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Abstract

The minimum number of blocks having maximum size precisely four that
are required to cover, exactly A times, all pairs of elements from a set of
cardinality v is denoted by gf\d) (v). We present a complete solution to this
problem for A = 3,4 and 5.
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1 Introduction

The covering number g, )(v) is defined as the cardinality of the minimal
pairwise balanced design on a base set of v points and having largest block
size k such that every pair occurs exactly A times in the design. In this
paper we will be concerned with the case k = 4, so that the designs may
contain pairs, triples and quadruples, with at least one block of the latter
type. Because of the requirement for a block of size 4, g, )(v) is only defined
if v > 4. The values of g (v) are already known for A = 1 and 2, with
two possible exceptions. We describe these results and give appropriate
references below. In this current paper we determine g, )(v) for A = 3,4
and 5. We remark that the solution for A = 6 is trivial since a BIBD with
parameters (v, b,7,k, A) = (v,v(v — 1)/2,2(v — 1), 4, 6) exists for all v. It is
our intention to deal with A > 6 in a future paper.

In the course of establishing our results, we will make use of a range
of combinatorial designs: pairwise balanced designs (PBDs), balanced in-
complete block designs (BIBDs), Steiner triple systems (STSs), Kirkman
triple systems (KTSs), near-Kirkman triple systems (NKTSs), group di-
visible designs (GDDs), mutually orthogonal Latin squares (MOLS) and
their resulting transversal designs, one-factors, and one-factorizations of
complete graphs. Details of all of these may be found in [1].

A general lower bound for g, )(v) is given by Stanton in [10], namely

s 3o -]

We shall refer to the right-hand side of this inequality as the general lower
bound and denote it by 1(4)( )
For A = 1, the problem of determining g; )(v) was solved by Stanton

and Stinson, [12], apart from three exceptional cases v = 17,18,19. The
general results are summarized in Table 1. For 5 < v € 10 we have:

g§“’(5) = 5 (one quadruple and four pairs),

g§4)(6) = 8 (one quadruple, one triple and six pairs),

gg4)(7) = 10 (one quadruple, three triples and six pairs),

g§4)(8) = 11 (one quadruple, six triples and four pairs),
(4)(9) = 12 (two quadruples, seven triples and three pairs),
(4)(10) = 12 (three quadruples and nine triples).

The results of [12] show that 9(4)(1)) > 29 for v = 17,18,19. For

= 17, Seah and Stinson, [6], have given a PBD with 31 blocks com-
prising 17 quadruples, 10 triples and 4 pairs. The design is listed in [13].
Recently, Stanton, [11], has ruled out the value 29. So 30 < 954’(17) < 3L
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v lﬁ‘”(v) g{")(v) (Pairs, Triples) | Comments
12s 1252 + s 119 (v) (0,4s)

12s+1 | 1252+ 19 () (0,0) BIBD
125+2 |1282+7s+1 | 1) (1,8s)

125+3 [12s2+7s+1 | D) (0,45 + 1)

12s+4 |12s247s+1 | M) (0,0) BIBD
125+5 [ 122 +13s+4 | 1) (1,85 +3) v#5,17
125+6 | 1282 +13s+4 | 1Y (v) (0,45 + 3) v #6,18
12s+7 |12s2+13s+4 [P0 +3][(0,7) v#7,19
12s+8 | 1252 +19s+8 |1V (v) (1,85 +5) v#£8
12s+9 [12s2+19s+8 |1 (v) (0,4s + 4) v#9
125+10 [ 1252+ 19s+8 | P @) +3|(0,7) v#10
125+ 11 | 12s% + 255 + 13 | £{V () (1,8s + 6)

Table 1: gf“) (v).

For v = 18, Stanton, [9] and [8], has shown that 30 < g£4)(18) < 33.
More recently, Griittmiiller, Roberts and Stanton [4] have improved this

to 31 < gf")(v) < 33. Finally, Stanton, [7], determined the exact value of
g§4)(19) as 35 by exhibiting a design with 22 quadruples and 13 triples.

For A = 2, the problem of determining gi*)(v) was solved in [3]. The
general results are summarized in Table 2. For the single exceptional case
v=_§, gy) (8) = 13 (seven quadruples, four triples and two pairs).

In subsequent sections we shall make repcated use of a construction
which we now describe. The principal ingredient in this construction is
a PBD with index A = 1 on 12s + w points having all its blocks of size
four apart from (when w # 4) a single block of size w. Such a PBD exists
if and only if s > (2w + 1)/12 and w = 1 (mod 3) [5]. By deleting all
the points lying in the single block of size w (or lying in any block of size
four in the case w = 4), we form a PBD with index A = 1 on 12s points
having blocks of sizes three and four, with those of size three forming w
parallel classes. Denote this design by P(s,w). If we now have n such
designs, P(s,w;) for i = 1,2,...,n on a common set of 12s points, and
for each i we take \; copies of P(s,w;), then we obtain a PBD with index
A = Y, A on 12s points having block sizes three and four, with those
of size three forming p = }"[_| Ajw; parallel classes. We will denote this
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v lg“)(v) gg') (v) (Pairs, Triples) | Comments
12s 24s% + 2s 19 (v) (0,8s)
12s+1 | 2452 +2s 189 (v) (0,0) BIBD
12s+2 | 2452 +8s+1 |V (w)+1|(2,4s)

12s+3 | 2452+ 14s+2 |1V (v) (0,85 +2)
12s+4 |24s?+14s+2 |1 (v) (0,0) BIBD
125+5 |24s24+20s+5 | @) +1[(2,45+2)
125+6 | 2452 +26s+7 | LV () (0,85 + 4)

125+7 | 2452 +26s+7 |1V (v) (0,0) BIBD
12s+8 | 2452 +32s+ 11 | IV (w) +1 | (2,45 + 2) v#8
12549 | 2452 +38s+ 15 | I{ (v) (0,8s + 6)

125 + 10 | 2452 + 38s + 15 | I{ (v) (0,0) BIBD

125+ 11 | 2452 + 445+ 21 | IV (0) +1 | (2,45 + 4)

Table 2: g{" (v).

design by Q(s, wi\‘wé" --»w") or by Q(s, w;\") for short. The condition for
existence is that each w; = 1 (mod 3) and that s > (2w* + 1)/12, where
w* = max{w;,ws,...,wn}.

Given a PBD, we shall use g; to denote the number of blocks of size 1.
Blocks of sizes 2 and 3 will be described as small blocks. For a point z of
a PBD, we use r;(z) to denote the number of blocks of size i in which z
appears.

2 The case A =3

When v = 4¢ or 4t + 1 there exists a BIBD with parameters (v,v(v —
1)/4,v - 1,4,3) [1). It follows immediately that for ¢t > 1, g:(,4) (4t) =
tdt—1) = l§4)(4t) and g:(,4)(4t +1)=t(4t+1) = l:(;4)(4t + 1), and that in
both cases the PBD has all its blocks of size four.

In the case v = 4t+2, the general lower bound is l§4)(4t+2) = 4124 3t+1.
Suppose that there is a solution with this number of blocks. Then g, + g3 +
g4 = 4t2 +3t+1, and counting pairs gives g; + 393+ 694 = 242 +18t+3. So
we have 593 + 3g3 = 3, and the only solution is (g2, g3,94) = (0, 1,42 + 3t).
However, if an element z appears in the single triple then 2+3r4(z) = 3(4t+
1), which is clearly impossible. So we must have g:(f) (4t +2) > 4t2 + 3t + 2.
If there is a solution with 4t + 3¢ + 2 blocks then repeating the above
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argument gives (g2, g3, 94) = (0,3,4t2+3t—1) and a point which appears in
one triple must appear in all three triples. We will prove that for v = 4t + 2
and v # 2,6, there is indeed a solution of this form having 4t +3¢+2 blocks.
For v = 2 the maximum block size is two. For v = 6 it is shown in [10] that
an optimal solution has ten blocks. Such a solution is given by [a,0, 1, 3]s
and [0,1,2]s, where, for example, [a,0,1,3]s denotes the five quadruples
obtained by developing the starter block {a,0,1,3} cyclically modulo 5
with @ as a fixed point. Here and subsequently when using this notation
we adopt the convention that literal symbols (a,b,...) are invariant, but
numerical symbols (0,1,...) cycle according to the specified modulus. We
also make the convention that the notation indicates distinct blocks so that,
for example [0, 3,6]y specifies three distinct triples rather than nine triples.

Our general solution for v = 4t + 2 uses Q(s, w;\‘) designs together
with solutions for v = 10,14 and 18. For v = 10 and 14, solutions are
given in [10] but for completeness we give them here. So, for v = 10,
take the points a,b,¢,0,1,...,6 and, as blocks, take the thrice repeated
triple {a, b, c} along with 21 quadruples [a,0,1, 3]s, [6,0,1,3]7, [c,0,1,3]7.
For v = 14 take the thrice repeated triple {a,b,c} along with 44 quadru-
ples [a,0,3,4}11, [6,0,4,5]11, [¢,0,2,4]11, [0,1,3,6)1;. For v = 18 suit-
able quadruples are [a,0,1,4];5, [b,0,1,6]:s5, [c,0,2,8)15, [0,1,7,12)ss,
[0,2,4,12];5.

There exists a Q(s,10%) for s > 2, and such a design has 30 parallel
classes of triples on 12s points. Now take ten new points, place each such
point on the triples of three parallel classes, thereby converting all the
existing triples into quadruples, and finally add a solution for g§4)(10) on
the ten new points. The resulting design on 125+ 10 points has index A = 3
and contains a thrice repeated triple with all other blocks being quadruples.
Altogether the design has 4¢2 + 3t + 2 blocks, where t = 3s + 2, so that it
achieves the bound g:(,4)(4t +2) =42 +3t+2for t = 2 (mod 3) with ¢ > 8.

There also exists a Q(s,13%16!) for s > 3 having 42 parallel classes
of triples on 125 points. Take 14 new points, place each such point on the
triples of three parallel classes, and add a solution for gg‘” (14) on the 14 new
points. Putting ¢t = 3s + 3, the resulting design proves that g§4) (4t+2) =
4% +3t+2 for t = 0 (mod 3) with ¢ > 12. In a similar fashion, the existence
of a Q(s, 16'19?) for s > 4 having 54 parallel classes of triples gives, with the
addition of 18 new points, a design which on putting ¢t = 3s + 4 establishes
that g3 (4t +2) = 482 + 3t + 2 for t = 1 (mod 3) with ¢ > 16.

The values of v = 2 (mod 4) which are omitted by the above arguments
are 22, 26, 30, 38, 42 and 54. We return to these after consideration of the
v = 3 (mod 4) case.

In the case v = 4t+3, the general lower bound is l§4)(4t+3) = 4t2+5t+2.
However, as in the v = 4¢+2 case, it is easily shown that there is no solution
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with this number of blocks. Morcover, if there is a solution with 4¢%> + 5t +3
blocks then, using the earlier notation, (gs,93,94) = (0,3,4t%> + 5¢t) and a
point which appears in one triple must appear in all three triples. We will
prove that for v = 4t + 3 and v # 7, there is indeed a solution of this form
having 4¢> + 5t + 3 blocks. For v = 7 it is shown in [10] that an optimal
solution has 13 blocks. Such a solution is given by the thrice repeated pair
{a, b} together with the ten quadruples [a,0,1, 3]s, [b,0,1,2]s.

Our general solution for v = 4t + 3 again uses Q(s,w;“) designs to-
gether with solutions for v = 3,11 and 19. For v = 3 the maximum block
size is three. For v = 11 and 19 solutions are given in [10] but again,
for completeness, we give them here. So, for v = 11 take the points
a,b,c,0,1,...,7 and, as blocks, take the thrice repeated triple {a,b,c}
along with the two distinct quadruples [0,2,4,6]s and the 24 quadruples
[a,0,3,4]s, [b,0,1,3]s, [c,0,1,3]s. For v = 19 take the thrice repeated triple
{a,b,c} along with the four distinct quadruples [0,4,8,12];6 and the 80
quadruples [a, 0, 2, 6]15, [b, 0, 3, 4]15, [C, 0, 2, 5]16, [0, 2, 5, 11]15, [0, 1, 7, 8]15.

There exists a Q(s, 1'4?) for s > 1 having nine parallel classes of triples
on 12s points. Take three new points, place each such point on the triples
of three parallel classes, and add a thrice repeated triple on the three new
points. Putting t = 3s, the resulting design establishes that g;(,4)(4t +3) =
4t2 4 5t+3 for t = 0 (mod 3) with ¢ > 3. Similarly, there exists a Q(s, 7113%)
for s > 3 having 33 parallel classes on 12s points. By adding eleven new
points and using a solution for g§4)(11) on these points we obtain a design

which on putting ¢ = 3s + 2 proves that g§4)(4t +3) =42 +5t+3fort =2
(mod 3) with ¢ > 11. The final general case is based on a Q(s,19%) which
exists for s > 4 and has 57 parallel classes on 12s points. By adding 19 new
points, using a solution for g:(,4)(19) on these points, and putting ¢ = 3s + 4
we prove that g§4)(4t +3)=4t> +5t+3 for t =1 (mod 3) with ¢t > 16.

The values of v = 3 (mod 4) which are omitted by the above arguments
are 23, 31, 35, 43 and 55. We now deal with these and the omitted cases
for v = 2 (mod 4) listed earlier. We start by giving listings for the lowest
four values. Those for 22 and 23 were already given in [10] but we repeat
them here for completeness. In each case there is a thrice repeated triple
{a,b,c} in addition to the quadruples specified.

v=22: [a,0,3,4)19, [b,0,2,99, [c,0,5,11]19 together with 57 quadruples
forming a BIBD with parameters (19,57, 12,4, 2) on the points 0,1, ...,18.

v=23: [0,5,10,15)20 (5 blocks), [a,0,1,3]z0, [5,0,2,6]20, [c,0,6,13}z0,
[Oa la 9, 10]201 [0$ 31 71 15]207 [01 2v 5’ 16]20-

v=26: [0'1 Oa 1, 5]'233 [ba 0! 7, 15]23) [C, 0’ 2) 9]23) [Os 4, 7, 10]23) [O) la 5) 11]237
[0,2,5,11]»3, [0,1,9,11]23.
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v=230: [ay 0’ 1, 12]'271 [bs Oa 4: 8]27’ [C, 0) 2: 7]27) [0) 21 7720]27: [0’ 1, 5, 18]27’
[0,3,11,17])27, [0,6,12,24]27, [0,1,3,11],7.

To deal with some of the remaining values, we introduce a “v to 3v+1”
construction. Note first that there exists a cyclic BIBD with parameters
(2v + 1,v(2v + 1),3v,3,3) for all v > 1 ([2], page 104). We may take
the points to be 0,1,...,2v and the triples as [0, 1, 2]2y+1, [0,2,4)2v+1,- -,
[0,v,20]2y41, with the variation that if 3 | (2v + 1) and w = (2v + 1)/3
then three copies of the short orbit [0, w, 2w]s,4; are included. Secondly, if
v =2 or 3 (mod 4) and if v # 2,6 or 7, we can take a solution for g§4) (v),
that is a PBD of index A = 3 having three triples and all other blocks as
quadruples, on a disjoint set of points z,,z»,...,z,. Now, for each i, place
z; on all 2v + 1 triples [0, ¢, 2i]2y41 to form quadruples [z;,0,1,2{]2,+1 and
combine these quadruples with the blocks of the PBD to give a new PBD
of index A = 3 on the 3v + 1 points 0,1,...,2v,z;,2s,...,2, having three
triples and all other blocks as quadruples. This new PBD establishes the
value of géd)(Sv + 1). Applying this construction in turn to v = 10, 14 and

18 gives the values g{*)(31) = 234, ¢ (43) = 453 and g{" (55) = 744.

For those orders which still remain, namely v = 35,38,42 and 54, we
use methods based on GDDs.

There exists a 4-GDD of index A = 3 and type 8% [1]. Take such a
design with groups {0;,1;,...,7;} for ¢ = 1,2,3,4. Add three new points
a,b,c and place on each set of eleven points {a,b,c,0;,1;,...,7;} a PBD
giving a solution for gé‘”(ll) and having the thrice repeated triple {a, b, c}.
Removing the excess copies of the triple {a, b, c} so that only three copies
remain gives a PBD of index A = 3 on 35 points which establishes that

¢s(35) = 299.

There also exists a 4-GDD of index A = 3 and type 7° [1]. Applying the
previous technique and using a solution for g§4)(10) gives a PBD of index
A = 3 on 38 points which establishes that g§4)(38) = 353.

To obtain a solution for v = 42 take three MOLS of order 8 and form
a 5-GDD of index A = 1 and type 8. Removing a single point from one
group gives a GDD of index A = 1, with blocks of sizes four and five, of
type 7'8%. Triplicate each 4-block and replace each 5-block with the five
4-blocks obtained from it by deleting each element in turn. This gives a
4-GDD with index A = 3. As before, add three new points a, b, ¢ and place

solutions for g§4)(10) or g:(,")(ll) having repeated triple {a, b, ¢} on the union
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v 19 (v) Y (v) (Pairs, Triples) [ Comments

125 3652 — 3s 159 (v) (0,0) BIBD
12s+1 |36s2+3s 159 (v) (0,0) BIBD

12s+2 [36s2+9s+1 |i@w)+1](0,3)
12s+3 [36s2+15s+2 |1Y@w)+1](0,3)
12s+4 [36s2+21s+3 | 1) (0,0) BIBD
12s+5 |36s2+27s+5 | 1) (0,0) BIBD
12s+6 |36s2+33s+8 |[£Yw)+1](0,3) v#£6
125 +7 | 3652 +39s+11 | {7 (w) +1 | (0,3) v#£T
125 +8 | 3652 +45s + 14 | 1§ (v) (0,0) BIBD
12s+9 | 3652 +51s + 18 | 1§ (v) (0,0) BIBD
125 +10 | 3652 +57s + 23 | {" (v) +1{ (0,3)
125+ 11 | 365 +63s + 28 | 1§V (w) + 1 (0,3)

Table 3: g{* (v).

of each group with {a,b,c}. We obtain a PBD of index A = 3 on 42 points
which establishes that g{"(42) = 432.

A solution for v = 54 may be similarly obtained by taking three MOLS
of order 11, forming a 5-GDD of index A = 1 and type 115, and removing
four points from one group to give a GDD of index A = 1, with blocks of
sizes four and five, of type 7'114. Triplicate the 4-blocks and expand the
5-blocks as previously to get a 4-GDD of index A = 3. Finally add three
new points a, b, ¢ and place solutions for g:(,4)(10) or g§4)(14) having repeated
triple {a, b, ¢} on the union of each group with {a,b,c}. We obtain a PBD
of index A = 3 on 54 points which establishes that g:(;l) (54) = T17.

The results of this section are summarized in Table 3. The exceptional
values are g§4)(6) = 10 and g§4)(7) = 13.
3 The case A =4
We start by considering the profile of possible solutions in l‘(,“(v) blocks in

terms of the numbers of pairs and triples which must be present. First we
observe that there exists a BIBD with parameters (3t + 1,t(3t + 1),4t,4,4)

for all t > 1. Hence, for v = 1 (mod 3) any solution in 134)(1)) blocks is
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without any pairs or triples.

For v = 3t, counting the occurrences of each point z with other points
in blocks of different sizes gives 72(x) +2r3(z) +3ry(z) = 4(3t—1) = 12t —4.
So we cannot have r2(z) = r3(z) = 0, i.e. every point must appear in some
small block. It follows that there are at least 3¢/3 = ¢ small blocks, and

therefore go + g3 > ¢. The usual analysis shows that a solution on l,(,'”(v)
blocks must satisfy g2 + g3 +g4 = 3t*— | £| and g, +3g3+6g4 = 18> —6t, so
that 592 +3g3 = 6t—6| £ | = 6[%]. The only solution of this consistent with
the previous inequality is (g2,93) = (0,2[£]). But if g» = 0, then r2(z) =0
for every z and we get 2r3(z) + 3rq(z) = 12t - 4 for every z. From this we
deduce that r3(z) = 1 (mod 3), so that r3(z) has possible values 1,4,7,....
However, 3~ r3(z) = 3gs = 6[4]. If ¢ is even this evaluates to 3t and
so r3(x) = 1 for every point z, while if ¢ is odd it evaluates to 3¢t + 3
so precisely one point ¢ must have r3(a) = 4 and all other points z have
r3(x) = 1. Thus for even ¢t we must have no pairs and ¢ triples with each
point appearing in one triple, while for odd ¢ we must have no pairs and
t + 1 triples with one point appearing in four triples, and each other point
appearing in one triple.

In the case v = 3t +2, for each point = we have ry(z) +2r3(z) +3r4(z) =
4(3t + 1) = 12t + 4. From this we deduce that (r2(z),r3(z)) = (0,2), (1,0)
or (2,1) (mod 3). So, for all solutions we have 2ry(z) +73(z) > 2. Summing
over all points z gives 4g2+3g3 > 6t+4. But a solution in l‘({‘) (v) blocks must
satisfy g2+ g3 + g4 = 3t +4t+2 and g2 + 393 + 694 = 18¢2 + 18t +4, so that
3g2+3g3 = 6t+8. Combining this with the previous inequality gives g, < 4.
Thus the only solutions for (g2, g3) are (1,2t +1) and (4,2t —4). In the case
g2 = 4 the inequalities above must be equalities and so 2ry(z) + r3(z) = 2
for every z, giving (r2(z),73(2)) = (0,2) or (1,0). Thus, if go = 4, there
are eight points which each appear in one pair and no triples, and all the
remaining 3¢ — 6 points appear in no pairs and in two of the 2t — 4 triples.
The case when g, = 1 may be analysed similarly; there are two points, say
a,b which appear in the single pair. If 2ry(z) + r3(z) > 5 for any point z
then repeating the initial argument gives first 4g, 4+ 3g3 > 6t + 7, and this
leads to g < 1, a contradiction. Hence 2ry(z)+r3(z) < 5 for all z. Bearing
in mind that for g» = 1 we have r3(z) = 0 or 1, the only possibilities are
(r2(2),73(z)) = (0,2), (0,5), (1,0) or (1,3), and in order to achieve g, = 1
we require 4g; + 393 = 6t + 7 and hence precisely one point z to have
(r2(2),73(2)) = (0,5) or (1,3). Thus there are two possible structures for a
solution when g = 1, namely

(i) A pair ab, three triples containing a, no triples containing b, and a
further 2¢ — 2 triples. All points z # a,b appear in precisely two
triples. All remaining blocks are quadruples.
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(ii) A pair ab, no triples containing a or b, a point ¢ # a,b lying in
precisely five triples, and a further 2t — 4 triples. All points = # a,b,c
appear in precisely two triples. All remaining blocks are quadruples.

We shall examine g,g") (v) in more detail by splitting v into residue classes
modulo 12. Table 4 gives the general lower bound l,({”(v) in each class.
Apart from the classes v = 2, 3,6 and 11 (mod 12), and with a few small ex-
ceptions, the general lower bound is achieved either by combining solutions
for ggd)(v) and g:(;”(v) or by using an appropriate BIBD. These solutions
are noted in Table 4 with the range of validity. We shall show subsequently

that the general lower bound is also achieved in the cases v = 2,3,6 and 11
{mod 12).

v 154)(”) 924)(1)) Comments
125 [482-25  [LV0) |91 () +95" ()
12s+1 | 48s2 +4s 1544)(1,) BIBD

125 +2 | 48s% +165+2 lf,“(v) See subsequent text
125 +3 | 4852 +22s+3 lf{“(v) See subsequent text
125 +4 |48s +28s+4 | 1{(v) | BIBD

12s+5 | 4852 +40s+9 |£20) | V() +g{"(v), s> 2
125+6 | 48s% +46s + 11 | 1{Y(v) | See subsequent text
12s+7 | 4852 +52s+14 | I{Y (v) | BIBD

125 +8 |4852 +64s+22 | 1{V(v) | gV () + g{P (v), s > 1
125+9 |48s2 +70s+26 | iV w) | ¢ (@) + g8 (), s> 1
125 + 10 | 48s% + 765 + 30 | 1Y (v) | BIBD

12s 4+ 11 | 48s% + 88s + 41 lﬁ“(v) See subsequent text

Table 4: g,(,4) (v).

For v < 4 there can be no quadruples. For g,(f)(S) a solution in 1“,“’(5)
blocks is given by

ab, b01, b02, 512, a012, a012, ab01, ab02, abl2.

For gf,“)(S) a solution in 124)(8) blocks is given by

ab, c01, 03, c12, c24, ¢34, ca24, cal3, cab0, cabl, cb34, cb02,
ab23,a034, al124,a014, a023, b024,b134, 6014, b123, 0123.
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For gf)(g) a solution in l‘(,")(Q) blocks is given by a BIBD with parame-

ters (8,14,7,4,3) on the point set {0,1,...,7} along with the four distinct
triples [a, 0,4]s and the eight quadruples [a,0, 1, 3]s.

For g‘g“)(l?) a solution in 134)(17) blocks can be obtained by taking a re-
solvable BIBD with parameters (12,44,11,3,2) [1] and duplicating all the
blocks to give a (12,88, 22, 3,4)-BIBD having 22 parallel classes of triples.
Then take five new points, place each such point on the triples of four par-

allel classes, and add a solution for g£4)(5) on the five new points.

Consider now the case v = 12s+2. In order to obtain a general solution
for this residue class in l,(f)(v) blocks, we need a solution for v = 14 in

124)(14) = 66 blocks. The blocks of such a solution, having 4 pairs, 4 triples
and 58 quadruples are as follows:

01, 23, 45, 67, abc, abe, def, def,
0347, 0356, 0247, 0246, 0256, 1247, 1257, 1346,
1356, 1357, ab01, ab23, ac45, acb7, bc05, bcl6,
de01, de23, df45, df67, ef05, ef16, be34, bed6,
be57, be27, c¢f02, cf24, cf13, cf37,

together with 28 further quadruples obtained by placing each of the seven
pairs ad, bd, cd, ae, ce,a f, b f onto one of the seven one-factors {01, 25, 36,47},
{03,14,26,57}, {03,17, 26,45}, {04, 12, 35,67}, {06, 14, 25, 37},

{07,12, 34,56}, {07, 15, 23, 46).

There exists a Q(s, 132162) for s > 3 having 58 parallel classes of triples
on 12s points. Take 14 new points, place each such point on the triples of
four parallel classes, and add a solution for g£4)(14) on the 14 new points.
The resulting design on 12s + 14 points establishes that g,({‘)(v) = l§4)(v)
for v = 2 (mod 12) with v > 50. The values of v = 2 (mod 12) omitted by
this argument are v = 26 and 38; we return to these later.

We next turn our attention to the case v = 12s + 3. In order to obtain
a general solution for this residue class in l,({‘)('u) blocks, we need a solution

forv=151in lf{‘)( 15) = 73 blocks having 6 triples and 67 quadruples. Such
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a design is listed below.

201, 223, z45,  z67, abc, def,
zabf, zace, zbed, zaef, zbdf, xcde,
zad3, xbed, =zcf7, x025, z036, =zx047,
2134, 2127, 156, 246, ad57, be37,
cf35, a345, a023, al67, b134, b257,
b056, ¢367, 125, 047, d356, d347,
d012, 014, 567, €235, f237, f457,
f016, ab46, cd04, ef24, ab07, cd05,
ef03, ac26, bf06, ded6, ac05, bfO03,
de07, ad24, be26, cf46, ad36, bed5,
cf27, afl4, cel6, bd12, afl5, celd,
bdl7, ae02, df26, bc24, ael?, df15,
bell.

There exists a Q(s, 13!16%) for s > 3 having 61 parallel classes of triples
on 12s points. Take 15 new points, place each such point on the triples of
four parallel classes, and add a solution for 924)(15) on the 15 new points.

The resulting design on 12s + 15 points establishes that gf)(v) = l£4)(v)
for v = 3 (mod 12) with v > 51. The values of v = 3 (mod 12) omitted by
this argument are v = 27 and 39; we return to these later.

In the case v = 6 (mod 12), we start by giving a solution on v = 6 points

which establishes that gf) (6) = l‘(,s) (v) = 11. We may take the blocks to
be [0,2, 4]6 (two distinct triples), [0, 1, 3,4]e (three distinct quadruples) and
[0,1,4,5]¢ (six quadruples). To deal with the general case, take a 4-GDD
of index A = 1 and type 62*!. Such a design exists for s > 2 [1]. Take
four copies of each quadruple and place a solution for g,({‘)(ﬁ) on each group.
This gives a PBD of index A = 4 on 125 + 6 points having 4s + 2 triples and
all other blocks quadruples. This design establishes that gf,“’ (v) = l‘({‘)(v)
for v = 6 (mod 12) with v > 30. The only unresolved value of v = 6 (mod
12) is v = 18; we return to this later.

In the case v = 11 (mod 12), we note first that a PBD which corre-
sponds to a solution for g§4)(12s + 11) has 2 pairs and 4s + 4 triples, with
all remaining blocks as quadruples. Furthermore, it is shown in (3] that
for s # 0, there is such a PBD whose blocks include two pairs za,zb and
two triples abp and abg. Now combine two such PBDs on a common set of
points where the first PBD has the pairs and triples specified and the sec-
ond has pairs zp,zq and triples pga, pgb. Replace the pairs za, zb, zp and
the triple abp by the quadruple zabp. The result is PBD of index A = 4
on 12s + 11 points having one pair, 8s + 7 triples, and all remaining blocks
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as quadruples. This establishes that g‘g‘)(v) = l‘({’) (v) for v = 11 (mod 12)
with v > 23. The only unresolved value in this case is v = 11.

All that remains in this section is to discuss the outstanding values v =
11,18, 26, 27,38 and 39. For v = 11 we give a solution in l§4)(11) = 41 blocks
having four pairs, two triples and 35 quadruples. Initially, take six sets each
comprising a pair of complementary triples on a set of six points and also
take eight one-factors on the same points, taking care to ensure that these
triples and pairs give a fourfold covering of pairs. An example of this is
provided by the pairs of triples P, = {012,345}, P, = {013,245}, P; =
{024,135}, P, = {025,134}, Ps = {034,125}, Ps = {035,124} with the
one-factors F; = {01,23,45}, F; = {01,23,45}, F3; = {02,14,35}, F, =
{03,15,24}, F5 = {04,13,25}, Fs = {04,15,23}, F; = {05,12,34}, F3y =
{05,14,23}. Then take five new points a,b,c,d,e. Take the two triples as
abe, abc and the four pairs as de together with pairs from, say, F}. For the
quadruples take abcd, abce, together with the 21 blocks obtained by placing
ad, ae,bd, be, cd, ce,de on F» to Fy in any order, and finally those obtained
by placing each of a, b, c on any two of P; to P;.

For v = 18 a solution in l‘(f)(18) = 105 blocks is given by the blocks
(0,6, 12]5 (six distinct triples), [0, 3,9, 12]:s (nine distinct quadruples), and
the 90 quadruples [0, 1, 10, 11]13, [0, 1, 13, 15]181 [0, 2, 4, 5]18, [O, 5, 7, 13]13,
[0,3,7,11)1s.

For v = 26, initially take two copies of a KTS(21) on the points 0, 1,...,
20; these resolve into 20 parallel classes of triples. Next take five new points,
place each such point on the triples of four parallel classes to give 140
quadruples, and add a solution for g§4)(5) on the five new points. Complete
the design with two copies of each of the seven distinct triples obtained from
[0,7,14]2; and the 63 quadruples [0,2,3,5]2,[0,6,10,16]21, (0, 8,9, 17)2;.
This gives a total of 226 = 124)(26) blocks.

A solution for v = 38 may be obtained somewhat similarly by taking a
KTS(33) on the points 0,1,...,32 which resolves into 16 parallel classes of
triples. Next take five new points a, b, ¢,d, e, place each of a,b,c,d on the
triples of four parallel classes, add the the 33 quadruples [e, 0, 1, 9]33, the 11
distinct quadruples obtained from [e,0,11,22]33 and a solution for 954)(5)
on {a,b,c,d,e}. Then add 22 blocks comprising two copies of each of the 11
distinct triples obtained from [0, 11,22]33, and finally add the 231 quadru-
ples [O, 1, 15, 16]33, [0, 2, 12, 16]33, [0, 2, 12, 15]33, [0, 6, 9, 13]33, [0, 5, 8, 13]33,
[0,7,9, 14]3, [0, 4, 10, 16]33. This gives a total of 482 = I{"(38) blocks.
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For v = 27 we give a solution in 1,24)(27) = 239 blocks having ten
triples and 229 quadruples. Take the point set to be {z} U AU B where
A ={0,1,...,7} and B = {0',1',...,17'}. Two main ingredients are re-
quired. The first is obtained from a 4-GDD of type 5'2° [1] by deleting the
group of size five. Take the resulting GDD, say G, of type 2° on the point set
B; we may assume that the nine groups of size two are 0'9’,1'10/,...,817.
This GDD has for its blocks 30 triples arranged into five parallel classes,
and a further nine quadruples. The second main ingredient is obtained
from a NKTS(18) on the point set B. This gives a PBD, say D, hav-
ing 48 triples arranged into eight parallel classes of triples together with
nine pairs forming a single parallel class of pairs which we may take to
be {0'9',1'10,...,8'17'}. The triples contributing to the solution are the
four distinct triples [z, 0,4]s plus the six triples forming one of the paral-
lel classes of G. The remaining blocks containing z are [z,0,1, 3]s (eight
quadruples) together with 24 quadruples obtained by placing = on each
triple of the remaining four parallel classes of G. A further nine quadru-
ples are those obtained directly from G and eight more are obtained from
[0,2,3,7]s. By this stage, = appears with every other point four times, every
pair from B (apart from the pairs 0'9',1'10’,...,8'17') appears once, the
pairs [0, 1]s, [0, 2]s, [0, 3]s, [0, 4]s (four distinct pairs) appear respectively 3,
2, 3, 3 times, and there are no pairs ab with a € A and b € B. To complete
the design, take three copies of D together with an additional parallel class
of pairs {0'9',1'10’,...,8'17'}. Place each point from A onto the triples of
three of the 24 parallel classes of triples arising from D to give 144 quadru-
ples. Then add the 32 quadruples

0109 12110 ... 707 16
2409 35110 ... 13716
5709 60110 ... 467 16
360'9 47110 ... 257 16

and a final four quadruples 04 8 17', 158 17, 26 8 17', 37 8' 17".

For v = 39 we give a solution in l,(,‘”(39) = 501 blocks having 14 triples
and 487 quadruples. Take the point set to be {z} U AU B U C where
A ={0,1,...,7}, B = {0,1,...,14'} and C = {0",1",...,14"}. The
first four triples contributing to the solution are the four distinct triples
[z,0,4]s. The first eight quadruples of the solution are given by [z,0, 1, 3]s
and a further four quadruples are given by taking two copies of each of
the two distinct quadruples from [0, 2, 4, 6)s. Next take a NKTS(30) on the
point set B U C to obtain a PBD, say D, having 140 triples arranged into
14 parallel classes of triples together with 15 pairs forming a single parallel
class of pairs which we may take to be {0'0"”,1'1",...,14'14"}. Then take
two copies of D and form 40 quadruples of the solution by placing z on each
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triple of four parallel classes. Form a further 240 quadruples by placing each
point from A on each triple of three of the remaining 24 parallel classes of
triples obtained from the two copies of D. By this stage, = appears with
every other point four times, every pair from B U C (apart from the pairs
0'0",1'1",...,14'14") appears twice, the pairs [0,1]s, [0,2]s, [0,3]s, [0,4]s
(four distinct pairs) appear respectively 1, 3, 1, 3 times, and each pair ad
with a € A and d € B U C appears three times. To complete a 4-covering
of pairs ad with @ € A and d € BU C and simultaneously a 4-covering of
pairs from A, take four copies of each of the pairs 0'0”,1/1”,...,14'14" and
assign these to 15 one-factors on A which cover the missing pairs from A.
One way of doing this is provided by the 60 quadruples

010'0" 230 0" 450 0" 670 0"
1211 3411 5611 70117
0122 2322 452 2" 672 2"
123 3" 343 3" 563 3" 703 3"
014 4" 234 4" 454 4" 674" 4"
125 5" 345 5" 565 5" 705 5"
026'6" 136'6" 466 6" 576 6"
2477 3577 607 7" 17T
038 8" 258" 8" 478 8" 618" 8"
149'9" 369'9" 509 9" 729 9"
0310°10" 2510'10" 4710 10" 6110 10"
141111 3611'11" 5011’11 7211 117
0312'12" 2512'12" 4712'12" 6112 12"
1413'13" 3613 13" 5013'13" 7213 13"
0414'14" 1514'14" 2614’ 14" 3714’ 14".

It now remains to construct ten triples and 135 quadruples on B U C
which cover every pair from B U C twice, apart from the pairs [0/,0"];5
which already appear four times. This may be achieved using [0/,5',10];5
(five distinct triples), [0”,5",10"];5 (five distinct triples), (0',1',3',7']:s,
[0", 1;1’311’ 7/1]15’ [0;, ll, 2//,311115’ [01, 21, 8", 12/1]15, [0/, 31, 1", 7:/]15’
[0r,4,11",14")35, [0/, 5',9",11"];5, [0',6',9",14"]s5, [0, 7',5",12"];5. Note
that the ten triples and first 30 quadruples just given cover all pure differ-
ences once and the remaining 105 quadruples cover all pure differences once
and all mixed differences, apart from zero, twice.

Summarizing the results of this section, we have shown that gy)(v) =
19 (v) for all v > 4.
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4 The case A =5

Table 5 lists the values of lg")(v) forv=12s+iwith0<i<1llandv > 4.
We will show that, depending on the value of ¢ and apart from v = 7,
)(v) = l?)(v) + 1. Furthermore, for v # 2,11
(mod 12) and with some small exceptions, the solution may be obtained by

either g§4) (v) = 1§,“’ (v) or g*

either combining solutions for g;

“(v) and g

(4

(v), or solutions for gg‘) (v)

and g:(,” (v). In the cases v = 2,11 (mod 12) we give direct constructions. In
the cases v =1 or 4 (mod 12) gé")(v) is also given directly by BIBDs with
all blocks of size 4. For v = 7, we show below that gé‘”(?) = l§4)(7) +2=

20 = g{(7) + g{" (7).

v l?) (v) gé‘” (v) Comments

12s 60s — s lg’) (v) gg) (v) + géq)(v)
12s+1 | 60s% + 5s 19 () V() + ¢ (v)
12s+2 |60s2+17s+2 |IM@w)+1 See subsequent text
125+3 {60s2+295+4 | i) 99 ) + ¢{Y ()
12s+4 | 60s?+355+5 l§4) () gé‘*)(v) + gg‘)(v)
125+5 |60s2+47s+10 |V (w)+1 Y () + ¢{ (v)
125+6 |60s2+59s+15 |1 (v) V() + g (v),s > 2
12s+7 |60s2+65s+18 |I(w)+1 a0 + W), s >1,v#7
125+8 |60s2+77s+25 |1V () +1 i) + ¢ w),s > 1
12s+9 | 60s2+89s5+33 |1V (v) i) + ¢l (v)

125 +10 | 60s2 +955+38 | 1Y) +1 A ) + ¢§ (v)

125 + 11 | 6052 + 107s + 48 lé“)(v) +1 See subsequent text

Table 5: gg“ (v)-

In order to establish the values of gé‘“ (v) given in the Table 5, we first
show that gé‘”(v) > lé")(v) for v = 2,5,7,8,10,11 (mod 12). To do this,
assume that there is a solution having lé") (v) blocks so that g2 + g3+ 94 =
lé‘”(v). Counting pairs gives g, + 3g3 + 6g4 = 5(‘2’) Note that if v = 2
(mod 3) this gives go = 2 (mod 3) and hence g2 > 2. Furthermore, for all
v, 592 + 3¢5 = 61" (v) - 5(3) = X(v), say, and for every point £ we have
ro(z) + 2r3(z) + 3ra(z) = 5(v — 1). Again if v = 2 (mod 3), this latter
equation gives ra(z) + 2r3(z) = 2 (mod 3), and so r2(z) + 2r3(z) > 2,
implying that every point z is in at least one small block.
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By computation, X (12s +2) = 125 + 7, giving 5g2 + 393 = 12s + 7 and
hence 2g; +3g3 < 125+ 1, implying that at least one point does not appear
in a small block, a contradiction. Similarly, X (12s + 5) = 12s + 10 giving
292 + 393 < 125 + 4, X(12s + 8) = 12s + 10 giving 29> + 393 < 125 + 4,
and X(12s +11) = 12s + 13 giving 2¢2 + 393 < 12s + 7, all of which yield
contradictions. In the case v = 12s + 7, we get r2(z) + 2r3(z) = 0 (mod 3)
for every z. However, X(12s + 7) = 3 which implies that (g2,93) = (0,1)
and hence that there exists a point z* for which r2(z*) = 0,73(z*) = 1, so
that ra(2*)+2r3(z*) = 2 (mod 3), a contradiction. In the case v = 125+10
we again have ry(z) + 2r3(z) = 0 (mod 3) for every z. But X (125s+10) =3
and this again gives a contradiction.

Appropriate combinations of solutions for gf\‘”(v) for A=1,2,3,4 now
establish the validity of the entries in Table 5 apart from the cases v =
12s+2and v = 12s+11, and with the exceptions of gé‘“(v) forv=26,7,8,18.

For gg")(G), a solution in l§4)(6) blocks is given by the three distinct
pairs [0, 3]s and the 12 quadruples [0, 1,2, 3]s, [0, 2, 3, 4)¢.

A solution for gé‘”(?) in l?’(?) + 1 = 19 blocks does not exist. To see
this, suppose the contrary and apply the usual arguments to show that
592 + 393 = 9. The only solution is (g2, 93,94) = (0,3,16). However, we
also get 72(x) + 2r3(z) + 3r4(z) = 30 for every z, and g, = 0 implies that
r2(z) = 0, so we can deduce that r3(z) = 0 or 3 for each z. So there is a
thrice repeated triple abc and the points a, b, ¢ each appear in eight quadru-
ples. But it is easy to see that we cannot arrange this in 16 quadruples with
each pair ab, ac, bc appearing twice amongst the quadruples. A solution
for g§4)(7) in l§4)(7) + 2 = 20 blocks is however easily constructed since

98(7) =7 and ¢ (7) = 13.

For ¢ (8), a solution in 1$”(8) + 1 = 26 blocks is given by

ab,ab, 024,135, ab01, ab23, ab45, a014, a014, a035, a035, a123, al125,
a234,a245, 5012, b023, 5035, b045, b125, b134, b134, b245, 0125, 0234, 1345.

For gé‘”(lS), we give a solution in lg4)(18) = 134 blocks having three
pairs, eight triples and 123 quadruples. We take the point set to be AU B
where A = {a,b,c,d,e, f} and B = {0,1,...,11}. Take five copies of a
one-factorization of the complete graph K¢ on A, giving 25 one-factors
each comprising three pairs. The three pairs of the solution are given
directly by one of these one-factors. Then place each of the 24 distinct
pairs [0,1]12,{0,5];2 onto the three pairs of each of one of the remaining
24 one-factors to give 72 quadruples of the solution. By this stage, every
pair of points from A appears five times, every pair of points {z,y} with
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z € A and y € B appears four times, and the pairs [0, 1];2, [0, 5}12 appear
three times. Next take [0,3,6,9];2 (three distinct quadruples), two copies
of [0,2,3,6]12 (24 quadruples), and two copies of [0,4,8]12 (eight triples).
These cover the pairs [0, 1}, twice, [0,2];2 twice, [0, 3];2 five times, {0,4]12
four times, and [0,6];2 five times. It remains to cover the pairs [0,2];2
three times, [0,4];2 once and [0, 512 twice, as well as one copy of each of
the pairs {z,y} with £ € A and y € B. This final step can be achieved
in 24 quadruples by starting with the 24 triples [0,2,4];2 and (0,2, 7)i2,
partitioning these into six parallel classes and placing each element of A
onto one of these classes. An explicit example of how this may be done is
as follows.

a 0 2 4 b 1 3 5 c 2 4 6
a 3 5 7 b 4 6 8 c 5 79
a 6 8 10 b 7 9 11 c 8 10 0
a 9 11 1 b 10 0 2 c 11 1 3
d 0o 2 7 e 1 3 8 f 2 49
d 3 5 10 e 4 6 11 f 5 70
d 6 8 1 e 7 9 2 f 8 10 3
d 9 11 4 e 10 0 5 f 11 1 6.

To treat the general case v = 12s + 11, we first give a solution for
v=11lin lg”(ll) +1 = 49 blocks. There are two pairs, three triples and 44
quadruples. We take the point set to be {a,b}U A where A = {0,1,...,8}.
The pairs are ab and ab. Next take an STS(7) on {0,1,...,6} and delete
the point 6 from the triples in which it lies to leave three pairs, P;, P; and
P;, together with four triples Ty,T,T3 and Ty. The three triples of the
solution are obtained by placing the points 6, 7 and 8 respectively onto
the pairs P;, P> and P;. We form 20 quadruples of the solution by placing
the pair ab onto each of the pairs P;, P» and P, the pairs 67, 68 and 78
respectively onto the pairs P3, P, and P, (note the order), the points 6,
7 and 8 each onto all four triples T},T%,T3 and Ty, and then taking two
additional quadruples a678 and 5678. The remaining 24 quadruples are
formed by adjoining a to the twelve blocks of any STS(9) on the base set
A, and doing likewise for b.

Using this solution we may obtain a general solution for v = 12s + 11
with s > 3. There exists a Q(s, 13%4!) for s > 3 having 56 parallel classes of
triples on 12s points. Take eleven new points, place each such point on the
triples of five parallel classes, and add a solution for gé‘“ (11) on the eleven
new points. The resulting design, which has two pairs, 4s + 3 triples and
6052 +103s+44 quadruples, establishes that ggq) (12s+11) = l§4)(12s+11)+1
for s > 3. The values of v = 11 (mod 12) omitted by this argument are
v = 23 and 35; we return to these later.
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To treat the general case v = 12s+2, we first give a solution for v = 14 in
lé")(14) +1 = 80 blocks. There are two pairs, five triples and 73 quadruples.
We take the point set to be {a,b,¢c,d,e, f} U A where A = {0,1,...,7}.
The pairs are ab and ab. The triples are ¢01,¢23, c45,¢67 and def. The
first four quadruples are ac01,ac23,bcd5,bc67 (note that both here and
in the triples, the pairs 01,23,45 and 67 form a one-factor of K3 on the
set A, call it F7). Add 48 further quadruples formed by adjoining each
of ad,ae,af,bd, be,bf,cd, ce,cf,de,df,ef to a one-factor of g where the
twelve one-factors together with the two occurrences of F) in the triples and
first four quadruples form two one-factorizations of Kg on the set A. Finally
add the 21 quadruples abed, abee, abef,a045,a156,a267,a347, 6017, 6036,
b124, 5235, 0123, 0146, 0245, 0267, 0357, 1257, 1347, 1356, 2346, 4567.

Using this solution we may obtain a general solution for v = 12s + 2
with s > 4. There exists a Q(s,16%7!) for s > 3 having 71 parallel classes
of triples on 12s points. Take 14 new points, place each such point on the
triples of five parallel classes, and add a solution for gé4)(14) on the 14
new points. The resulting design, which has two pairs, 4s + 5 triples and
60s2+1335+73 quadruples, establishes that g{*) (125+14) = I{*) (12s+14)+1
for s > 3. The values of v = 2 (mod 12) omitted by this argument are v = 26
and 38.

All that remains in this section is to discuss the outstanding values
v = 23,26, 35 and 38.

For g§4)(23) we give a solution in l§4)(23) + 1 = 216 blocks having two
pairs, seven triples and 207 quadruples. Take the point set to be {a,b}UAU
B where A = {0,1,...,5} and B = {0',1',...,14'}. The pairs are ab and
ab. The triples are 012,345 and [0",5',10);5. Twelve of the quadruples are
ab03, abl4, ab25,a015, a024, a123, 5045, b135, b234, 0134, 0235, 1245. By this
stage, the pair ab appears five times, every pair of points from A appears
three times, the pairs a0, al, a2, b3, b4, b5 appear three times and the pairs
ad, a4, a5, b0, b1, b2 appear twice. Next consider the following 15 one-factors
of the complete graph K3 on {a,b} U A.

Fo = {a0,b4,12,35} F, = {a0,b5,12,34} F, = {al, 3,02,45}
F3 = {a1,b5,02,34} F; = {a2,b3,01,45} F; = {a2,b4,01,35}
Fe = {a3,00,14,25} Fy = {a3,b1,05,24} Fj = {a3,b2,04,15}
Fy = {a4,0,15,23}  Fio = {a4,b1,03,25} Fy; = {a4,b2,05,13}
Fi» = {a5,00,13,24} Fi3 = {a5,b1,04,23} Fi4 = {a5,b2,03,14}
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These 15 one-factors cover all remaining pairs from the set {a,b} U A. Now
place the points i’ and (i+4)', 0 < i < 14 on each of the four pairs in F;, thus
forming 60 further quadruples. Here each point of {a,b} U A appears with
each point of B precisely twice and, together with the triples [0',5',10']15
already included, the pairs [0',4');s are covered four times and the pairs
[0",5')15 are covered once. Next include the 15 quadruples (0',2',5',8'];5 and
consider the eight sets of triples (each of 15 triples) [0, 1',3');s,[0',1', 315,
[OI) 1’, 7!]15’ [0’) 1’) 7’1157 [Ol’ 11, 71]15” [0’) 2’1 5’]153 [Ola 2” 7’]15) [OI, 4,’ 9']15.
Note that these cover the pairs [0’,4];5 once, the pairs [0,5'];5 four times
and all remaining pairs from B five times. Finally adjoin each point of
{a,b} U A to one of these sets of 15 triples to form 120 additional quadru-
ples, thereby completing the design.

For g§4)(26) we give a solution in l§4)(26) + 1 = 277 blocks having
two pairs, nine triples and 266 quadruples. Take the point set to be
{a,b,c,d,e} U A where A= {0,1,...,20}. A solution for g§4)(5) on {a,b,c,
d,e} gives the two pairs, two of the triples and seven of the quadruples.
Take the seven additional triples as [0, 7, 14]2;. Next consider two copies of
a KTS(21) on the base set A. This gives 140 triples arranged into 20 parallel
classes. Put each of a,b, c and d onto five of these classes to give a further
140 quadruples. By this stage every pair of points from {a, b, ¢, d} appears
five times, every pair az,br,cz and dz for x € A appears five times, and
every pair from A appears twice apart from the pairs [0, 7]2; which appear
three times. The design is completed by adding the quadruples [e,0, 7, 14]2;
twice (14 blocks), [e,0,1,4]21,[0,1,4,9]21,[0,1,10,16]21,[0,2,4,13)2; and
[0,2,8,18]a1.

For g§4)(35) we give a solution in l§4)(35) + 1 = 503 blocks having two
pairs, eleven triples and 490 quadruples. Take the point set to be AU B
where A = {a,b,c,d,e, f,g,h,%,j,k} and B = {0,1...,23}. A solution
for gg‘)(ll) on A gives the two pairs, three of the triples and 44 of the
quadruples. Next consider five non-identical NKTS(24)s on the base set
B. Each of these five designs has 100 blocks comprising twelve pairs which
form a one-factor of B, and 88 triples arranged into eleven parallel classes
of triples. The five systems are chosen so that the five one-factors are as
listed in the columns below.
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Fi Fy F Fy Fy

0,1 0,5 0,8 0,16 0,4
2,3 1,4 1,9 1,17 1,5
4,5 2,7 2,10 2,18 2,6
6,7 3,6 3,11 3,19 3,7
8,9 8,13 4,12 4,20 8,16
10,11 9,12 5,13 5,21 9,17
12,13 10,15 6,14 6,22 10,18

14,15 11,14 7,15 7,23 11,19
16,17 16,21 16,20 8,12 12,20
18,19 17,20 17,21 9,13 13,21
20,21 18,23 18,22 10,14 14,22
22,23 19,22 19,23 11,15 15,23

Place each point of A onto five of the 55 parallel classes of triples obtained
from the NKTS(24)s, giving a further 440 quadruples. By this stage every
pair of points from A appears five times, every pair az for a € A and
z € B appears five times, and every pair from B appears five times apart
from the pairs which appear in Fi, F;, F3, Fy and F5. The pairs from these
one-factors may be incorporated into the following eight triples and six
quadruples: [0,8,16]24 (eight blocks), {0,1,4,5}, {2,3,6,7}, {8,9,12,13},
{10,11,14,15}, {16,17, 20,21}, {18, 19,22, 23}. These complete the design.

For g§4)(38) we give a solution in l§4)(38) + 1 = 594 blocks having two
pairs, 13 triples and 579 quadruples. Take the point set to be {a,b,c,d,e}U
A where A = {0,1,...,32}. A solution for géd) (5) on {a,b,c, d, e} gives the
two pairs, two of the triples and seven of the quadruples. Next consider a
KTS(33) on the base set A. This has 176 triples arranged into 16 parallel
classes. Put each of a,b and ¢ onto five of these classes to give a further
165 quadruples, leaving one parallel class of eleven triples which we may
take to be [0,11,22]33 and which we also include in the solution. Next
take [d,0,11,22]33 twice (22 blocks) and [e,0,11,22]33 twice (22 blocks)
to give a further 44 quadruples. By this stage every pair of points from
{a,b,¢,d,e} appears five times, every pair az,bz and cx for z € A ap-
pears five times, every pair dz and ez for z € A appears twice, and ev-
ery pair from A appears once apart from the pairs [0,11]33 which appear
five times. The design is completed with the following 363 quadruples:
[d1 0: 2, 7]33! [C, 01 6» 14]33, [Oa 11 3! 15]331 [0! 11 4: 9]331 [O) 1) 4) 16]33)

[Os 1’ 101 29]33) [01 2; 8: 18]33) [07 2) 10, 20]33: [O’ 3: 9’ 16]33) [0) 41 167 28]33)
[0,6,13,20]33.
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This completes the case A = 5. Summarizing the results of this section,
we have shown that gé“)(v) = l?) (v) forv=0,1,3,4,6,9 (mod 12) and that,
with the exception of v = 7, gé‘”(’u) = l,(f)(v) +1forv = 2,5,7,8,10,11
(mod 12). The single exceptional value is g§4)(7) = 20.
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