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Abstract

Combinatorial designs is a powerful tool because of their beauti-
ful combinatorial structure that can help in many applications, such
as coding theory or cryptography. A conference key distribution sys-
tem is a scheme to design a conference key, and then to distribute
this key to only participants attending the conference in order to
communicate with each other securely. In this paper we present an
efficient conference key distribution system using difference families.
Using techniques for creating the conference key and for performing
authentication based on identification information, the communica-
tion protocol is designed. Applying the known results on difference
families we obtain many new infinite classes of conference key distri-
bution systems. In special classes of difference families the message
overhead is O(vv/tv), where v is the number of participants and ¢
is the number of the k-elements subsets that consist the difference
family. The security of the presented protocol, which is an impor-
tant problem in the construction of a secure system, is proved to
be as computationally difficult to calculate as factoring and discrete
logarithms.

Key words and phrases: Difference family, incidence matrix, confer-
ence key distribution system, algorithm.

1 Introduction

A cryptosystem can help users to establish secure communication channel
in open environment. Diffie and Hellman [5] introduced the concept of
public key cryptography, which is referred to as a key distribution system
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(KDS). A conference key distribution system (CKDS) [2] is a scheme to
generate a common secret key called conference key, and to distribute this
key to all participants attending the conference in order to communicate
with each other securely.

Authentication [14] is the most important of the security services, be-
cause all other security services depend upon it. It is the mean of gaining
confidence that people or things are who or what they claim to be. An
important CKDS considering authentication was proposed by Shamir in
[16], where he utilizes an ID-based public key system. User’s public key
contains user’s name and address. Fiat and Shamir [6] suggested an authen-
tication mechanism employing discrete logarithm. Okamoto [12] proposed
an identity-based key distribution system. Ingemarsson, Tang and Wang
[7] presented a CKDS on a ring topology network. Koyama and Ohta [10]
proposed identity-based CKDS (ICKDS) on ring, compete graph and star
topology networks. Shimbo and Kawamura [17] analyzed several CKDSs.

In the case that an ICKDS is performed, a common conference key
should be created in order for all participants of the conference to commu-
nicate mutually. Assume that each user (participant) has his own key and
the common conference key should be created using these keys. One pos-
sible way to generate the public key is by requiring each user to send their
own key to every other user. Then the computation of the public key can
be perform at each users cite. This method requires v x (v — 1) messages
{7] to be sent, where v is the number of participants to the conference, and
one round of message exchange. The public conference key is computed in
each users site as 7y X g - - - X Ty, Where 7; is user i’s secret key. The message
overhead requires O(v?) and that will cause the conference to be delayed
when v gets to be large. Recently, a method which develops a conference
key distribution system based on SBIB designs was given in [3].

Designs and cryptography seems to be closely connected. Many designs
have been used for the construction of many cryptosystems (see for example
[3, 13]). In this paper, we present an efficient conference key distribution
system which is a generalization of the key given in [3]. To achieve this,
a difference family (see [8]) is applied for generating the conference key
and to distribute this to participants. Through this technique, for creat-
ing a conferences key and for performing mutual authentication based on
identification information, the communication protocol is designed.

The protocol presented minimizes the message overhead for generating
a conference key. In some special classes of difference families the overhead
is O(vv/tv), where v is the number of participants attending the confer-
ence and ¢ is the number of subsets that compose the difference family.
This protocol needs two rounds of message exchange. The security of the
mechanism, which is an important problem in the construction of a secure
system, can be proved to be as computationally difficult to calculate as
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factoring and discrete logarithms.
In the next section we present some preliminary results and basic defi-
nitions concerning difference families.

2 Difference families

The main purpose of this section is to provide the basic definitions and
notations we shall need to develop our method. For the following definitions
we refer to [8].

Definition 1 A (v,k, A) difference set D = {d;,ds,...,dx} is a collection
of k residues modulo v, such that for any residue a # 0 (mod v) the
congruence

d; — d; = a (mod v)

has exactly A solution pairs (d;, d;) with d; and d; in D. ]

Example 1 Some non-trivial difference sets are:
D, ={1,2,4} (mod 7), (v,k,2)=(7,3,1)

Dy ={0,3,5,6} (mod 7), (v,k,A)=(7,4,1)
D3 ={0,1,3,9} (mod 13), (v,k,A) = (13,4,1)
Dy ={1,4,5,6,7,9,11,16,17} (mod 19), (v,k,\) = (19,9,4) O

Theorem 1 ([8]) There ezist difference sets with parameters (v,k,\) =
(n?+n+1,n+1,1), when n is prime power. Difference sets with these
parameters are called projective planes. ]

Theorem 2 ([8]) There exist difference sets with parameters (v, k,)\) =
4t —-1,2t — 1,t — 1 for all orders 4n for which a Hadamard matriz of order
4n exist. 0

For the existence of Hadamard matrices see [4, 15]. Many classes of
difference sets are known. For more details the interesting reader, should
consult (1, 9].

Difference sets have a rich combinatorial structure but they cannot exist
for all possible values (v, k, ). A generalization of difference sets, that can
exist in many more cases, is difference families. For the following definition
and more results, see [§].
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Definition 2 Let G be an abelian group of order v. Then t subsets of
G, B; = {b;1,b;2,...,bi} consist of k elements each, (1 < ¢ < t) form a
(v, k, A t) difference family (or difference system) if every nonzero element
of G occurs A times among the differences b; ; — by (1 =1,2,...,¢; z,y =
1,2,...,k). The sets B; are called base blocks. In many cases, where ¢ is
obvious or can be easily calculated, we use notation (v, k, A) to denote the
difference family. O

Remark 1 It is obvious that if ¢ = 1, then B; is an abelian (v,k, A)
difference set and thus difference families is a generalization of difference
sets. O

Example 2 The base blocks
By, ={0,1,2,4,8}, B, =1{0,1,3,6,12}, B3 ={0,2,5,6,9}
form a difference family with parameters t = 3 and (v, k, A) = (13,5,5).0

Definition 8 An incidence matriz A; of the base block B; is the circulat
matrix with first row the sequence s; of length v with entries from {0,1}

deﬁnedbysi,j={ L j€B ,wherej =0,1,...,v—-1landi=1,2,...,t.

a

0; ]gBl

Example 3 The incidence matrix of base block B, as this is given in
Example 2 is given in Table 1. Observe that in the first row we have the
ones in positions j € B; and zero elsewhere. Similarly, one can obtain the
incidence matrices of base blocks B; and Bj. o

Theorem 3 ([8]) If there exist a difference family with t subsets on an
additive group G and with parameters (v,k, ) then the equation

A(w = 1) = th(k ~ 1) (1)
holds. a)

Condition (1) of Theorem 3 is necessary but not sufficient for the existence
of difference family with parameters (v, k, A). For instance, it was proved in
(11] that there is no difference family with parameters (v, k, A) = (111,11,1)
and t = 1 even thought the condition (1) of Theorem 3 is satisfied for ¢ = 1.

There are many classes of difference families, some of which are given
in the next Theorems. For more details see [8].

116



Table 1: The incidence matrix of base block B; of Example 2.

01 2 3 4 5 6 7 8 9 10 11 12
6f1 1101 0 0 O0T1O0 O O O
170 111010 0 O 1 0 0 O
2100 11101000 1 0 O
3j0 0 011101 00 O 1 O
410 0 00 111010 0 0 1

Ay = 5110 0 001 1101 0 0 O
6 /01 0 0 0 0 1 110 1 0 O
710 0 1.0 00 01 11 0 1 O
810 0 01 000 01 1 1 0 1
911 0 0 01 000 01 1 1 0
0|0 1 0 0 01 0 00 0 1 1 1
11f1. 60 1 0 0 01 0 0 0 0O 1 1
12111 01 0 0 0 1 0 0 O 0 1

Theorem 4 ([8]) There exist (v,k, \;t) difference families for the follow-
ing values:

[+

. (v,3,1), v =1 (mod 6).
b. (v,3,2), v= 16, 28, 40.
. (0,3,3),v=2t+1, t>1.

[e]

=

. (v,4,1), v= 12t +1 < 10°® when v is prime and v < 10°, or v is prime
power that is not a prime or t=1, 3-11, 13-16, 18-21, 23, 25, 26,
28-31, 83-36, 88-41, 43, 45, 46, 48, 50.

. (v,5,1),v = 20t + 1 < 10* when v is a prime power and v < 104, or
t=1-8, 5-10, 12-15, 18, 20-28, 30, 32-35, 38-44, 47-50. o

o]

The following Theorem is given in [18].

Theorem 5 Suppose v is a prime power, and A(v—1) = 0 (mod k(k—1)).
Then a (v, k, \) difference family over F,, exzists if one of the following holds:

1. X is a multiple of k/2 or (k —1)/2.

2. A2k(k-1).
k(k—1)
3 v> (’;) (m]

117



For more results and details on difference families the reader should consult
1, 8§].

3 The design of a conference key distribution
system based on difference families

In order the v participants to communicate mutually, the conference key
should be created using all of their personal private keys. The minimal
message transmission overhead for this process must be guaranteed. In this
paper, we shall use the incidence matrices of the base blocks of the difference
family to obtain the desirable conference key. Row 7 and column j of these
incidence matrices correspond to participant i and key j, respectively.

We present the method to obtain a conference key from a difference
family as this is described in Theorem 6.

The method:

Step 0a. Select a (v, k, A;t) difference family, where v is the number of
people attending the conference.

Step Ob. Create the incidences matrices A; = (as;i,;) of the base blocks
Bsforalls=1,2,...,t.

Step 1a. User ¢ receives key r; from user j iff j € U{] tasi; =1} \ {i}.
S

Step 1b. User i calculate the products ki j, where k,; ; is the product
of r’s, m € {j : ag;i,; =1} \ {5}, for all s = 1,2,...,¢.

Step 2a. User ¢ receive products k, ;; from user j iff j € U{] D045, =

s

1\ {i}.

Step 2b. Then, user ¢ can calculate, from his site, the conference key as

t
K='I‘?H H ks;j,i-

s=1as:,;=1

Now we are in position to prove Theorem 6. This theorem explains how
and why this key is calculated this way, as it is shown in Step 2b of our
method.

Theorem 6 The conference key based, on the (v, k, A;t) difference family,
is calculated by user i using the equation

K=r ﬁ H ks:jis (2)

s=1 a,;"_,':l
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where A; = (a,,,;) are the incidence matrices of the base blocks B, s =
L,2,...,t and ky;:, s = 1,2,...,t are product of keys calculated as it is
shown in step 1b of our method.

Proof. From the definition of a (v, k, \; t) difference family we conclude
that each row and column of the v x v incidence matrices is consist from
exactly v — k zeros and k ones. In order to achieve the desirable result,
all users to communicated mutually, the common conference key should be
generated using all o, 71,...,7,_1 user’s personal secret keys. To create
this key we use the selected difference family and the following two steps.
On the first step, user i receives t(k — 1) keys and compute tk product,
each of which is composed by (k — 1) distinguish keys. The fact that the
keys are all different arise from the structure of difference families, see
method (step la and 1b). On the second step, user i receives t(k — 1)
products consisting of (k — 1) keys each. Thus the number of keys in the
collection of product he posses (including his own products he needs) is
tk(k—1). Applying equation (1) in the parameters of this difference family
we conclude that tk(k —1) (or (v— 1)) personal secrete keys appear A times
in this collection of products. So we can obtain the desirable common key
by multiply all products together with A times user’s i personal secret key
7i. Thus the final public common conference key can be calculated by user

t
iasK:r{\H H kgiji- m]

s=1 a,;g_,-=l

For example, thirteen participants take part in a conference and each
of them has his own secret key. Each participant computes a conference
key based on a (v,k,A) = (13, 3,1) difference family which is consist from
t = %}—::—i% = 2 subsets B, By of Z,3 with & = 3 elements each. The two
incidence matrices of base blocks B; = {0, 1,4} and B, = {0,2, 7} are given
in Table 2.

In order to generate a conference key, each user receive some keys from
other users chosen by employing the structure of these matrices. Two steps
are required to calculate the public conferences key. User 7 receives key T
from user j in the case ay;;,; = 1 or ag;;,; = 1. We know describe this process
from the viewpoint of user 0. First user 0 receives keys r,74 (because
ay;,01 = 1 and ayy04 = 1) and keys 72,77 (because az0,2 = 1 and agg7 = 1).
Then he calculate k1;0'0 = T4, ,{:1;0,1 = 7074, k1;0,4 = 7179, k2;0,0 = Tory,
ko02 = ror7, kooz = rorg, where ks0,; is the product of 74’s, b € {¢:
as0,6 = 1} — {j}. Simultaneously, all other users to the same process.
Next, user 7 receives ks; o if s;5,0 = 1, s = 1,2. Thus user 0 receives ky;g 9,
k1;12,0, k2;6,0, k2,11,0 from users 6,9,11,12. Then the conference key K is
calculated from the relation: K = TOkI;O,Okl;Q,Okl;12,0k2;0,0k2;6,0k2;11,0-

A summary for the two steps needed in our example (using (13,3,1)
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Table 2: The two incidence matrices of an (13,3, 1) difference family

(1100100000000\
0110010000000
0011001000000
0001100100000
0000110010000
0000011001000
A1=(a1;,-,j)= 0 000O0O0110O01O00
00000001100T10
0000000011001
1000000001100
0100000000110
0010000000011
\1 00100000000 1)
/101000010000 0)
0101000010000
0010100001000
0001010000100
0000101000010
0000010100001
Ap=(azsj)=| 1000001010000
0100000101000
0010000010100
0001000001010
0000100000101
1000010000010
\0 10000100000 1)

difference family) are given in Table 3.

We had constructed a conference key distribution system to be used in
the communication of the users. To do so, we generate the common key
based on the keys we receive from all users. We cannot guarantee whether
each of these keys are correct and have been sent from the right person.
Sometimes things are not what they seems to be. In the next section we
utilize user’s identity information for authentication in order to solve this
problem.
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Table 3: Conference key constructed using a difference family (13,3, 1)

user Step 1 (Define) Step 2 (Multiply)
0 K00 =774, k101 =70T4, k104 =7or1, Tok1,0,0k1,9,0k1;12,0
k200 = 1217, ko2 =70r7, ko7 =ror2  kop0kee0k211,0
1 king =rors, kg =mirs, ks =rira, rikyo1kin,1k110,
ko =r13rs, kans=r178, kous =rirs  kapakezikenza
g k22 =rare, kiyoz=rore, Kkioe=rors, rokia2ki20ki112
kop2 =Targ, ko4 =Tore, kaoo=rory kogokonookos o
3 kiss =rar7, kiza=rars, kisz=rare, r3kizskiaskiiza
ko33 = 15110, ko;35 =150, ko310 = Tars k2 3ko:3,3k2.0,3
4 Fuaa=vsrs, kuas=rars, kuas =rars, Taki04k134K144
kaaa =7eT11, ka6 =7ar11, ko1 =Tare koo ak2ak210.4
5 kuss=rero, kiyse=rsro, kuse=rsre, Tski15Kk14,5k155
kass =T1m12, ko7 =rsr12, kasi2 =rsrr koaskosskoins
6 kie6 =T1m10, ki67 =T76T10, k16,10 = T6T7, Tek12,6k1,56K166
kae6 =Tsro, koes =TeT0, ka0 =Ters kouaek2e6k212,6
7 kizz =rsri1, kyzg =7irn, Kyzan = rirs, rikisrkie rkirg
kogza =ror1, kozo=r1ery, koga=rire  koorkosrkor7
8 kigs =ror12, kige =rsri2, kis,12 = Tsro, Tskia8k1,7,8k188
ko =r10m2, ko0 =7T8T2, koo =rsrio koo skeskoss
9 ki9,0 =Tor10, k1,99 =T7oT10, k1,910 = Toro, roki;s0k1;s.0k100
ko0 = T11Ts, ko1 =7ors, ko3 =ror1y koo oke7.0ka0.0
k110,10 = r0711, k251012 = T107a, ok k k
10 k11011 = im0, koj10,10 = T1274, 10%1;6,10%1;9,10%1;10,10
e T k2.3,10k2;8,10k2;10,10
ki10,00 = 1im11, k20,4 = 10712 PR
. e m TR e ST ko
T o k2.a,11k2;9,11k2;11,11
ki1, = rore, ka1 =Ture I TESEETAR D
k1123 = maro, ka2, = 1276,
12 k1120 = rariz, kaizaz = Ti7e, r12k1;8,12k1;11,12K1;12,12

k112,12 = raro,

k2;12,6 = T1271

ka.s,12k2;10,12k2;12,12

4 The design of a conference key distribution
system for authentication

One of the most important problems in cryptography is to create a system
to provide authentication services. The following steps can be applied to
create the secret information needed for the secure authentication in the

network.
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1. Choose p, q large primes (approximately 100 digits each) and compute
their product n = pq.

2. Select a relative large integer e which is satisfy ged(e, (p—1)(g—1)) =1,
where ged(a, b) denotes the greatest common divisor of a and b. Solve
the equivalence ed = 1 mod (p — 1)(g — 1) to find the integer d.

3. Obtain an integer g such that g € GF(p)( GF(q).

4. Using user’s ¢ information I D and the integer d, found in 2, compute
the secret information S;.

A system shall distributes (e;, g,n) to all users and user i keeps (d S;)
secret. In order to describe the procedure and present the protocol to use,
we use the following notation:

Notation 1 When we write (i — j : M) we wish to denote that user i
transmit the information M to user j.

Notation 2 The symbolism (i :) indicated that user i stays at his site and
does verification or computation.

Using the above and a (v, k, A;t) difference family we can now present a
protocol that achieves user authentication.

The protocol:

1. i—j: (ID;(X:)5 Yi ts), Xi = ¢°™ (mod n), Y; = S;gC17 (mod n),
where C;, = h(X;,t;) and j € {j 1 a5 =1, =1,2,...,t}.
In other words, user i creates two information X; and Y; for authen-
tication, encrypts X; using e; and transmits (ID;, (X;)%,Y;,t;) to
user j, where 7; is a secret key of user 7 and h is a common hashing
function which it is known to all users.

2. §: Xi = ((Xi)%)%, ID; = Y&/ X2, where Cy, = h(Xi,t:).
This means that user j decrypts (X;)®/ using d; to obtain X;. Since
the hashing function h is common, user j apply this function to the
received, from user i, information to authenticate user . If ID; =
Ye/ Y,-C‘2 , then the claim is acceptable.

3. 7 — p: (IDj(X;,)",Y5,,t5), Xj, = Xp, Xp, - - Xpyse_yy» Where p; €
t
U{z tagii \ {ph, Y5, = ;961" (mod n), where C;, = h(Xj,,t;).
s=1
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User j receives t(k — 1) keys transmitted from users i belonging to
t
the set U{z : @s;5,; = 1}. Then he computes X, and Yj,, and sends
s=1
(IDj,(X;,)°,t;) to user p.

4. p: X, = ((X;,)%)%, ID; = Y /X2, where Cj, = h(X;;,, t;)-

In this way X;, can be computed when (Xj, )% was decrypted using
d,. Then user p authenticates user’s j 1dent1ty usmg the information

obtained from this user. When ID, =Y /X iz then the authenti-
cation process is successful and the user 1s who he claims to be.
Theorem 7 If ID; = Y¢/X; C", then user j gains confidence that the
information tmnsmztted from user i, for the generation of a conference
key, is correct.

Proof. We have that Y/ X" = (S;9C47)e/(g*")C: = S¢,if C;, = Ci,.
Since S; = ID¢, we have that (I1D¢)¢ is ID; from Euler’s theorem O

In order to compute a conference key, user p utilize his own secret key
and all X;,,p € {j : as;p,; = 1}. Since each secret key and e appear A times
and (v —1) times in X}, ’s, respectively, user p calculates a conference key
using the equation

A
K= XJpl XJP2 ve ijt(kq)geprp,
From the equation above we can easily conclude that, as smaller X is, the
better computational efficiency and less complexity we have in the above
representation of the key. Thus for small A the conference key will be

calculated faster and thus the conference will not be delayed.

5 Security and complexity of the key

In this section we analyze the proposed conferences key distribution system
which is developed using a (v, k, A; ) difference family.

The first and second step requires vt(k — 1) messages to be transmitted
when each of these is applied. Using expression (1) given in Theorem 6
we can easily conclude that the complexity is vt(k — 1). From A(v — 1) =
tk(k — 1), k is determined by the values of v, t and A. So in the case
that A and t get smaller the complexity gets smaller as well. Since the
smallest possible value of A is 1 and the smallest possible value of ¢ is
1 (this is the case of (v,k,1) difference set, see Theorem 1) the smallest
possible value of complexity is O(vy/v). When X is 1, many infinite classes
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of difference families exist (for example Theorem 4), then the complexity
is O(v/tv) and when we have a random difference family with parameters
(v, k, A; t) then the complexity is, as it is shown previously, vt(k — 1). This
complexity is better than the complexity O(v?), of the classical conference
key constructions (all user submit their keys to each other), in all cases for
which O(tk) < O(v).

From the existing infinite classes of (v, k, 1; 1) difference sets (projective
planes) we construct infinite families of conference key distribution systems
which have complexity O(v4/v). Also from the the existing infinite classes
of (v,k,1;t) difference families we construct infinite classes of conference
key distribution systems which have complexity O(vv/tv). From all other
known infinite classes of (v,k,A;t) difference families we construct infi-
nite classes of conference key distribution systems which have complexity
O(vt(k — 1)).

So, as we have shown this protocol can be computed easy enough
(O(v/v)) but is it secure? The security of the protocol is a significant
problem in the construction of a secure system. In this protocol there is no
way to reveal secret information S;, given e, n and d, because no polynomial
algorithms that solve the factorization problem are known. To secure this
mechanism we will keep the secret keys r; well protected. Moreover, for X;
given, it is very difficult to calculate r; because discrete logarithms need to
be found, and that problem is generally a very hard problem. Therefore,
security of the communication protocol is computationally ensured.
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