1,64 20 5,70 20 0,62 20 1,67
3 30 0,43 30 0,36 31 0,61 32 0,57
4 30 0,16 30 0,78 32 0,63 35 1,18
5 35 1,97 94 0,05 41 0,82 58 2,94
6 10 1,86 10 11,34 11 2,05 11 22,08
T 14 0,16 16 0,07 15 0,47 15 0,75
8 3 0,82 33 1,69 31 0,72 33 2,50
9 33 0,27 36 0,02 33 0,66 33 0,64
0 9 1,31 14 0,37 11 0,58 13 0,99
1 e 14,17 17 11,17 19 0,95 21 6,76

Table 2. The results obtained from the different heuristics

Comparison between the sequential and the parallel version of Taboo on one side and
between either the genetic algorithms or simulated annealing on the other side, show
that the best results (both in terms of the quality of the solution and the execution
time) are those of Algorithm diversif_intensif. For most of our tests:

- Parallel_taboo yields better costs than those of the genetic algorithms and
simulated annealing. Its execution time is better than that of simulated annealing
and is close to that of genetic algorithms.

- The genetic algorithm gives better results than simulated annealing as far as the
quality of the solution is concerned.

With these tests, we note the significant effect of topology and the inter-processors

communication costs on the total makespan of our scheduling problem.

Moreover, communication time between tasks also has a considerable effect on the

total makespan of the application. For instance, Instance 11 executed on the torus of

16 is the benchmark having given the largest execution times (Tcpu and Tcpu

Parallel_taboo) as compared with the other benchmarks.

We can conclude that the results depend on the nature of the precedence constraints

and the inter-tasks communications. Indeed, whenever the communication costs were

small, we have noticed that the tasks were fairly spread on the different processors. In
all the other cases, the tasks are often executed on a limited number of processors.

In view of the diversity of settings in which our algorithms most favorably stood the
comparison with other heuristics, we can safely conclude that our ingredients of
diversification and intensification, along with the idea of tuning the appropriate
parameters by sampling, were pertinent and explain to a large extent the good
performances of our algorithms. Although these observations should not be
considered as a proof of the good behavior of our algorithms, they do provide some

79

statistical support to our assertion that the ingredients involved in our algorithm are
pertinent indeed.

The next two paragraphs provide additional support to our conclusion.

5.3 Comparison with instances whose optimal solutions are known

We have run our algorithms on a few instances of small size (the number of tasks
ranges from 9 to 12) whose optimal solutions were found in [5][7][22]. Our results are
listed in table 3 below. We notice that:

- diversif intensif finds the optimum for all these instances
- parallel_taboo finds the optimum for some of these instances. For other
instances, small magnitude deviations from optimum are observed.

K diversif intenslf - Parallel taboo - = Known
Instances. . cost sol . Topu() costsol T, (s) solution
12 6 0,49 8 053 6
13 14 0,49 16 0,60 14
3 30 0,38 30 0,36 30
14 15 0,16 17 0,70 15
15 14 0,21 15 0,22 14

16 9 0,16 12 0,69
17 8 0,05 8 0,18 8

Table 3. The results obtained on instances with known optimal solutions

5.4 Tests on random graphs

Some tests were performed on different instances whose precedence graphs were
randomly generated on many architectures (complete networks, rings, torus), in order
to evaluate the effect of topology on the total makespan of our scheduling problem.
The number of tasks is set to a multiple of 10 and increases uniformly from one
generated instance to another.

80

- - Instances . = “cost.sol
Gr thh|Vr{ L Gp divmlfiatmslf divm(flatensy'

10 Hypercube of 8 0,49
20 Ring of 5 10 1,59
30 Torus of 12 13 3,68
10 Complete of 6 7 0,38
20 Complete of 6 8 0,87
30 Complete of 2 16 0,71
30 Complete of 4 11 1,37
30 Complete of 6 10 1,70
30 Complete of 8 10 2,04
30 Hypercube of 8 11 17,41
30 Ring of 5 11 1,42
30 Torus of 12 13 3,68

Table 4. Quality and execution time of algorithm diversif_intensif
for the different random instances

- The execution time of the taboo search algorithm diversif intensif increases as a
function of the size of the precedence graph (number of tasks) and the number of the
processors of the architecture.

- Increasing the number of processors of the target architecture would allow to
improve the cost of the solution as it would also lead to an increase of the response
time of the Taboo algorithm.

- The chosen topology has a considerable impact on the cost of the solution found, as
well as on the response time of the taboo search algorithm.

6. NP-completeness results

This section deals with the hardness issues. The problem of deciding whether it is
possible to schedule on a given network of processors Gp a given set of tasks
endowed with a given precedence relation Gr within a given time bound t is denoted
here by SC(G7, G,). The related optimization problem is denoted by SC(GGp) (or
simply SC if the instance (G, Gp) is understood). In a first result, we establish the
NP-completeness of SC(Gr,G,¢) for some restricted cases bearing on either the
architecture or the precedence relation, thus shedding some light on how difficult our
problem is in general. Next, we investigate the case when the graph of the precedence
constraints has constant depth, from which we conclude that SC admits no polynomial
approximation scheme unless P=NP. It should be emphasized that the restricted
versions of SC established as NP-complete in this section all have a clear connection
to the instances treated experimentally in this work.

81

6.1 NP-completeness results

SC is easily seen to be NP-hard. 1t is in fact NP-hard for all architectures, provided
that the number of processors is large enough. To see this, consider the following
reduction from the 3-partition problem. Let a,,a,,...,a, be an instance of 3-Partition.
For all g; associate a path C; of length a; representing a chain of g, tasks each with a
unit of execution time. The collection of these n independent paths constitutes a
directed acyclic graph Gr. We assume unit communication time and execution time.
Consider Gp to be any graph on n/3 vertices. Then, clearly, aj,a;,...,a, admits a 3-
partition if and only if the so constructed instance of SC can be scheduled within time
=3*Qal/n) fori=l..n.

Based on this reduction, we can also prove that the restricted case of SC when Gris a
rooted tree and unit execution and unit communication time is assumed is also NP-
hard, at the expense of complicating the proof.

6.2 Hardness of SC as regards Approximation

The aim of this subsection is to establish the NP-completeness of SC(GrGp¢)
when t is constant. Let G be any graph of order »n, where # is a multiple of 3. Denote
by H the directed acyclic graph depicted in figure 4. Assume all tasks of H and all
communication to be of unit length. Then H has the following property: it can be
scheduled within time <6 if and only if it is executed by three processors inducing a
path of length two in the corresponding architecture. The “only if” part of the
assertion is clear. Now, the “if “ part. Let P;, P,, P; be three processors such that
P1P,P; is a chain of length 2 in G,. H is made of an upper, a middle and a lower path
of respective lengths 5, 5 and 6 as indicated in the figure. Processor P, executes the
upper path of H in time 6 including a communication time with P, ending at +=2.
Similarly, P, executes the middle path of # in time 6 including a communication
time with P; that ends at +=3. All those communications take a unit time because both
the distances between P, and P, and between P, and P; are 1 in G, Thus, P; executes
the lower path of T of length 6 within 6 units of time, as it has no communication to
do and its fifth task is ready to start at time /=4. Now, construct the graph G such that
Gy is the (vertex-disjoint) union of »/3 independent copies of H. Then, from the
preceding remark, SC(Gr,G) admits a schedule within time 6 if and only if G admits a
partition into paths of length two, which is known to be an NP-complete problem.

O—O—0O—0O

O— 0O O—0
O—0O

Fig. 4. The component H

Hence, the following theorem and its coroliary:

82

Theorem: SC(G1,Gp,6) is NP-complete.

Corollary: SC admits no polynomial approximation ratio less than 7/6 unless P=NP
Thus, SC is hard for approximation, in the sense that no polynomial approximation
scheme can be found for it unless P=NP. In the remaining part of this section, we are
oing to prove that this result still holds true when G=K /r/, the complete graph on
T vertices, where T is the set of tasks. This particular case is important in its own
right because to suppose that G=K/r/ is tantamount to saying that we have an
unlimited supply of processors and an unlimited supply of links between them.
For the purpose of the proof, we define 3-SA7" to be the restricted version of 3-S4T in
which each variable appears at most three times. We admit the following lemma
whose proof is in [10].

Lemma: 3-SAT" is NP-complete.
Now, we can state the main result of this section.
Theorem: SC(Gr, K/r;,21) is NP-complete.

Proof: The reduction is from 3-SAT". As the number of processors is the same as the
number of tasks in our instance of SC(Gr, K/r/,21) to be constructed, we will
suppose throughout that we have an unlimited supply of (pairwise connected)
processors. Let f be a logical formula instance of 3—-SAT'. Let us label its literals by
XpX2...%n. Represent each literal x; by a component X; which is the directed graph
constructed as follows:

1. V(X)={a}uBuUX’ ; B is of cardinality 3 and its vertices are labeled

b;,b3,b;. X', has three vertices labeled x;, x_iand g

(Lx)eBX3); (baxeE(X;); and (b3,q)e E(X)) .
3. Forall 1<j<3, (a,b j)EEX)

This completes the description of the component X;. As a directed acyclic graph, X,
can be viewed as a set of tasks obeying the underlying precedence constraints.
Every task of X is defined to be of length 1. Task a is of length 2 and every task of B
is defined to be of length 3. Communication between any two tasks gives rise to an
overhead of 3 units of time. Notice that, if we consider .X: as a precedence relation on
tasks, then all its tasks can be scheduled within time =12 (which is optimal) but then

only one task at most from X' (that is, either x,, xior the “dummy” task g,) is
executed at time less than 12 and its execution time is then necessarily t=9. If the task
labeled x; is the one that is executed at time t=9 in an optimal schedule of X, we say

that x; is “ahead of schedule” and “has a lead of 3 units of time over x_,-".

Observe that any of x, and x_, can be made ahead of schedule in an optimal schedule
of X;. The figure below displays .X; along with an optimal schedule. In this schedule, x;

83

is ahead of schedule. The assignment of the tasks to the processors is omitted as it can
be guessed from the completion times (given from left to right in Figure 5).

(8,11,11)

9,12,12)

Xi Xi qi

Fig. 5. The component .X; and an optimal schedule Bold arcs denote a communication

Represent each clause C by the component Hc depicted in Figure 6. More formally,
Hc is the directed graph defined as follows:

1. V(H o)X{ejoqueufeluculetlucubyuD ; each of C, CLC\C'.Dy,D
has three vertices labeled €1,62,C3 (respectively
dicb.dd ¢1,ea. 350 ,e",c"sdhdb.dd) .

2. Forall 15js3, (echREHE), (€ EEHC), (€ j)eBHC)

3. For all 1</<3, (c'j,d)eE(Hc); (c" j,d})sE(HC) ; (c}.,c e E(HC).

4. Forall Iss3, (dhdpeEWHC) and (cjd) E(HC)

Define the length of all tasks of H- -{c}to be 3, the length of the task c to be 6 and the
communication cost between any pair of tasks scheduled on different processors to
be 3.

Moreover, for every clause c of f; if variable x; is the first (resp. second, third) variable
appearing in c, then join the vertex labeled x; in the component X; to the first (resp.
second, third) vertex of the subset C of H¢ by an arc and define the communication
time between any such pair of tasks to be 1.

This completes the description of our instance / of SC(GT,KITI,ZI) .

Before proceeding further with the proof, let us mention the following properties of

HC:

(i) As a set of tasks, the optimal makespan for H- is 21.

(ii) For any optimal schedule of H, all three tasks ¢)c;c; of C must be
completed at time 18

(iii) For any optimal schedule of H,, at least one task from C must be

completed at time 15. Moreover, such a task can be chosen to be any of
¢n,c¢3 . Such a task is said to be ahead of schedule in C, with a lead of 3
units of time.

The complete verification of these facts is left to the reader. However, for the sake of
illustration, an optimal schedule is described in our figure by the completion time of
each task of H., wherein we chose the middle task of C to be ahead of schedule.
Similarly, we could have chosen any task of C to be ahead of schedule with a similar
pattern of schedule.

Now, we claim that the so constructed instance / of SC(GT,qu],Zl) admits a

schedule of a makespan <21 if and only if f is satisfiable.

(21,21,21)

Fig. 6. The component He and an optimal schedule

Proof of our claim: Suppose first that f is satisfiable. Given a satisfying assignment

for £, let p be a function such that for all clause ¢, ¢(c) is a variable satisfying ¢ in the

given assignment. For all clause c, let us set g(c)=x, for a shorthand and consider the

task ¢t of C c H, to which x; is joined in the above construction. Now, we have the

following schedule of I;

1- For all x. independently and optimally schedule the component X, associated
to X, in such a way that task x. is “ahead of schedule” with a lead of 3 units
of time over the other tasks of X,

2- For all clause C independently and optimally schedule H. in such a way that
¢t is ahead of schedule in C.

Observe that this schedule is feasible because it takes at most three units of time for

X, to communicate with the other tasks (since every variable appears at most in three

clauses of £). This settles the “only if " part of the proof.

85

Now, the “if” part. Suppose that | can be scheduled within 21 units of time. For allx;,
set variable x; to “true” if task x, of X; is completed at time =9 (that is, if it is “ahead
of schedule in X;”). Set all other variable to “false”.

Now, a schedule of makespan 21 yields an optimal schedule for every component H.
From the property of Hc, every component He must contain a task ¢, of C such that ¢,
is ahead of schedule. Clearly, the variable x; joined to ¢, in H is necessarily ahead of
schedule in X, too, which means that it is true in our assignment and consequently,
every clause is satisfied.

From this, we conclude that SC admits no polynomial approximation ratio less than
22/21 unless P=NP; Hence the following corollary

Corollary: There is no polynomial approximation scheme for SC(GT,KlTl) unless
P=NP.

In view of the preceding results, we think that, in fact, SC can not be polynomially
approximated within a constant ratio but we are unable to prove it.

Conclusion

This work is about scheduling partially ordered tasks on a distributed MIMD
architecture, We have proven that the problem is NP-hard even for special cases of
interest to us. We also proved that the problem is hard for approximation in the sense
that it admits no polynomial approximation scheme unless P=NP. Thus, we were led
to adopt a more practical approach to the problem.

In our attempt to solve the problem heuristically, we have proposed two sequential
algorithms and a parallel version of taboo search.

The first algorithm represents the Taboo method in its classical form, whereas the
second integrates the intensification and diversification processes as special
ingredients to guide the search. The third one is a parallelization of the second.

The implemented parallel algorithm is general. Indeed, it is independent of the
architecture on which it executes. Moreover, no assumption is made as to the structure
of the application. Parallel_taboo is a synchronous algorithm in which one of the
processors is specified as a master dedicated to the task of providing the “slave”
processors with initial solutions and strategies. The slaves apply Taboo_aspiration
according to the strategies supplied by the master and send their results back to the
master who is entrusted with the task of selecting the best solution.

From our experimental results, we noticed that whenever the communication costs
were small, the tasks were fairly spread on the different processors. In all the other
cases, the tasks tended to be executed on a limited number of processors.

In order to evaluate the performances of our algorithms, we have compared our
results with those of [24]. On many instances, our results proved better than those of

86

simulated annealing and genetic algorithms. Our diversif intensif algorithm turned

out to be very efficient in terms of the quality of solution as compared with

Taboo_aspiration and parallel_taboo. In view of the diversity of settings in which our

tests were carried out, our results most convincingly (in statistical terms) indicate that

our strategies and the way they were implemented are effective.

On the other hand, parallel_taboo has linear speed-up, which accounts for the fact

that inter-processor communication costs are small with respect to the executions

times of the tasks.

As a perspective to our work:

- ahybridization [13] of this method

- astatistical analysis of the different experimental results [19]

- asensitivity analysis involving the different parameters of our algorithms

- Utilisation of dynamic programming-based techniques to explore large
neighborhoods [4].

Bibliography

[11 N. Afrati and E. Bampis, A.V. Fishkin, K. Jansen, C. Kenyon, Scheduling to Minimize
the Average Completion Time of Dedicated Tasks, Foundations of Software Technology
and Theoretical Computer Science, pages 454-464, 2000,

[21 A. K. Amoura, E. Bampis, C. Kenyon, Y. Manoussakis, Scheduling Independent
Multiprocessor Tasks, European Symposium on Algorithms, pages 1-12, 1997

[31 B. Andersosn, S. Baruah, J. Jonsson, Static-priority scheduling on multiprocessors, Tech.
Rep. UNC-CS TR0116, Department on Computer Science, University of North Carolina
at Chapel Hill, May 2001.

[4] E. Angel, E. Bampis, L. Grouves, A dynasearch neighborhood for the bicriteria travelling
salesman problem, In Multiple objective metaheuristics: MOMH, Nov. 4-5, Paris, 2002.

{51 P. Bouvry, Placement de taches sur ordinateurs paralléle 3 mémoire distribuée, PhD
Thesis, University of Grenoble, 1994 .

[6] Chandra, M. Adler, P. Shenoy, Deadline fair scheduling: Bridging the theory and
practice of proportion scheduling in muitiprocessor servers, In Proc. of the 7% IEEE
Real-Time Technology and applications Symposium, June 2001.

[7]1 J.Y. Colin, Probléme d’ordonnancement avec délais de communication : complexité et
algorithmes, Thése de doctorat, Université Paris VI. MASI 91.09 1991

{8] M. Cosnard, Y. Robert, Algorithmique paraliele : une étude de complexité, TSI . Volume
6, n° 2, 1987.

[91 A. De Werra, A. Hertz, Taboo search techniques: a tutorial and an application to neural
networks, OR Spektrum, Vol. 11, pp 131, 1989.

[10] M.R. Garey, J.S. Johnson, Computers and Intractability: a guide to the theory of NP
Completeness, Freeman and Co, 1979.

[11] F. Glover, Taboo Search - Part I, ORSA Journal of computing , 1(3):190-206, 1989.

[12] F. Glover, Taboo Search Fundamentals and Uses, Journal of heuristics, 1995.

[13] P. Greistorfer, Hybrid Genetic Taboo Search for a Cyclic Scheduling Problem, Meta-
heuristics advances and trends in local search paradigms for optimization, Kluwer
Academic Publishers, p. 213, 1999.

[14] A. Hertz, M. Widmer, La méthode TABOU appliquée aux problémes d’ordonnancement,
APPIL, vol. 29 n° 45, pp 353-378, 1995.

87

(13]

(16]
17}
(18]
[19]

[20]
[21]
[22]

[23]

[24]

[25]
[26]
27]
(28]

[29]
130]

W. Jakob, M. Georges-Schleuter, C. Blume, Application of genetic algorithms to task
planning and learning, Parallel problem solving from Nature PPSN’2, Amsterdam(North
Holland), p.291-300, 1992.

K. Jansen, L. Porkolab, Improved Approximation Schemes for Scheduling Unrelated
Parallel Machines, ACM Symposium on Theory of Computing, 1999.

K. Jansen, L. Porkolab, General Multiprocessor Task Scheduling: Approximate Solutions
in Linear Time, Workshop on Algorithms and Data Structures, pp 110-121, 1999.

Y.K. Kwok, I. Ahmad, Static scheduling algorithms for allocating directed task graphs to
multiprocessors, ACM Computing Surveys, Vol 31, n°4, pp 406-471, 1999.

Y.K. Kwok, I. Ahmad, Benchmarking and comparison of the task graph scheduling
algorithms, Journal of parallel and distributed computing, Volume 59, n°3, 381-422,
1999.

A. Munier, Approximation algorithms for scheduling trees with generai communication,
Journal Parallel Computing, 25 n°1, 41-48, 1999,

M. Norman, P. Thanish. Models of machines and computation for mapping in
multicomputers. ACM Computing Surveys, Septembre 1993.

C. Picouleau, Etude de problémes d’optimisation dans les systemes distribués, PhD
Thesis, University Paris VII, 1992.

A. Radulescu, C. Nicolescu, A.J.C. Van Gemund, P.P. Jonker, Mixed Task and data
parallel scheduling for distributed system, In CDROM proceedings of the 15
International Parallel and distributed Symposium, San Francisco, California, 39-41, 2001
M. Rahoual, J.C. Konig, Application de méta-heuristique au probléme d’ordonnancement
statique de processus sur architectures paralleles, Revue Calculateurs Parallgles, Vol 10
n° 6, ed HERMES 1998.

Srinivasan, J. Anderson, Optimal rate-based scheduling on multiprocessors, 34th Annual
ACM Symposium on Theory of computing, 2001.

E.G. Talbi, T. Muntean, Méthodes de placement statique des processus sur architectures
paralléles, TSI. Volume 10, n° §, 1991.

E-G. Talbi, Allocation de processus sur les architectures paralléles 2 mémoire
distribuées, PhD Thesis, Institut National polytechnique de Grenoble, 1993.

E. G. Talbi, Z. Hafidi, J-M. Geib, A parallel adaptive taboo search approach, Journal
Parallel Computing, volume 24, number 14, pp 2003-2019, 1998.

A-S. Tanenbaum. Modern Operating Systems. Prentice-Hall, 1992.

C-L.Wu, T-Y. Feug, Interconnection networks for parallel and distributed processing,
IEEE Computer Society Press, Washington, 1984.

88

