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Abstract

Among the well-studied maximal planar graphs, those having the max-
imum possible number of 3-cycles are precisely the planar chordal graphs
(meaning no induced cycles of lengths greater than three). This motivates
a somewhat similar result connecting maximal planar bipartite graphs, 4-
cycles, and planar chordal bipartite graphs (meaning bipartite with no in-
duced cycles of lengths greater than four), together with characterizations of
planar chordal bipartite graphs as radial graphs of outerplanar multigraphs.
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1 Maximal planar graphs

A maximal planar graph is a planar graph such that inserting any additional edge
would result in a nonplanar graph. (All graphs in this paper are finite and, unless
stated otherwise, simple.) The following results are contained in Sections 1.3
and 2.7 of [5].

Theorem 1 Fora planar graph G withn > 3 vertices and m edges, the following
statements are equivalent:

(1.1) G is a maximal planar graph.

(1.2) In every plane embedding of G, every face is a facial triangle.

(1.3) G has m = 3n — 6 edges.

(1.4) Every graph formed by inserting a new edge into G contains a homeomorph
of K. O

Although maximal planar graphs with n vertices have a fixed number of edges,
the number of 3-cycles can still vary since, in addition to the 2n —4 facial triangles
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(by Euler’s formula, when n > 3), there can be additional nonfacial 3-cycles. For
instance, both graphs in Figure 1 are maximal planar graphs; the chordal graph
(meaning no induced cycles of lengths greater than three) on the left has ten 3-
cycles, but the octahedron on the right only has eight 3-cycles.

Reference (4] contains any information needed in this paper about chordal
graphs. In particular, standard chordal graph theory shows that a maximal planar
graph G is chordal if and only if its vertex set has a perfect elimination ordering,
meaning—in this planar, so Kjs-free context—an ordering (v1, ..., v,) of V(G)
such that, for each i < n — 4, deg(v;) = 3 in the subgraph of G induced by
{vi,...,vn} and v; is not the center vertex of an induced length-2 path in that
subgraph; equivalently, each open neighborhood N (v;) is isomorphic to K3 in
the subgraph induced by {v;,...,v,}.

Figure 1: The two maximal planar graphs with 6 vertices. The left graph is
chordal with ten 3-cycles; the right graph is not chordal, with eight 3-cycles.

Theorem 2 Every plane embedding of a maximal planar graph with n > 3 ver-
tices has at most 3n — 8 many 3-cycles, with equality if and only if the graph is
chordal.

Proof, First suppose G is maximal planar and chordal with a perfect elimination
ordering (vy, ..., vn), where n > 3. If n = 3, then G = K3 has only one 3-cycle,
and 3.3 — 8 = 1. If n > 3, then removing v, leaves a graph with, inductively,
3(n — 1) — 8 many 3-cycles, so G has those 3-cycles plus 3 involving v;, making
3n — 8 many 3-cycles in all.

Conversely, suppose G is an embedded maximal planar graph with n > 3 ver-
tices. If n < 4, then G = K3 or K4 and has 3n — 8 many 3-cycles. Suppose
n > 4 (making the minimum vertex degree in G be at least three) and G has
the maximum possible number of 3-cycles for n vertices. Observe that G can-
not contain an induced wheel consisting of an induced cycle vy, vs, ..., vk, v1,
k > 4, with each of vy, ..., vx adjacent to some vertex w: Otherwise, replacing
edges wu,, ..., wy; with edges vyvs, ..., v vx—; would produce another maxi-
mal planar graph with n vertices, but with one more 3-cycle than G (because of
the new nonfacial 3-cycle vy, vs, vs, v1). Also observe that G must contain at least
one nonfacial 3-cycle: Otherwise, G would have only the 2n — 4 facial 3-cycles,
which is fewer than the 3n — 8 many 3-cycles in chordal graphs.

128



So there must exist a nonfacial 3-cycle C : a, b, c, a that ‘surrounds’ as few
vertices as possible in the embedding. Since G is maximal planar, a must be ad-
Jacent to every vertex in a path b,d,...,dk,c with k¥ > 1 that has all the d;s
surrounded by C in the embedding. If ¥ = 1, then the 3-cycle C’ : b,¢c,dy, b
will surround fewer vertices than C' did, so C’ must be a facial triangle and
N(d)) = K3; set vy = d (to begin a perfect elimination ordering). If k > 2, then
since {a,b,dy, ..., dx, ¢} cannot induce a wheel and G is maximal planar, there
must exist an edge d;_1d; (lettingdo = b and dx4; = c) so that {a, d;_1, i}, }
induces a 3-cycle and N (d;) = Ks; set v; = d;. Repeating the above for G — v,
then G — vz and so on, constructs a perfect elimination ordering for G that shows
that G is chordal. m]

Therefore, the chordal maximal planar graphs are precisely the maximal pla-
nar graphs that have the maximum number of 3-cycles. Chordal maximal planar
graphs are also easily seen to be precisely the planar 3-trees, where 3-trees are
the graphs defined recursively from K3 by repeatedly adding new vertices whose
open neighborhoods are isomorphic to K3. (Using the older terminology “trian-
gulated graphs’ for chordal graphs and ‘triangulations of the triangle’ for maximal
planar graphs, the chordal maximal planar graphs are precisely the triangulated
triangulations of the triangle.)

2 Maximal planar bipartite graphs

A maximal planar bipartite graph is a planar bipartite graph such that inserting
any additional edge would result in a graph that is either nonplanar or nonbipartite,
except that, to avoid uninteresting cases, we shall exclude the stars K ,_;. The
following results are contained in Section 3.5 of [5].

Theorem 3 For a planar bipartite graph G ¥ K 1,n—1 With n vertices and m
edges, the following statements are equivalent:

(3.1) G is a maximal planar bipartite graph.

(3.2) In every plane embedding of G, every face is a facial quadrangle.

(3.3) G has m = 2n — 4 edges.

(3.4) Every bipartite graph formed by inserting a new edge into G contains a
homeomorph of K3 3. ]

A chordal bipartite graph [2, 4] is a bipartite graph with no induced cycles
of lengths greater than four. Observe that Cy shows that a chordal bipartite graph
need not be chordal (just as a complete bipartite graph need not be complete). For
instance, both graphs in Figure 2 are maximal planar bipartite; the graph on the left
is chordal bipartite, but the graph G on the right is not (because of the chordless
6-cycle induced by V(G) — {a, d}). The cube is another maximal planar bipartite
graph that is not chordal bipartite.
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Figure 2: Two maximal planar bipartite graphs with 8 vertices; the left graph
is chordal bipartite, but the right graph is not; each has nine 4-cycles.

Using a characterization of chordal bipartite graphs from [3], a maximal planar
bipartite graph G % K} 5, is chordal bipartite if and only if its vertex set V(G)
has a bipartite vertex elimination ordering, meaning—in this planar, so K3 3-
free context—an ordering (vy,...,vn) of V(G) such that, for each i < n — 3,
deg(v;) = 2 in the subgraph of G induced by {v;,...,vn} and v; is not the
center vertex of an induced length-4 path in that subgraph; equivalently, each open
neighborhood N (v;) is a vertex set {a,b} with N(a) C N(b) in the subgraph
induced by {v;,...,vn}. (For instance, {c, w,b, ...,) begins one bipartite vertex
elimination ordering in the left graph in Figure 2.)

Although maximal planar bipartite graphs with n vertices other than K ,,_;
have a fixed number of edges, the number of 4-cycles can still vary since, in addi-
tion to the n — 2 facial quadrangles (by Euler’s formula, when n > 4), there can
be additional nonfacial 4-cycles. For instance, both graphs in Figure 2 are max-
imal planar bipartite graphs that have nine 4-cycles, while the cube has only six
4-cycles. Therefore, whether a maximal planar bipartite graph is chordal bipar-
tite cannot be determined simply by counting 4-cycles. But section 3 will present
characterizations in terms of being ‘radial graphs’; based on these, condition (7.3)
of Theorem 7 is a more practical characterization in terms of a type of vertex
elimination ordering and how the K’ 3 subgraphs are embedded.

3 Maximal planar bipartite graphs as radial graphs

Suppose M is any embedded planar multigraph with vertex set V (M), edge set
E(M), and face set F(M) (loops are not allowed). The radial graph (5] is the
embedded planar bipartite graph R(M) having vertex set V(M) U F(M) and
edges that correspond to incident vertex-face pairs in M. An example is shown
in Figure 3. Observe that a face with two edges (a face between parallel edges) in
M will produce a degree-2 vertex in R(M), and that the edges of M correspond
precisely to the faces of R(M), each of which is a facial quadrangle.

Each of the two multigraphs in Figure 4 has the corresponding maximal planar
bipartite graph in Figure 2 as its radial graph.

The following result is proved in [5, §3.5].
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Figure 3: The radial graph of the tetrahedron (on the left, faces marked
with hollow circles) is the cube (on the right).
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Figure 4: Multigraphs of which the two graphs in Figure 2 are the radial
graphs.

Lemma 4 A graph G ¥ K| n—, is a maximal planar bipartite graph if and only
if G is the radial graph of an embedded planar multigraph. 0

Notice how either of the color classes of a planar embedding of the bipartite
graph R(M) can be taken to correspond to vertices and the other color class to
faces so as to reconstruct both a multigraph M and its geometric dual multigraph
M* (meaning that M* and M are obtained from each other by interchanging
the role of vertices and faces). Let 2K3 denote the ‘doubled triangle’ multigraph
that consists of three vertices, each two joined by two parallel edges, embedded
in the plane with no vertex between two parallel edges. Observe that R(%K3) is
the radial graph both of 2K3 (which is outerplanar, meaning that it has a plane
embedding in which all the vertices are on a common face) and also of its dual
graph K 3 (which is not outerplanar). (Reference [1] contains any information
needed in this paper about outerplanar graphs.)

Theorem 5 A maximal planar bipartite graph G % K\ n-1 is chordal bipartite
if and only if G is the radial graph only of outerplanar multigraphs.

Proof. Suppose G is a plane embedding of any maximal planar bipartite graph
other than K ,_1. By Lemma 4, G is the radial graph of (only) some multigraph
M and its geometric dual M*. Since a planar multigraph is outerplanar if and
only if it contains no submultigraph homeomorphic to K4 or K3 3, G is the radial

131



graph only of outerplanar multigraphs if and only if M contains no submultigraph
homeomorphic to K4 (which is self-dual) or to K3 3 or 2K 3 (which are duals of
each other).

First suppose G = R (M) is chordal bipartite and M is an embedded planar
graph that is not outerplanar (arguing toward a contradiction). Then M must
contain a submultigraph M~ that is homeomorphic to one of K4, K3 3, or %K.
In the M~ = K4 case, let v, z, y, and z be the four degree-3 vertices in M~.
Let each of a, b, and ¢ be, respectively, the first vertex met starting from v and
going toward z, y, and z in M~ (so a, b, and ¢ are in a common color class).
Let C be a cycle in G = R(M) that consists of an induced path from a to b
whose non-endpoints are ‘surrounded’ by the cycle through z, v, and y in the
embedding of M —, followed by an induced path from b to ¢ whose non-endpoints
are surrounded by the cycle through y, v, and z in M ~, followed by an induced
path from c to a whose non-endpoints are surrounded by the cycle through z, v,
and z in M ~. This cycle C will be an induced cycle in G of length at least six,
contradicting that G is chordal bipartite.

The M~ = K, 3 case is similar, where v is either of the degree-3 vertices and
z, y, and 2 are the degree-3 vertices.

For the M~ = 2K; case, let z, y, and z be the three degree-4 vertices in
M~ Let C be acycle in G that consists of an induced path from z to y whose
non-endpoints are surrounded by the cycle through z and y (but not z) in the
embedding of M ~, followed by an induced path from y to z whose non-endpoints
are surrounded by the cycle through y and z (but not z) in M, followed by
an induced path from z to z whose non-endpoints are surrounded by the cycle
through z and  (but not y) in M ~. This cycle C will be an induced cycle in G of
length at least six, again contradicting that G is chordal bipartite.

Conversely, suppose G = R(M) is not chordal bipartite; say G has an induced
cycle C : vy, fi,v2, f2,..., vk, fs,v1 Of length 2k > 6 where vy, ..., vx corre-
spond to vertices of M and fi, ..., fi correspond to faces of M. Notice each ver-
tex f; of G is either ‘inside’ (surrounded by) or ‘outside’ the cycle vy, vs, . . ., vk,
vy in the embedding of G. Let C; [and C,] be [respectively] a minimal length
cycle in G that passes through vy, . . ., v, with all the vertices of C; [and C,] other
than vy, vs, . . ., v inside [outside] C. If neither C; nor C, is the boundary of a
face in G, then M will contain a submultigraph homeomorphic to K «, and so
one homeomorphic to K3 3. If one but not the other of C; and C, is the boundary
of a face in the embedding of G, then M will contain a submultigraph homeo-
morphic to K4. If both C; and C, are the boundaries of faces in G, then M will
contain a submultigraph homeomorphic to 2K3. In any case, G will not be the
radial graph only of outerplanar multigraphs. ]

Call (v1,...,vs) a degree-2 vertex elimination ordering of a maximal planar

bipartite graph G on the vertex set {vy, ..., v, } if and only if, foreach i < n — 3,
deg(v;) = 2 in the subgraph of G induced by {v;,...,v,} (so bipartite vertex

132



elimination orderings are special degree-2 vertex elimination orderings). Both
graphs in Figure 2 have degree-2 vertex elimination orderings, although only the
one on the left has a bipartite vertex elimination ordering. The cube has no degree-
2 vertex elimination ordering.

A multigraph is series-parallel if and only if it contains no subgraph that is
homeomorphic to /(4. (Reference [1] contains any information needed in this pa-
per about series-parallel graphs.) This is also equivalent to the multigraph being
reducible to a single edge by performing a sequence of the following two opera-
tions:

o Contracting either of the edges incident with a degree-2 vertex.

o Deleting either of a pair of parallel edges.

The class of series-parallel multigraphs lies between the classes of outerplanar
multigraphs and planar multigraphs, and K 3 is the smallest series-parallel graph
that is not outerplanar.

Lemma 6 A maximal planar bipartite graph G % K 5,1 has a degree-2 vertex
elimination ordering if and only if G is the radial graph only of series-parallel
multigraphs.

Proof. Suppose G = R(M) is a maximal planar bipartite graph other than
Kin-1. If G has a degree-2 vertex elimination ordering, then removing each
degree-2 vertex in that ordering will correspond to either contracting an edge in-
cident to a degree-2 vertex of M (effectively removing that vertex from M) or
deleting an edge of a 2-sided face of M (effectively removing that face from M),
and so M will be series-parallel.

Conversely, if G = R(M) is the radial graph only of series-parallel multi-
graphs, then M is series-parallel and so either contracting an edge incident to a
degree-2 vertex of M or deleting an edge of a 2-sided face of M will correspond
to removing a degree-2 vertex of G. Repeating this will produce a degree-2 vertex
elimination ordering for G. o

Theorem 7 For every plane embedding of a maximal planar bipartite graph G %
K1 n-1, the following statements are equivalent:

(7.1) G is a maximal planar bipartite graph that is chordal bipartite.

(7.2) G is the radial graph only of series-parallel multigraphs and the degree-3
vertices of each K3 3 subgraph of G are on a common face of G.

(7.3) G has a degree-2 vertex elimination ordering and the degree-3 vertices of
each K3 3 subgraph of G are on a common face of G.

Proof. Suppose G is a plane embedding of a maximal planar bipartite graph and
G = R(M) ¥ Kjn-1. Notice that G being the radial graph only of series-
parallel multigraphs is equivalent to M containing no submultigraph homeomor-
phic to K4. Only the equivalence of (7.1) and (7.2) needs to be shown, since (7.2)
and (7.3) are equivalent by Lemma 6.
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First suppose G is chordal bipartite. Since every outerplanar graph is series-
parallel, Theorem 5 shows that G is the radial graph only of series-parallel multi-
graphs. Suppose a and b are the degree-3 vertices of a K3 3 subgraph of G, and
z, y, and z are the degree-2 vertices. Suppose a and b are not on a common face
(arguing toward a contradiction). Let C be a cycle in G that consists of an induced
path from z to y whose non-endpoints are ‘surrounded’ by the cycle a, z, b, y, a in
the embedding of G, followed by a similar induced path from y to z surrounded
by thecycle a,y, b, z, a in G, followed by a similar induced path from 2 to z sur-
rounded by the cycle a, z, b, y, a in G. But C would be an induced cycle of length
at least six that would contradict G being chordal bipartite.

Conversely (as in the proof of Theorem 5), suppose G is not a chordal bipar-
tite graph, say with an induced cycle C : vy, fi,v2, f1,.- -, Vk, fx, v1 Of length
2k > 6 where vy, .. ., v correspond to vertices of M and fy, ..., fx correspond
to faces of M. Therefore fi,.. ., fi correspond to vertices in the geometric dual
multigraph M* and vy, ..., vi correspond to faces of M*. Let C; [and C,] be
[respectively] a minimal length cycle in G that passes through vy, ..., vx with all
the vertices of C; [and C,] other than vy, v, .. ., v inside [outside] C. If neither
C; nor C,, is the boundary of a face in G, then M will contain a submultigraph
homeomorphic to K5 3 that corresponds to a K 3 subgraph of G having degree-3
vertices that are not be on a common face of G. If one but not the other of C;
and C, is the boundary of a face in the embedding of G, then M will contain a
submultigraph homeomorphic to K, and so G would not be the radial graph only
of series-parallel multigraphs. If both C; and C,, are the boundaries of faces in G,
then M will contain a submultigraph homeomorphic to K3, and so M* will con-
tain a submultigraph homeomorphic to K3 3 that corresponds to a K3 3 subgraph
of G having degree-3 vertices that are not be on a common face of G. (m]

To illustrate condition (7.3) of Theorem 7, although both graphs in Figure 2
have degree-2 vertex elimination orderings, the right graph has a K3 3 subgraph
in which a and d are the degree-3 vertices, yet a and d are not on a common face
(whereas, in the left graph, the two vertices in each of the pairs {z, ¥}, {y, z},and
{z, z} of degree-3 vertices of K2 3 subgraphs are on a common face).
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