ON FINITE {2,5}-SEMIAFFINE LINEAR SPACES

V. FREZZA AND V. NAPOLITANO

ABSTRACT. In this paper finite {2,¢}-semiaffine linear spaces are
investigated. When ¢ = 5 their parameters are determined, and it is
also proved that there is a single finite {2, 5}-semiaffine linear space
on v = 20 points and with constant point degree 7.

1. INTRODUCTION

An interesting problem which has been intensively investigated in finite
geometry is to classify or to characterize finite linear spaces fulfilling an
arithmetic or a graphic condition on two or more of their parameters.

For instance, once that the fundamental theorem [de Bruijn-Erdés, [6]]
appeared, that is in a finite linear space the number b of lines is greater
than or equal to the number v of points, and the equality holds if and only
if the linear space is a (possibly degenerate) projective plane, a number of
papers have been devoted to the classification of finite linear spaces with
b—v=s,82>1, (cf for example [5, 10, 12, 14, 15, 16, 17)).

In 1955 G. Pickert [13] asked to characterize linear spaces in which for
each point-line pair (p,£) with p outside of £ the number n(p,£) of lines
containing p and missing £ is at most 1. For example projective planes and
affine planes fulfill such a property.

In 1962 Dembowski [7] gave a complete description of all such finite
linear spaces, which he proceeded to call (finite) semiaffine planes. As P.
Dembowski mentioned in his 1962 paper, N. Kuiper had about the same
time, and independently, proved the same result, that today is known as
the Kuiper-Dembowski theorem.

The Kuiper-Dembowski theorem was the starting point for the investi-
gations of finite linear spaces for particular choices of the set H consisting
of the numbers (p, £) for every point-line pair (p, £), with p outside of ¢,
of the linear space, (H-semiaffine linear spaces [1)).
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M. Oehler (1975) characterized what he called biaffine planes [11], which
are finite linear spaces with H = {1,2}. In the literature we can find a
number of papers devoted to the characterization of H-semiaffine linear
spaces, the interested reader is referred to [1] whose chapter IV is devoted
to this question and it contains also the list of references of most of the
papers devoted to the ” H-semiaffinity condition”.

In this paper finite {2,t}-semiaffine linear spaces are investigated and
they are classified when there are points of different degree. If each point
has constant degree n + 1 it is proved that if b # n% + n + 1 then there is
a finite number of finite {2, ¢}-semiaffine linear spaces.

Finally the parameters of a finite {2,5}-semiaffine linear space with
each point on a constant number n + 1 of lines are determined, proving
that n € {6,9,11, 14,21, 41, 50, 56, 116, 125, 209, 221, 246}.

Moreover it is proved that there is a single finite {2, 5}-semiaffine linear
space with constant point degree 7 on v = 20 points.

1.1. Definitions and preliminary results. A finite linear space on v
points and with b lines is a pair (P, L), where P is a finite set of v points
and £ is a family of b subsets (the lines) of P such that: any fwo points
are on a unique line, each line contains at least two points and there are at
least two lines.

The degree of a point p is the number [p] of lines on p and the length of
a line £ is its size |¢|.

Two lines £ and £ of a linear space are parallel if £ = €' or £N ¢ = ).

If (p, ) is a point-line pair with p ¢ ¢, then w(p,£) = [p] — |€| denotes
the number of lines passing through p and parallel to £.

We shall denote by £;, 2 < j < n+1, the family of lines of length j and
by b; its size.

The near-pencil on v points is the linear space on v points with a line
of length v — 1.

A (h,k)-cross, 3 < h < k, is the linear space on h + k — 1 points,
with a point of degree 2 on which there are two lines of length ~ and k,
respectively.

Let s and ¢ be non-negative integers with s < ¢, S5 is the linear space
with ¢ + 3 points and exactly one line of length ¢t — s + 2, while every other
line has two points.

A projective plane is a linear space such that any two lines meet in a
point, and every line has at least three points.

An affine plane is a linear space such that for every point-line pair (p, £),
with p ¢ ¢, the number of lines on p missing £ is 1.

Let (P,L) be an affine plane, and let £ be a line of (P, L), then the
parallel lines to £ partition P, so adding a new point oo to all the lines
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parallel to £, we obtain a new linear space (P*, L*), where

P* =PU {0}
L* = {L € L| L is not parallel to £}U{LU{oc0}|L € £ L is parallel to £},
called the affine plane (P, L) with a point at infinity.

If (P, £) is a finite linear space and X is a subset of P, such that P\ X
contains at least three non-collinear points, the linear space (P, £'), where

P =P\X

L'={e\{¢nX}|te Land |\ N X]|>2},
is called the complement of X in (P, L) [1].
The complement of a line in a projective plane is an affine plane.
A punctured (doubly-punctured) linear space (P, L) is the complement
of a point (two points) in (P, £).
A finite linear space which has the same parameters as the complement
of a set X in a projective plane = is called a pseudo-complement of X in =.

Let H be a finite set of non-negative integers and (P, £) be a finite
linear space, then
Definition 1.1. (P, £) is an H-semiaffine linear space if 7(p,£) € H
for any non-incident point-line pair (p, £).

An H-semiaffine linear space is said to be H-affine [1] if for any h € H
there exists a pair (p, £) with p ¢ £ such that n(p,£) = h.

Batten and Beutelspacher [1], consider designs as "known” objects, in
the sense that in classifying finite linear spaces if we have a design, then
we are done. So, since finite {s}-semiaffine linear spaces, with s > 1, are
precisely 2—((k + s)(k ~ 1) + 1,k, 1) block designs, throughout this paper
we will assume that (P, £) is a {2, s}-affine linear space.

Next we recall the Kuiper-Dembowski theorem and the results on finite

{2, s}-semiaffine linear spaces when s < 4.
Theorem 1.2 (Kuiper-Dembowski [7]). If (P, L) is a finite {0,1}-semiaf-
fine linear space, then it is one of the following:

(a) a near—pencil,

(b) a projective or an affine plane,

(c) a punctured projective plane,

(d) an affine plane with one point at infinity.

The order of a finite linear space (P, £) is the integer n such that n+1 =
mazpep|p].
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Theorem 1.3 (Beutelspacher and Meinhardt 1984 [3)). If (P, L) is a finite
{2, 3}-affine linear space of order n other than Sa3, then if n > 6 (P,L)
is the complement of a triangle in a projective plane of order n.

Theorem 1.4 (Durante and Napolitano 1997 [9], Beutelspacher and Metsch
1986 [4]). If (P, L) is a finite {2,4} -affine linear space of order n other than
S2,4, then n € {5,7,13}, moreover:

o ifn=>5 thenv=15,b=30, by =bs =15,
e if n = 7,thenv =233, b=>55, by = 33 and bg = 22
e if n =13, then v = 135, b = 183, byo = 135 and by2 = 45.

Note. When n = 5, there are exactly four non-isomorphic finite {2,4}-
semiaffine linear spaces. In fact, the situation is the same as symmet-
ric configuration 154 with missing two blocks added. Since, there exist
four symmetric configurations 154, (cf. [2], p. 37), the assertion follows.
Whereas when n = 7, 13 it is not known if there is a finite {2,4}-semiaffine
linear space.

1.2. Examples of finite {2,t}-semiaffine linear spaces. Clearly Sz,
is a finite {2, t}-semiaffine linear space, for every ¢ > 3.

Let II a finite projective plane and s,t two non-negative integers, a
subset X of points of I is of type (s,t) if each line of II meets X either in
s or t points, and there is a line meeting X in s points and a line meeting
X in t points.

Example 1.5. Let 7 be a projective plane of order 9, and let X be a set of
type {2,5} in m, then the complement of X in = is a finite {2, 5}-semiaffine
linear space. When 7 = PG(2,9), that is the desarguesian projective plane
of order nine, then it admits a partition into Baer subplanes, and the union
of two disjoint subplanes in = is a set of type {2,5} in =.

If = is the Hughes plane of order nine, then there is a set X of type
{2, 5} of size 26 which does not split into two Baer subplanes [8].

Since the projective desarguesian plane PG(2,q), with ¢ square, admits
a partition into Baer subplanes, then the previous example can be general-
ized, and so the complement of two disjoint Baer subplanes in a (desargue-
sian) projective plane of order n = (¢ — 2)2, (¢ 2 5), is a {2, t}-semiaffine
linear space of order n.

Notice that the Example 1.5 shows that a pseudo—complement of two
disjoint Baer subplanes may be not a complement.

Example 1.6. Let 7 be the punctured projective plane of order 4. Break-
ing up every line of length 4 into an affine plane of order 2 one obtains a
finite {2, 5}-semiaffine linear space of order 6, with v = 20 points, b = 46
lines, bz =30 and b5 = 16.
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In this paper we prove the following results.
Theorem 1.7. If (P, L) is a finite {s,t}-semiaffine linear space of order
n, (s > 1), then either (P, L) is the union of two disjoint lines of length t,
or (P, L) is the linear space S, or each point has constant degree.

Theorem 1.8. Let (P, L) be a finite {2,t}-affine linear space with constant
point degree n+1 and withb=n?+n+1+ z lines. Then 2 <t2 — 4t + 1.
Ifn>1/2(t-2)2+1 thenz<2t—7.

Theorem 1.9. If (P, L) is a finite {2,t}-affine linear space with constant
point degree n + 1 and with b =n? +n — 1 lines, then t < 4.

Theorem 1.10. Let (P, L) be a finite {2,t}-affine linear space with con-
stant point degree n+1 and with b = n?+n+1+z lines. If z # 0 then there
exist at most finitely many {2,t}-semiaffine linear spaces. When z = 0,
then either (P, L) is the complement of a set of type {2,t} in a projective
plane of order n, or n < (12 - 1)(12 +¢ - 2).

Theorem 1.11. Let (P, L) be a finite {2,5}~affine linear space of order n.
Then, either (P,L) is the linear space Sy 5 or each point has degree n + 1
and n € {6,9,11, 14,21, 41, 50, 56,116, 125, 209, 221, 246}. Moreover, when
n =6 and v = 20 the linear space described in Example 1.6 is the unique
{2, 5}-semiaffine linear space with such parameters.

2. FINITE {s,1}-SEMIAFFINE LINEAR SPACES

In this section (P, £) is a finite {s, t}-affine linear space, with s > 1.
Proposition 2.1. If there are two lines £ and £' such that P = LU ¢ then
8 =1 and (P, L) is the union of two disjoint lines of length t + 1.

PROOF. From s > 1 there follows that £N# = @. Thus s = 1, otherwise
let z be a point of £/, a line on z different from #' and parallel to £ contains
a point outside of U ¢'. O

In view of the previous proposition we may assume, from now on, that
given any two lines there is a point on neither of them.

Proposition 2.2. Given any two points there is a line through neither of
them.

PROOF. Let p and g be two points of (P, £). If every line of the linear
space pass through one of them, then each point outside of the line pq has
degree 2, contradicting the previous assumption. [

Proposition 2.8. Let (P, L) be a {s,t}-semiaffine linear space of order
n, then

(i) Ple{n+1~t+s,n+1}, for all pointspe P .
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(i) Yfe{n+1+s—2t,n+1—¢t,n+1—38} foralllinesle L.

PROOF. (i) Let p be a point of degree n + 1, and g be a point different
from p. Let £ be a line through neither of them, then from |¢| = [p] — 7 (p, £)
it follows that |¢| € {n + 1 —¢,n + 1 — s}. Thus by [g] = |[¢| + (g, ) the
assertion follows.

(ii) Let £ be a line and p be a point not on £. From |¢| = [p] — = (p, £)
and (i) the assertion follows. O
Proposition 2.4. There is no line of lengthn + 1+ s — 2t.

PROOF. Assume to the contrary that there is a line £ of length n+ 1 +
s—2t. Thusn > 2t — s+ 1. Let pg be a point of degree n + 1, then pg € £.
Moreover each point outside of £ has degree n + 1+ s — ¢.

Each line not through py has length n+1—t. Let m be a line not through
Do, then |m| # n+1+ s— 2t and there is a point y outside of £Um. Hence
[yl=n+1+s—tandso|m|=n+1-t.

All the lines on pg, but £, have the same length. Let h and h' two lines
on po different from £. Let p€ h\ {po} and p' € h'\ {po}- Since p,p' ¢ ¢,
one has [p] = [p'] = n+ 1+ s —t. Therefore counting v via the lines on p
and p', respectively, one gets |h| = |h'|.

Po is the unique point of degree n + 1. Let ¢ be a point of degree n + 1
different from pg. Then g € ¢, and each line different from ¢ has length
n + 1 —t. Counting v via the lines on ¢ one has

v=n+14+s—-2t+n(n-1t).
Counting v via the lines through a point not on £ gives
v=14+n+14+s-t)(n-1t).

Comparing these two values of v one obtains n = ¢ + 1, a contradiction.
So each point different from po has degreen +1—t + s.
Let h be a line passing through pop and different from £, and let p be a

point of £\ {po}.
Counting v via the lines through pg gives

v=n+1+38-2t+n(h| -1),
and counting v via the lines through p, we have
v=n+s-2+(n+1+s—-1t)(n-1t).

Comparing these two values of v, we obtain a contradiction since |h| €
{n+1+s—2t,n+1-1t}. Thus the assertion is proved. O

Hence

Proposition 2.5. Let (P, L) be a {s,t}-semiaffine linear space of order
n, then|fl € {n+1—-t,n+1~38} for all linesl € L.
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2.1. Classification of finite {s,t}—semiaffine linear spaces (with s >
1) and with non—constant point degree. In this section we are going
to show that for every s,t, 8 > 1, Ss; is the only {s,t}-semiaffine linear
space with non—constant point degree.

Proposition 2.6. If (P, L) is a {s,t}-semiaffine linear space of order n
with a point of degree n+1+s—t and with s > 1, then (P, L) is the linear
space Ss .

PROOF. Let gg be a point of degree n+ 1+ s —¢. Since there are points
of different degree then there are lines of both lengthn+1—tand n+1—s.

There is a single line of lengthn +1 — s.

Assume to the contrary that there are at least two lines £ and £’ of length
n+1— s. Then g is the unique point of degree n + 1 — ¢t + s, and all the
lines of lenght n + 1 — s pass through ¢p. Thus through each point different
from gg there pass one line of length n+1— s and = lines of length n+1 —¢,
and so each line passing through go has length n +1 —s.

Counting v via the lines on go and on a point of degree n + 1, respec-
tively, and comparing these two values of v we obtain s =0 or s = ¢, a
contradiction.

Thus there is a single line of length n + 1 — s. Let £ be such a line.

Then go € £ and no point of degree n + 1 is on £.

Let p be a point of degree n + 1, counting v via the lines on p gives

v=1+(n+1)(n—1).
Counting v via the lines through g gives
v=n+l-s+(n+s-t)(n—t).
Comparing these two values, we have
n=t+1.

Therefore the lines different from £ have length 2, and £ has length t +2—3s,
and so (P, L) is the linear space S;;. O

REMARK. Notice that Proposition 2.5 is true also when s = 0. However
the above Proposition 2.6 is not true when s = 0. In fact, the complement
of ¢ concurrent lines in a point p, less the point p, in a finite projective
plane of order n is a {0, t}-semiaffine linear space with non—constant point
degree different from S, .

It is not difficult to prove that a {0, t}-semiaffine linear space with non—
constant point degree is the pseudo-complement of ¢ concurrent lines in a
point p, less the point p, in a finite projective plane of order n.
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3. FINITE {2,t}-SEMIAFFINE LINEAR SPACES

Proposition 3.1. Let (P, £) be a {2,t}-semiaffine linear space with con-
stant point degree n+ 1. If h is a line of length n — 1, and M is the set of
lines different from h and parallel to h, then

(3.1) S l=2w-n+1).
teM
PROOF. The proof consists in counting incident point line pairs (p, £)
withZe M. 0O

Proposition 3.2. Let (P, L) be a {2,t}-semiaffine linear space with con-
stant point degree n + 1, and with b =n® +n+ 1+ 2 lines. If £ is a line of
length n — 1, then the number of lines different from £ and parallel to € is
2n+ 2.

PROOF. The assertion follows from b = n2 + n+ 1+ z and the fact that
£ meet (n — 1)n other lines. O

Let (P, £) be a {2, t}-semiaffine linear space with constant point degree
n+ 1, if p is a point, define

A, = the number of lines of length n — 1 through p

Ap = the number of lines of length n 4+ 1 — ¢ through p.
It is easy to show that the numbers A = A, and A = A, do not depend

on the point p. And since we are interested in {2,t}-affine linear spaces,
we have A >1and A > 1.

Counting in double way the point-line pairs (p, £), with p € £ and |[{| =
n+1—t, and |[¢| = n — 1 respectively, one obtains

VA and by_; = vA =v(n+1-—/\).

2 _p = ——
(3-2) b1t n+l1-—1t n—1 n—1

If (P,L) is a finite {2,t}-affine linear space with constant point degree
n+1, then A > 2. Otherwise, let A = 1, then from Equation (3.2) it follows
that

v n?—-(t-1n-1 t—-1
e A T L
and so
n<i,

contradicting the fact that n 4+ 1 — ¢ > 2, since each line has length at
least 2.
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Hence A > 2.
As a consequence of this property we have the following result.

Proposition 3.3. If (P, L) is a finite {2,t}-affine linear space with con-
stant point degree n + 1, then b > n% + n — 3.

PROOF. Since A > 2 there are two lines £ and #' of length n — 1 which
intersect in a point, so counting the lines meeting £ or ¢’ one has b >
n-22%+4n-2)+n+1=n2+n-3. O

Now we show that also A = 1 is not possible. Assume A = 1, then
the second of the two equations (3.2) becomes b,_; = nv_fl" and so from

v=n?-=n-1~(t—2)A=n?—-n+1-1t there follows

-1
b,._1=n2+1—t-t—
n—1

that is not possible.

Let (P, £) be a finite {2, t}-affine linear space with constant point degree
n+1, put b=n%+n+1+ 2, then a line £ of length n — 1 admits 2n + 2
parallel lines different from ¢, let u denote the number of lines of length
n — 1 parallel to £. Since v =n% —n — 1 — (t — 2)\, Equation (3.1) gives

2n? —dn -2t -2 A =u(n— 1)+ 2n+z—u)(n+1—1)

and so

(3.3) 2t -2 =2t -2 +u(t—2)—2(t —2)+ 2n+2n — 2.

There follows

(3.4) t — 2||zn + 2n — 2|
and
(3.5) u=2n—2,\+z-ﬁ$-_?"2—‘f

As a consequence we have the following result.
Proposition 3.4. If (P, L) is a finite {2,t}-affine linear space with con-
stant point degree n + 1 and b=n? +n — 1 lines then t < 4.

PROOF. In such a case z = —2, and so the assertion easily follows from
Equation (3.4). O

Using v =n® —n—1— (t — 2)\ we can write (3.2) in the following way
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(2 =3t+ 1)) — (t—2))2
n+1-—t

(36)  baprt=An+A(E-2)+

b

and

MN(t—-2)—(2t—5)\A~—2
n-—1 ’

(3.7) bpa=ni-A-n-(t—-2)A-1+

So
N(t—-2)—(2t—5)A1-2 + (2 =3t +1)A— (t—2))2
n—1 n+1l-t.

Let £ be a line of length n — 1, then £ meets (n — 1)(n — A) other lines, and
8o

b=n24+n-1+

(3.8)
u=by_1—(n-1)(n—-A)—1=2n—(t-1)A—-2+

At—2)—(2t-5)I1-2
n—1 )
By Equation (3.7) one obtains A < n — 2, hence
2<A<n-2.

From Equation (3.3) it follows that
zZ(n+1-1t)=20¢-3)n -2t -2)A—u(t -2)

and so

2t - 3)(t — 1) — (2A + u)(t — 2)

(3.9) z2=2(t-3)+ o

Clearly z # 2t — 6. Actually, if z = 2t — 6 then (2(t — 3)(t - 1) =
(2A+u)(¢ —2). Thus t = 4, and so 3 = 2A + u, a contradiction since A > 2.

Proposition 3.5. 2 <12 —4t+ 1.
Proof. From Equation (3.9) and A > 2 and n+ 1 —¢ > 2 it follows that
2 -3)(t—1)—4(t-2)
2

z2<2(t-3)+
and so the assertion easily follows. 0O

Proposition 3.6. Ifn > 3(t—2)>+1 thenz<2t—T.
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PROOF.If2(t-3)(t—1)—-2(t —2)A—u(t—2) <Othen 2 <2t—-7. If
A +u)(t—2)<2(t—3)(t—1),then 22 +u < 2t —5,and so A < ¢t — 3.
Equation (3.8) gives
A2(t —2) — (2t — 5)A — 2

u+22=2n—(t-3HA -2+ —=

and so
A2 (t—2)— (2t —5)A—2
n-1 ’

%—5>Mm—(t—YA—2+
There follows, being A < t — 3,
N(t—2)-(2t-5)X1—-2
n—1 ’
and so, since from A > 2 there follows A2(t —2) — (2t —5)A—2 > 0, we have
2A-5>2n—(t—3)2-2

2t-5>2n—-(t—-3)%2~-2+

and so 1
n<§u—m2+L a

Consider now the case t = 3. From Equation (3.9) it follows that z =
_u+2X

n—-2"
zn, and so comparing with Equation (3.8) one has

and so z < —1. Moreover Equation (3.5) becomes u = 2z — 2\ —

A2—-2-2

n—1

It follows that z = —3 and A = n — 2, and so (P, L) is the pseudo-
complement of a triangle in a finite projective plane of order n (see [3]).
Thus by the results of Beutelspacher and Meinhardt {3], for n > 6 (P, L)
is the complement of a triangle in a projective plane of order n.

22—zn=2n-2+

3.0.1. The case A = 2. In this section we consider the case A = 2. This case
is interesting since when A = 2 the number v of points of the linear spaces
is maximum and since some interesting examples, such as the complement
of two disjoint Baer subplanes in a finite projective plane, fulfill A = 2.
Proposition 3.7. Let (P, £) be a finite {2,t}-semiaffine linear space with
constant point degree n + 1, with ezactly two lines of length n+1 — t on
each point and with b =n? +n+ 1+ z lines. Then z = -2 + 1(‘:;%4"51
and eithern =212 -9t +9 aend z = ~1, orn < (t — 2)%.

PROOF. Let A = 2 then Equation (3.8) gives u = 2n — 2¢, and so
Equation (3.9) becomes
2(t%2 — 5t + 5)

(3.10) 2=-2+ = —
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and the assertion easily follows. 0O

From the previous proposition it follows that n = (¢t — 2)? if, and only
if, z = 0, and so (P,L) is the pseudo—-complement of two disjoint Baer
subplanes in a projective plane of order n.

When t = 4, then z = —1 n = 5 and there are exactly four such finite
linear spaces, (see the note after Theorem 1.4).

3.1. On the finiteness of finite {2,¢}-semiaffine linear spaces, t > 5.
Since the classification of finite H—semiaffine linear spaces with constant
point degree is a difficult task, an interesting question in the investigations
on them is to get information about their number for a given H, (see for
example [3]).

In this section we study such question for {2, t}-semiaffine linear spaces.

Since the case t < 4 has been already studied in [9, 3], we consider the
cases t > 5.

We start by recalling the following two useful theorems.

Theorem 3.8 (Beutelspacher and Metsch, [4]). Suppose (P, L) is a finite
{2, t}-affine linear space with constant point degree n+1, withb < n?+n+1
and n > (8% — 1)(t? + t — 2). Then (P,L) is embeddable into a projective
plane of order n.
Theorem 3.9 (Beutelspacher and Metsch, [4]). Suppose (P, L) is a finite
{2,t}-affine linear space with constant point degree n + 1 and more than
n? +n+1 lines. Then 2n < (2 — 1)(t2 +1t — 2) + 2t(t — 1)(¢t — 3).

Thus, Theorem 3.8 shows that if b > n% + n + 1 then there is a finite
number of such linear spaces.

Next we study the cases b< n2+n+ 1.

In view of Propositions 3.3 and 3.4 we have to study the cases

be{n?+n-3,n2+n—-2,n+n,n2+n+1}.
From Theorem 3.8 it follows that in order to prove the finiteness of such

linear spaces one has to prove that they are not embeddable in a finite
projective plane of order n.

If b = n? + n + 1, by Theorem 3.8 either (P, £) is the complement® of
a set of type {2,t} in a finite projective plane of order n, or n < ?12(::2 -
1)+t -2).

From now on we assume that (P, £) is a finite {2, ¢}-affine linear space

embeddable in a finite projective plane m, with b < n%2 +n. So (P,L) is
obtained from 7, by deleting a set of points X containing at least a line.

1For example the complement of two disjoint Baer subplanes in a projective plane of
square order n.
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b=n2+n-3. In such a case X contains four lines. We have three pos-
sibilities, the four lines are concurrent, only three of them are concurrent,
they form a quadrangle. In every case (P, £) should have a line of length
neithern —lnorn+1—1%.

b=n?+n —2. Also in this case, since X contains three lines, (P, £)
would have lines of length different fromn —1and n+1 —¢.

b = n? + n. Each line of length n — 1 has 2n — 1 parallel lines, which
form two parallel classes. Let £ an £' two lines of length n — 1 meeting in
a point p, they have three common parallel lines and at most two of these
parallel lines are in a parallel class of either £ or #'. These three lines form
neither a triangle nor are pairwise parallel. Let II, the parallel class of £
containing exactly one of these parallel, and u the number of lines of length
n — 1in I, then

n? —n-1-(t-2A=un-1)+(n—-u)(n+1-1),
and so
=2+t -2DA=1+(t - 2)u,
a contradiction since ¢ > 5.

Thus, summarizing these results and using Proposition 3.3, there follows
Proposition 3.10. Let (P,L) be a finite {2,t}-affine linear space with
constant point degree n+1 and with b= n?+n+1+z lines. If z # 0 there
are at most finitely many {2,t}-semiaffine linear spaces. When z = 0,
either (P, L) is the complement of a set of type {2,t} in a finite projective
plane of order n, orn < J(t2 - 1)(t2 +t-2) — 1

Finally,

Proposition 3.11. Let (P,L) be a finite {2,t}-affine linear space with
constant point degree n + 1 and with b < n® +n + 1 lines. Then,
b=n’+n-3=t-22n—4,
b=n?+n—-2=t-2n-3,
b=n’+n=>t-2n+1,
b=n2+n+1=t-22n.

4. FINITE {2, 5}-AFFINE LINEAR SPACES WITH CONSTANT POINT
DEGREE

In this section (P, L) is a finite {2, 5}-affine linear space with constant
point degree n + 1.

So each line has length either n —4orn—1, v = n2 —n — 1 — 3),
b>n?+n -3, and

(2 11X — 322
(4.1) bp-q4 = — —/\(n+3)+—nT,
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vA _v(n+1-)) 3NZ—51—2

— = n? —1—
(4.2) bp—1 = p— p— n+n—1-A(n+3)+ —
Hence
(4.3) b=n’+n-1+F,
with
(4.4) f_ll)\-3,\2+3,\2—5/\—2
’ T n-—-4 n—1
and
(4.5) A= é(2n+3¥\/_&),
where
(4.6) A=4(1-f)n? +4(1+5f)n— 16f + 41.

From Propositions 3.3, 3.4 and 3.6, and from Equations (4.4) and (4.6)
it follows that
-2< f<5,and f#0.

Consider first the cases f > 2.

[f=2b=n?+n+1,A=—4n®+44n+9
Then A > 0 gives n < 11. It is easy to see that only the cases n = 9
and A = 5 or A = 2 are possible.
When n = 9 and A = 2 the pseudo-complement of two disjoint Baer
subplanes in a projective plane of order 9 is an example of such a linear
space, (see Example 1.5).

f=3b=n’+n+2,A=-8n2+64n-7

Since A is a square it follows that n = 7.
But n = 7 gives A = 4 and so by Equation (4.1) it follows a contradiction.

[f=4b=n?+n+3,A=—120% +84n — 23]
Also this case is not possible.

f=5b=n%+n+4,A=—16n%+ 104n — 39|
In this case A is non-negative if n = 6. And so A= 2,3.
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The linear space of Example 1.6 has the parameters of the previous case
for A =3.

We are going to show that it is the only one with these parameters.

In order to prove this fact we need the notion of dual of a linear space.

REMARK. If (P, £) is a finite linear space in which any two lines of max-
imal length meet in a point, and on each point there are at least two lines
of maximal length, then the pair (P*, £*), with

P* = { lines of maximal length in (P, £)}

L'=7P
is a linear space called the dual of (P, £).

Proposition 4.1. The linear space of Ezample 1.6 is the only finite {2,5}-
semiaffi-ne linear space of order n =6, with v =20, b= 46 and ) = 3.

PROOF. Let (P, £) be a finite {2, 5}~semiaffine linear space with n = 6
A=3v=20and b=n?+n+4=46. Then any two lines of length n — 1
intersect in a point. So the dual of (P, £), that is the linear space whose
points are the lines of length 5 and whose lines are points of (P, £), is the
affine plane of order 4.

Thus each point of £ is the vertex of a configuration of four points and
six lines of length 2, that is the affine plane of order 2. There are exactly
five of such configurations, since two meeting lines of length 5 get the same
five configurations. Let us denote by C;, i = 1,...,5, these affine planes of
order 2, then they contain all the lines of length 2 of (P, £).

Consider the linear space whose points are those of (P, L), whose lines
are the lines of length 5 of (P, L) and the ” five lines” C;, then it is a
linear space of order 5, with 20 points and 21 lines, and the lines C; are a
parallel class, so it is the punctured projective plane of order 4. It follows
that (P, £) is obtained from the punctured projective plane of order 4 by
deforming the lines of the parallel class in five affine planes of order 2. So
the assertion follows. O

Consider now the cases f € {—2,—1,1}. In such cases Equation (4.6)
always gives A > 0.

In view of the results of the previous section we have n < 336.

Hence, running a computer programme, Equations (4.5) and (4.6) give
the following possibilities

|f=-2b=n’+n—3,n=4a]

f=-1Lb=n?+n-2n¢ {21,246}
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f=1,b=n?+n,n € {11,14, 50,56, 116, 125, 209, 221}

Hence

Proposition 4.2. If (P, L) is a finite {2,5}-affine linear space of order
n, then

be{n*+n-3,n2+n-2,n*+n,n’+n+1,n%+n+4},
and

n € {6,9,11, 14, 21,41, 50, 56, 116, 125, 209, 221, 246} .

We end with an appendix containing the list of possible parameter cases
for a {2, 5}-affine linear space.

Parameter cases of finite {2,5}—affine linear spaces

n = 6: v =23, by =23, bs =23
v =20, by = 30, bs = 16
n=9: v =65, bs = 26, bg =65

v = 56, bs = 56, bg = 35
n=11: v = 88, by = 88, byg = 44
n=14: v = 175, byp = 35, b1z =175
n = 21: v = 368, b7 = 368, by = 92
n=41: v = 1528, b3y = 1528, by = 191
n = 50: v = 2380, byg = 1190, byg = 1360
n = 56: v = 3040, bs2 = 760, bss = 2432
n=116: v =13.195, bj12 = 5655, b115 = 7917
n=125: v =15.400, bya; = 4200, by24 = 11.550
n=209: v =43.225, bygs = 17.290, bogg = 26.600
n=221: v =48433, byy = 13.838, by = 35.224
n=246: v =159.675, bago = 48.825, bags = 11.935.

REMARK. A very short computer run shows that for the parameter case
n = 6, v = 23, there exists exactly one {2, 5}-semiaffine linear space. Its
automorphism group is the cyclic group Coas.
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The authors do not know, whether the structures considered in Propo-
sition 4.2 exist in the cases different from n = 6, 9.
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