# LIFTS OF AUTOMORPHISMS OF SYMMETRIC DIGRAPHS ASSOCIATED WITH CYCLIC ABELIAN COVERS III

Iwao SATO\*
Oyama National College of Technology,
Oyama, Tochigi 323-0806, JAPAN

#### Abstract

Let D be a connected symmetric digraph,  $\Gamma$  a group of automorphisms of D, and A a finite abelian group. For a cyclic A-cover of D, we consider a lift of  $\gamma \in \Gamma$ , and the associated group automorphism of some subgroup of Aut A. Furthermore, we give a characterization for any  $\gamma \in \Gamma$  to have a lift in terms of some matrix.

Key words: digraph automorphism; digraph covering; lift

## 1 Introduction

Graphs and digraphs treated here are finite and simple.

Let G be a graph and D(G) the arc set of the symmetric digraph corresponding to G. For  $e=(u,v)\in D(G)$ , let i(e)=u and t(e)=v. The inverse arc of e is denoted by  $e^{-1}$ . A walk P in G is a sequence  $P=(e_1,\cdots,e_l)$  of arcs with  $t(e_i)=i(e_{i+1})$  for  $i=1,\cdots,l-1$ . Also, P is called an  $(i(e_1),t(e_l))$ -walk. Furthermore, set  $P^{-1}=(e_l^{-1},\cdots,e_1^{-1})$  A (v,w)-walk is called a closed v-walk if v=w. For two walks  $P=(e_1,\cdots,e_m)$  and  $Q=(f_1,\cdots,f_l)$  such that  $t(e_m)=i(f_1)$ , set  $PQ=(e_1,\cdots,e_m,f_1,\cdots,f_l)$ .

A graph H is called a *covering* of a graph G with projection  $\pi: H \longrightarrow G$  if there is a surjection  $\pi: V(H) \longrightarrow V(G)$  such that  $\pi|_{N(v')}: N(v') \longrightarrow N(v)$  is a bijection for all vertices  $v \in V(G)$  and  $v' \in \pi^{-1}(v)$ . The projection  $\pi: H \longrightarrow G$  is an n-fold covering of G if  $\pi$  is n-to-one. A covering  $\pi: H \longrightarrow G$  is said to be regular if there is a subgroup G of the automorphism group G and G is freely on G such that the quotient graph G is isomorphic to G.

<sup>\*</sup>Supported by Grant-in-Aid for Science Research (C)

Let G be a graph and A a finite group. Then a mapping  $\alpha: D(G) \longrightarrow A$  is called an *ordinary voltage assignment* if  $\alpha(v, u) = \alpha(u, v)^{-1}$  for each  $(u, v) \in D(G)$ . The ( *ordinary* ) *derived graph*  $G^{\alpha}$  derived from an ordinary voltage assignment  $\alpha$  is defined as follows:

$$V(G^{\alpha}) = V(G) \times A$$
, and  $((u, h), (v, k)) \in D(G^{\alpha})$  if and only if  $(u, v) \in D(G)$  and  $k = h\alpha(u, v)$ .

The graph  $G^{\alpha}$  is called an A-covering of G. The A-covering  $G^{\alpha}$  is an |A|-fold regular covering of G. Every regular covering of G is an A-covering of G for some group A (see [2]).

Cheng and Wells [1] discussed isomorphism classes of cyclic triple covers (1-cyclic  $\mathbb{Z}_3$ -covers) of a complete symmetric digraph. For a connected symmetric digraph D and a finite group A, Mizuno and Sato [6] introduced a cyclic A-cover of D as a generalization of regular covering graphs and cyclic triple covers, and discussed the number of isomorphism classes of cyclic A-covers of D with respect to the group  $\Gamma$  of automorphisms of D.

Let D be a symmetric digraph and A a finite group. Let A(D) be the set of arcs in D. A function  $\alpha: A(D) \longrightarrow A$  is called alternating if  $\alpha(y,x) = \alpha(x,y)^{-1}$  for each  $(x,y) \in A(D)$ . Let C(D) denote the set of alternating functions from A(D) to A. For  $g \in A$ , a g-cyclic A-cover  $D_g(\alpha)$  of D is the digraph as follows:

$$V(D_g(\alpha)) = V(D) \times A$$
, and  $((u, h), (v, k)) \in A(D_g(\alpha))$  if and only if  $(u, v) \in A(D)$  and  $k^{-1}h\alpha(u, v) = g$ .

The natural projection  $\pi: D_g(\alpha) \longrightarrow D$  is a function from  $V(D_g(\alpha))$  onto V(D) which erases the second coordinates. A digraph D' is called a cyclic A-cover of D if D' is a g-cyclic A-cover of D for some  $g \in A$ . In the case that A is abelian, then  $D_g(\alpha)$  is called simply a cyclic abelian cover. Furthermore the 1-cyclic A-cover  $D_1(\alpha)$  of a symmetric digraph D can be considered as the A-covering  $G^{\alpha}$  of the underlying graph G of D.

Let  $\alpha$  and  $\beta$  be two alternating functions from A(D) into A, and let  $\Gamma$  be a subgroup of the automorphism group  $Aut\ D$  of D, denoted  $\Gamma \leq Aut\ D$ . Let  $g,h \in A$  and  $\gamma \in \Gamma$ . Then two cyclic A-covers  $D_g(\alpha)$  and  $D_h(\beta)$  are called  $\gamma$ -isomorphic, denoted  $D_g(\alpha) \cong_{\gamma} D_h(\beta)$ , if there exists an isomorphism  $\Phi: D_g(\alpha) \longrightarrow D_h(\beta)$  such that  $\pi \Phi = \gamma \pi$ , i.e., the diagram

$$D_{g}(\alpha) \xrightarrow{\Phi} D_{h}(\beta)$$

$$\pi \downarrow \qquad \qquad \downarrow \pi$$

$$D \xrightarrow{\gamma} D$$

commutes. Furthermore, cyclic A-covers  $D_g(\alpha)$  and  $D_h(\beta)$  are called  $\Gamma$ -isomorphic, denoted  $D_g(\alpha) \cong_{\Gamma} D_h(\beta)$ , if there exist an isomorphism  $\Phi: D_g(\alpha) \longrightarrow D_h(\beta)$  and  $\gamma \in \Gamma$  such that  $\pi \Phi = \gamma \pi$ . Let  $I = \{1\}$  be the trivial group of automorphisms.

Let D be a symmetric digraph, A a finite group,  $\alpha \in C(D)$  and  $\Gamma \leq Aut \ D$ . Furthermore, let  $g \in A$  and  $\gamma \in \Gamma$ . Then an automorphism  $\Phi$  of the g-cyclic A-cover  $D_g(\alpha)$  is called a *lift* of  $\gamma$  such that  $\pi \Phi = \gamma \pi$ . If each  $\gamma \in \Gamma$  has a lift, then the set of all such lifts is called the *lifted group* or the *lift* of  $\Gamma$ .

Širáň [9] gave a necessary and sufficient condition for graph automorphisms to have a lift, and discussed the lift of a group of automorphisms of a graph which is a split extension of the voltage group by it. Associated with lifts of a group of automorphisms of a graph, Gvozdjak and Širáň [4] presented a construction of highly symmetric regular maps. A general approarch based on group actions and their morphisms to coverings of topological spaces related to graphs can be found in Malnič [5]. Sato [7] gave a necessary and sufficient condition for a group  $\Gamma$  of automorphisms of a symmetric digraph D to have a lift with respect to a g-cyclic A-cover of D for a finite group A, and discussed the lift of  $\Gamma$  which is isomorphic to a split extension of A by  $\Gamma$  for a finite abelian group A and a  $q \in A$  of odd order. Furthermore, Sato [8] discussed the lift of  $\Gamma$  which is isomorphic to a split extension of A by  $\Gamma$  for a finite abelian group A. Širáň [10] presented an algebraic characterization for an automorphism of a graph to lift to an automorphism of its A-covering for a finite abelian group A by using certain matrices and orthogonality in Z-modules.

In Sections 2 and 3 we consider a lift of  $\gamma \in \Gamma$ , and describe the compatibility of alternating function and the associated group automorphism of some subgroup of  $Aut\ A$ . In Section 4 we give a characterization for any  $\gamma \in \Gamma$  to have a lift in terms of some matrix. In Section 5 we discuss characterizations for any  $\gamma \in \Gamma$  to have a lift in the special cases.

A general theory of graph coverings is developed in [3].

## 2 Compatible, proper voltage assignments

Let D be a connected symmetric digraph and A a finite group. For any  $\alpha \in C(D)$ ,  $g \in A$  and walk W in G, the *net-g-voltage* of W, denoted  $\alpha_g(W)$ , is defined by

$$\alpha_{\mathbf{g}}(W) = \alpha(e_1)g^{-1} \cdots \alpha(e_n)g^{-1}, W = (e_1, \cdots, e_n).$$

Note that the net-1-voltage of W is the net-voltage of W, where 1 is the unit of A(see [3]).

An alternating function  $\alpha: A(D) \longrightarrow A$  is called *g-proper* if there exists some closed *u*-walk W of D such that  $\alpha_g(W) = h$  for each  $u \in V(D)$  and  $h \in A$ . If  $\alpha$  is *g*-proper, then there exists a (u, v)-walk W such that  $\alpha_g(W) = h$  for any  $u, v \in V(D)$  and any  $h \in A$ . In the *g*-cyclic A-cover  $D_g(\alpha)$ , set  $v_h = (v, h)$  and  $e_h = (e, h)$ , where  $v \in V(D)$ ,  $e \in A(D)$ ,  $h \in A$ . For  $e = (u, v) \in A(D)$ , the arc  $e_h$  emanates from  $u_h$  and terminates at  $v_{h\alpha_g(e)}$ .

Let  $\Gamma \leq Aut \ D$ . For a  $\gamma \in \Gamma$ ,  $\alpha$  is called  $\gamma - g$ -compatible if for each

vertex  $u \in V(D)$ ,

$$\alpha_g(W) = 1$$
 if and only if  $\alpha_g(\gamma(W)) = 1$ 

for each closed u-walk W of D, and

$$\alpha_g(U) = \alpha_g(V)$$
 if and only if  $\alpha_g(\gamma(U)) = \alpha_g(\gamma(V))$ 

for any two closed u-walks U,V of D. Note that the second condition is obtained from the first condition if g=1. Furthermore,  $\alpha$  is called  $\Gamma-g$ -compatible if  $\alpha$  is  $\gamma-g$ -compatible for each  $\gamma\in\Gamma$ .

Sato [7] gave a condition for  $\Gamma$  to have a lift.

**Theorem 1** (Sato) Let D be a connected symmetric digraph, A a finite group,  $\Gamma \leq Aut \ D$ ,  $g \in A$  and  $\alpha \in C(D)$ . Then a  $\gamma \in \Gamma$  has a lift if and only if  $\alpha$  is  $\gamma - g$ -compatible. If, in addition,  $\alpha$  is g-proper, then, for a fixed vertex u, all lifts of a  $\gamma \in \Gamma$  are of the form  $\gamma_{h,u}$ ,  $h \in A$ :

$$\gamma_{h,u}((v,w)_{\alpha_g(U)}) = (\gamma(v),\gamma(w))_{h\alpha_g(\gamma U)} \text{ for any } (u,v) - walk U.$$

## 3 Lifts of automorphisms

From now on, assume that A is abelian.

Let D be a connected symmetric digraph, G its underlying graph and A a finite abelian group. The set of ordinary voltage assignments of G with voltages in A is denoted by  $C^1(G;A)$ . Note that  $C(D)=C^1(G;A)$ . Furthermore, let  $C^0(G;A)$  be the set of functions from V(G) into A. We consider  $C^0(G;A)$  and  $C^1(G;A)$  as additive groups. The homomorphism  $\delta: C^0(G;A) \longrightarrow C^1(G;A)$  is defined by  $(\delta s)(x,y)=s(x)-s(y)$  for  $s \in C^0(G;A)$  and  $(x,y) \in A(D)$ . For each  $\alpha \in C^1(G;A)$ , let  $[\alpha]$  be the element of  $C^1(G;A)/Im\delta$  which contains  $\alpha$ .

The group  $\Gamma$  of automorphisms of D acts on  $C^0(G;A)$  and  $C(D) = C^1(G;A)$  by

$$s^{\gamma}(x) = s(\gamma(x))$$
 for all  $x \in V(G)$ 

and

$$\alpha^{\gamma}(x,y) = \alpha(\gamma(x),\gamma(y)) \text{ for all } (x,y) \in A(D),$$

where  $s \in C^0(G; A)$ ,  $\alpha \in C(D)$  and  $\gamma \in \Gamma$ . The automorphism group  $Aut\ A$  acts on  $C^0(G; A)$  and  $C^1(G; A)$  as follows:

$$(\sigma s)(x) = \sigma(s(x)) \text{ for } x \in V(D),$$

$$(\sigma\alpha)(x,y) = \sigma(\alpha(x,y)) \text{ for } (x,y) \in A(D),$$

where  $s \in C^0(G; A)$ ,  $\alpha \in C^1(G; A)$  and  $\sigma \in Aut A$ .

For  $g \in A$  and a g-proper alternating function  $\alpha : A(D) \longrightarrow A$ , the subgroup  $A_{\alpha-g}$  of A generated by all net g-voltages of the closed v-walks for any  $v \in V(D)$  is equal to A, and so  $D_g(\alpha)$  is connected.

For a function  $f: A(D) \longrightarrow A$ , the *net-f-value* of W, denoted f(W), is defined by

$$f(W) = f(e_1) \cdots f(e_n), W = (e_1, \cdots, e_n).$$

Form [8, Theorem 3], the following result follows. Let  $d_T(u, v)$  be the distance between u and v in T.

Theorem 2 (Sato) Let D be a connected symmetric digraph, A a finite abelian group,  $g \in A \setminus \{0\}$  and  $\alpha \in C(D)$ . Furthermore, let G be the underlying graph of D, T a spanning tree of G and  $\Gamma \leq A$ ut D. Assume that  $\alpha$  is g-proper. Then, for  $\gamma \in \Gamma$ , the following are equivalent:

- 1.  $\alpha$  is  $\gamma g$ —compatible.
- 2. There exist an automorphism  $\sigma_{\gamma} \in (AutA)_{2g}$  and  $s \in C^0(G,A)$  such that

$$\alpha_{\epsilon q}^{\gamma} = \sigma_{\gamma} \alpha_{\epsilon q} + \delta s,$$

i.e.,

$$\alpha^{\gamma}(u,v) - \epsilon^{\gamma}(u,v)g = \sigma_{\gamma}(\alpha(u,v) - \epsilon(u,v)g) + \delta s(u,v),$$

where

$$\epsilon^{\gamma}(u,v) = \left\{ egin{array}{ll} 1 & \emph{if the distance } d_{\gamma T}(\gamma u, \gamma v) \emph{ is even,} \\ 0 & \emph{otherwise,} \end{array} 
ight.$$

and 
$$\epsilon(u,v) = \epsilon^1(u,v)$$
.

Furthermore, if either of the above conditions is satisfied, then we have

$$\sigma_{\gamma}\alpha_{\epsilon g}(W) = \alpha_{\epsilon g}^{\gamma}(W),$$

i.e.,

$$\alpha^{\gamma}(W) - \sum_{e \in W} \epsilon^{\gamma}(e)g = \sigma_{\gamma}(\alpha(W) - \sum_{e \in W} \epsilon(e)g),$$

where W is any closed walk in D based at a fixed vertex u.

For  $(v, z) \in A(T)$ , we have  $d_T(v, z) = 1$ , and so  $\epsilon(v, z) = 0$ .

### 4 Matrices

We begin with recalling a few basic concepts from [10]. Let D be a connected symmetric digraph, G the underlying graph of D and T a spanning tree of G. Let  $E(G) \setminus E(T) = \{e_1, \dots, e_r\}$  be the set of all cotree edges, and let  $E(T) = \{e_{r+1}, \dots, e_{r+t}\}$  be the set of all edges of T. For any edge  $e_i$   $(1 \le i \le r+t)$ , we fix one of the two arcs corresponding to  $e_i$ . We denote this fixed arc by  $x_i$ . Set  $X = \{x_i \mid 1 \le i \le r+t\}$ .

Let  $\Gamma \leq Aut \ D$  and  $\gamma \in \Gamma$ . For  $1 \leq i \leq r$ , Let  $C_i$  be the unique (directed) cycle of the subgraph  $T + e_i$  containing  $x_i$ . All the remaining arcs of  $C_i$  come from edges in T. We consider the image  $\gamma(C_i)$  of  $C_i$ . Each arc of  $\gamma(C_i)$  is either of the form  $x_j$  or of the form  $x_j^{-1}$  for some  $j(1 \leq i \leq r + t)$ . Let

$$\gamma(C_i)=(x_{j_1}^{\epsilon_1},\cdots,x_{j_s}^{\epsilon_s}),$$

where  $\epsilon_m \in \{+1, -1\}$   $(1 \le m \le s)$  are suitable exponents. Then we define an  $r \times (r+t)$  matrix  $\mathbf{C}_T(\gamma) = (c_{ij})$  as follows:

$$c_{ij} = \left\{ \begin{array}{ll} \epsilon_m & \text{if } j = j_m \ (1 \leq m \leq s), \\ 0 & \text{otherwise} \ . \end{array} \right.$$

The matrix  $C_T(\gamma)$  is called the *cycle basis matrix* of D cooresponding to  $\gamma$  and T. Furthermore, the  $r \times r$  matrix  $L_T(\gamma)$  formed by the first r columns of  $C_T(\gamma)$  is called the T-reduced matrix of  $\gamma$  (see [10]).

Let A a finite abelian group,  $g \in A \setminus \{0\}$  and  $\alpha \in C(D)$ . Then the T-voltage  $\alpha_T$  of  $\alpha$  is defined as follows:  $\alpha_T(u,v) = \alpha(P_u) + \alpha(u,v) - \alpha(P_v)$  for each  $(u,v) \in A(D)$ , where  $P_u$  is the unique path from a fixed vertex w to u in T etc. Note that  $\alpha_T(x) = 0$  for each  $x \in A(T)$ . Furthermore, it is well known that  $D_g(\alpha) \cong {}_I D_g(\alpha_T)$ . A  $\beta \in C(D)$  is called T-reduced if  $\beta(x) = 0$  for each  $x \in A(T)$ . Suppose that  $\alpha$  is T-reduced. Let  $\alpha_i = \alpha(x_i)$ ,  $1 \le i \le r$  and let

$$\bar{\alpha}={}^t(\alpha_1,\cdots,\alpha_r),$$

where  $^t(\alpha_1, \dots, \alpha_r)$  is the transpose of  $(\alpha_1, \dots, \alpha_r)$ . Then  $\bar{\alpha}$  is called *T-reduced voltage vector*. Furthermore, let

$$\vec{\epsilon} = {}^t(\epsilon(x_1), \cdots, \epsilon(x_r)).$$

For any  $\sigma \in AutA$ , let

$$\sigma(\bar{\alpha}) = {}^{t}(\sigma(\alpha_1), \cdots, \sigma(\alpha_r)).$$

Now, we give a characterization for any  $\gamma \in \Gamma$  to have a lift in terms of some matrix.

Theorem 3 Let D be a connected symmetric digraph, A a finite abelian group,  $g \in A \setminus \{0\}$  and  $\alpha \in C(D)$ . Furthermore, let G be the underlying graph of D, T a spanning tree of G and  $\Gamma \leq A$ ut D. For  $\gamma \in \Gamma$ , let  $\mathbf{L} = \mathbf{L}_T(\gamma)$ . Assume that  $\alpha$  is g-proper and  $\alpha$  is T-reduced. Then the following two statements are equivalent:

- 1.  $\alpha$  is  $\gamma g$ -compatible.
- 2. There exists an automorphism  $\sigma \in (Aut \ A)_{2g}$  such that

$$\mathbf{L}\bar{\alpha} = \sigma(\bar{\alpha}) - (\sigma(g) - g)\bar{\epsilon}.$$

**Proof.** Let u be a root of T.

 $1 \Rightarrow 2$ : Let  $\mathbf{L}_i$   $(1 \le i \le r)$  denote the *i* th row of the matrix  $\mathbf{L}$ . Then we have

$$\mathbf{L}_i\bar{\alpha}=\alpha^{\gamma}(C_i),$$

where  $C_i$  is the unique cycle contained in  $T + x_i$ .

Let  $W_i$  be any closed u-walk contained in  $T + x_i$ . Then we have

$$\alpha(W_i) = \alpha(C_i) = \alpha(x_i).$$

By the hypothesis and Theorem 2, there exists  $\sigma \in (AutA)_{2g}$  such that

$$\alpha^{\gamma}(W_i) - \sum_{e \in W_i} \epsilon^{\gamma}(e)g = \sigma(\alpha(W_i) - \sum_{e \in W_i} \epsilon(e)g).$$

Furthermore,

$$\alpha^{\gamma}(W_i) = \alpha^{\gamma}(C_i)$$
 and  $\epsilon^{\gamma}(e) = \epsilon(e) = 0$ ,  $\forall e \in A(T)$ .

Thus,

$$\begin{aligned} \mathbf{L}_i \bar{\alpha} - \epsilon^{\gamma}(x_i) g &= \alpha^{\gamma}(C_i) - \epsilon^{\gamma}(x_i) g \\ &= \sigma(\alpha(C_i) - \epsilon(x_i) g) \\ &= \sigma(\alpha(x_i) - \epsilon(x_i) g) \\ &= \sigma(\alpha_i) - \epsilon(x_i) \sigma(g), \end{aligned}$$

i.e.,

$$\mathbf{L}_i\bar{\alpha} = \sigma(\alpha_i) - (\sigma(g) - g)\epsilon(x_i).$$

Therefore, it follows that

$$\mathbf{L}\bar{\alpha} = \sigma(\bar{\alpha}) - (\sigma(g) - g)\bar{\epsilon}.$$

 $2 \Rightarrow 1$ : Let  $W = (\cdots, x_{i_1}^{\epsilon_1}, \cdots, x_{i_2}^{\epsilon_2}, \cdots, x_{i_m}^{\epsilon_m}, \cdots)$  be any closed *u*-walk in D, where  $x_i$  is the (not necessarily distinct) cotree arcs,  $\epsilon_l = \pm 1$  and the dotted spaces correspond to arcs in T. Then we have

$$\alpha(W) = \epsilon_1 \alpha_{i_1} + \cdots + \epsilon_m \alpha_{i_m} = y_1 \alpha_1 + \cdots + y_r \alpha_r = \bar{y}\bar{\alpha},$$

where  $\bar{y} = (y_1, \dots, y_r)$  and each  $y_i$  is the integer determined by the number of times the walk W traverses the arc  $x_i$  minus the number of times W traverses the inverse  $x_i^{-1}$ .

Now, let  $W_i$  be the unique closed u-walk in  $T + x_i$ . Then the walk W is "homotopic" to the walk

$$W'=W_{i_1}^{\epsilon_1}\cdots W_{i_m}^{\epsilon_m}.$$

Thus,

$$\alpha(W) = \alpha(W') = \alpha(W_{i_1}^{\epsilon_1}) + \cdots + \alpha(W_{i_m}^{\epsilon_m}) = \epsilon_1 \alpha_{i_1} + \cdots + \epsilon_m \alpha_{i_m}.$$

But, the walk  $\gamma(W)$  is homotopic to the walk  $\gamma(W')$ . Furthermore, we have

$$\alpha^{\gamma}(W) = \alpha^{\gamma}(W') = \epsilon_1 \alpha^{\gamma}(W_{i_1}) + \cdots + \epsilon_m \alpha^{\gamma}(W_{i_m}).$$

Since  $\mathbf{L}_i \bar{\alpha} = \alpha^{\gamma}(W_i)$ , we have

$$\alpha^{\gamma}(W) = \epsilon_1(\mathbf{L}_{i_1}\bar{\alpha}) + \cdots + \epsilon_m(\mathbf{L}_{i_m}\bar{\alpha}) = y_1(\mathbf{L}_1\bar{\alpha}) + \cdots + y_r(\mathbf{L}_r\bar{\alpha}) = \bar{y}(\mathbf{L}\bar{\alpha}).$$

Now, we have

$$\alpha_g(W) = \alpha(W) - |W| g = \bar{y}\bar{\alpha} - |W| g. \tag{1}$$

and

$$\alpha_{\alpha}^{\gamma}(W) = \alpha^{\gamma}(W) - |W| g = \bar{y}(\mathbf{L}\bar{\alpha}) - |W| g. \tag{2}$$

We see that  $\alpha_g(W) = 0$  if and only if  $\bar{y}\bar{\alpha} = |W|g$ . But,

$$\bar{y}\mathbf{L}\bar{\alpha} = \bar{y}\sigma(\bar{\alpha}) - (\sigma(g) - g)\bar{y}\bar{\epsilon} = \sigma(\bar{y}\bar{\alpha}) - (\sigma(g) - g)\bar{y}\bar{\epsilon},$$

and so  $\alpha_g(W) = 0$  if and only if

$$\bar{y}\mathbf{L}\bar{\alpha} = \sigma(\mid W \mid g) - (\sigma(g) - g)\bar{y}\bar{\epsilon}.$$

Since  $\sigma(2g) = 2g$ , we have

$$\sigma(\mid W \mid g) = \begin{cases} \mid W \mid g & \text{if } \mid W \mid \text{is even,} \\ (\mid W \mid -1)g + \sigma(g) & \text{if } \mid W \mid \text{is odd.} \end{cases}$$
 (3)

By (2),  $\alpha_g(W) = 0$  if and only if

$$\alpha_g^{\gamma}(W) = \left\{ \begin{array}{ll} -(\sigma(g)-g)\bar{y}\bar{\epsilon} & \text{if } \mid W \mid \text{is even,} \\ -(\sigma(g)-g)(\bar{y}\bar{\epsilon}-1) & \text{otherwise.} \end{array} \right.$$

By the fact that  $\epsilon(x_i) \equiv |C_i| \equiv |W_i| \pmod{2}$   $(1 \leq i \leq r)$ , we have

$$\bar{y}\bar{\epsilon} \equiv \sum_{k=1}^{m} |W_{i_k}| \equiv \sum_{k=1}^{m} |C_{i_k}| \equiv |W| \pmod{2}. \tag{4}$$

Therefore, it follows that

$$\alpha_g(W) = 0$$
 if and only if  $\alpha_g(\gamma(W)) = 0$ .

Next, let U, V be any two closed u-walks of D. Set  $\alpha(U) = \bar{u}\bar{\alpha}$  and  $\alpha(V) = \bar{v}\bar{\alpha}$ . By (1),  $\alpha_g(U) = \alpha_g(V)$  if and only if  $\alpha(U) - \alpha(V) = (|U| - |V|)g$ , i.e.,

$$\bar{u}\bar{\alpha} - \bar{v}\bar{\alpha} = (\bar{u} - \bar{v})\bar{\alpha} = (|U| - |V|)g.$$

Then we have

$$(\bar{u} - \bar{v})\mathbf{L}\bar{\alpha} = (\bar{u} - \bar{v})(\sigma(\bar{\alpha}) - (\sigma(g) - g)\bar{\epsilon})$$

$$= \sigma((\bar{u} - \bar{v})\bar{\alpha}) - (\sigma(g) - g)(\bar{u} - \bar{v})\bar{\epsilon}$$

$$= \sigma((|U| - |V|)g) - (\sigma(g) - g)(\bar{u} - \bar{v})\bar{\epsilon}$$

As in (3), we have

$$\sigma((\mid U\mid -\mid V\mid)g) = \left\{ \begin{array}{ll} (\mid U\mid -\mid V\mid)g & \text{if } \mid U\mid -\mid V\mid \text{is even,} \\ (\mid U\mid -\mid V\mid -1)g + \sigma(g) & \text{otherwise.} \end{array} \right.$$

By (2),  $\alpha_g(U) = \alpha_g(V)$  if and only if

$$\alpha_g^{\gamma}(U) - \alpha_g^{\gamma}(V) = \left\{ \begin{array}{ll} -(\sigma(g) - g)(\bar{u} - \bar{v})\bar{\epsilon} & \text{if } \mid U \mid - \mid V \mid \text{is even,} \\ -(\sigma(g) - g)((\bar{u} - \bar{v})\bar{\epsilon} - 1) & \text{otherwise.} \end{array} \right.$$

(4) implies that

$$\alpha_q(U) = \alpha_q(V)$$
 if and only if  $\alpha_q(\gamma(U)) = \alpha_q(\gamma(V))$ .

Hence,  $\alpha$  is  $\gamma - g$ —compatible. Q.E.D.

## 5 Special cases

Now, we present a characterization for any  $\gamma \in \Gamma$  to have a lift in some special cases. Let ord(g) be the order of  $g \in A$ .

Corollary 1 Let D be a connected symmetric digraph, A a finite abelian group,  $g \in A \setminus \{0\}$  and  $\alpha \in C(D)$ . Furthermore, let G be the underlying graph of D, T a spanning tree of G and  $\Gamma \subseteq A$ ut D. For  $\gamma \in \Gamma$ , let  $L = L_T(\gamma)$ . Assume that  $\alpha$  is g-proper and  $\alpha$  is T-reduced. If  $\operatorname{ord}(g)$  is odd or G is a bipartite graph, then the following two statements are equivalent:

- 1.  $\alpha$  is  $\gamma g$ -compatible.
- 2. There exists an automorphism  $\sigma \in (Aut \ A)_{2a}$  such that

$$\mathbf{L}\bar{\alpha} = \sigma(\bar{\alpha}).$$

**Proof.** In the case that ord(g) is odd, we have  $\sigma(g) = g$  if  $\sigma(2g) = 2g$ . Furthermore, if G is a bipartite graph, then all cycles are of even length, and so we have  $\bar{\epsilon} = 0$ . By Theorem 3, the result follows. Q.E.D.

Corollary 2 Let D be a connected symmetric digraph, A a finite abelian group,  $g \in A \setminus \{0\}$  and  $\alpha \in C(D)$ . Furthermore, let G be the underlying graph of D, T a spanning tree of G and  $\Gamma \subseteq Aut$  D. For  $\gamma \in \Gamma$ , let  $L = L_T(\gamma)$ . Assume that  $\alpha$  is g-proper and  $\alpha$  is T-reduced. If ord(g) is odd, then the following two statements are equivalent:

- 1.  $\alpha$  is  $\gamma g$ -compatible.
- 2. There exists an automorphism  $\sigma \in (Aut \ A)_g$  such that

$$\mathbf{L}\bar{\alpha} = \sigma(\bar{\alpha}).$$

3.  $\bar{y}\bar{\alpha} = kg$  if and only if  $\bar{y}L\bar{\alpha} = kg$  for  $\bar{y} \in \mathbf{Z}^r$ , where  $k \in \mathbf{Z}$  and  $r = |E(G) \setminus E(T)|$ .

Proof.  $1 \Leftrightarrow 2$ : Clear.

 $2\Rightarrow 3$ : Let  $\bar{y}$  be an r-dimensional integer row vector. Then  $\bar{y}\bar{\alpha}=kg$  if and only if

$$\bar{y}(\mathbf{L}\bar{\alpha}) = \bar{y}\sigma(\bar{\alpha}) = \sigma(\bar{y}\bar{\alpha}) = \sigma(kg) = kg.$$

 $3 \Rightarrow 1$ : Let u be a root of T. Let  $W = (\cdots, x_{i_1}^{\epsilon_1}, \cdots, x_{i_2}^{\epsilon_2}, \cdots, x_{i_m}^{\epsilon_m}, \cdots)$  be any closed u-walk in D, where  $x_i$  is the (not necessarily distinct) cotree arcs,  $\epsilon_l = \pm 1$  and the dotted spaces correspond to arcs in T. Then we have

$$\alpha(W) = \epsilon_1 \alpha_{i_1} + \cdots + \epsilon_m \alpha_{i_m} = y_1 \alpha_1 + \cdots + y_r \alpha_r = \bar{y}\bar{\alpha},$$

where  $\bar{y} = (y_1, \dots, y_r)$  and each  $y_i$  is the integer determined by the number of times the walk W traverses the arc  $x_i$  minus the number of times W traverses the inverse  $x_i^{-1}$ .

Similarly to the proof of Theorem 3, we have

$$\alpha^{\gamma}(W) = \bar{y}(\mathbf{L}\bar{\alpha}).$$

By (1) and the hypothesis,  $\alpha_g(W) = 0$  if and only if  $\bar{y}\bar{\alpha} = |W| g$ , i.e.,  $\bar{y}L\bar{\alpha} = |W| g$ . By (2),  $\alpha_g(W) = 0$  if and only if  $\alpha_g(\gamma(W)) = 0$ .

Next, let U,V be any two closed u-walks of D. Set  $\alpha(U)=\bar{u}\bar{\alpha}$  and  $\alpha(V)=\bar{v}\bar{\alpha}$ . By (1),  $\alpha_g(U)=\alpha_g(V)$  if and only if  $\alpha(U)-\alpha(V)=(\mid U\mid-\mid V\mid)g$ , i.e.,  $\bar{u}\bar{\alpha}-\bar{v}\bar{\alpha}=(\bar{u}-\bar{v})\bar{\alpha}=(\mid U\mid-\mid V\mid)g$ . Then we have

$$(\bar{u} - \bar{v})\mathbf{L}\bar{\alpha} = (|U| - |V|)g.$$

By (2),  $\alpha_g(U) = \alpha_g(V)$  if and only if  $\alpha_g(\gamma(U)) = \alpha_g(\gamma(V))$ . Hence,  $\alpha$  is  $\gamma - g$ —compatible. Q.E.D.

In the case of g=0, the 0-cyclic A-cover  $D_0(\alpha)$  of D is the A-covering  $G^{\alpha}$  of the underlying graph G of D. Note that the second condition in the definition of the  $\gamma-0$ -compatibility is obtained from the first condition if g=0. If  $\alpha$  is  $\gamma-0$ -compatible, then it is called  $\gamma$ -compatible (see [9,10]). By Theorem 3, we obtain a part of [10, Theorem 5]. Furthermore,  $\alpha$  is called proper if it is 0-proper (see [9,10]).

Corollary 3 (Širáň) Let G be a connected graph, A a finite abelian group,  $\Gamma \leq Aut$  G and  $\alpha: D(G) \longrightarrow A$  an ordinary voltage assignment. Furthermore, let T be a spanning tree of G and  $\mathbf{L} = \mathbf{L}_T(\gamma)$  for  $\gamma \in \Gamma$ . Assume that  $\alpha$  is proper and T-reduced. Then the following four statements are equivalent:

- 1.  $\alpha$  is  $\gamma$ -compatible.
- 2. There exists an automorphism  $\sigma \in Aut \ A$  such that

$$\mathbf{L}\bar{\alpha}=\sigma(\bar{\alpha}).$$

## 6 Example

We conclude with an example. Let D be the symmetric digraph corresponding to the complete graph  $K_4$  with four vertices 1,2,3 and 4, and  $A = Z_4 = \{0, 1, 2, -1\}$  (the additive group). Then we have

Aut 
$$D = S_4$$
.

Furthermore, let T be the spanning tree with edges  $\{1,3\},\{3,4\}$  and  $\{2,3\}$ . Let  $\gamma=(123)\in S_4$  and g=1. We shall give a T-reduced alternating function  $\alpha:A(D)\longrightarrow \mathbf{Z}_4$  which  $\gamma$  lifts to an automorphism of  $D_1(\alpha)$ . Let  $\alpha$  be such a T-reduced alternating function which is g-proper. Furthermore, let

$$x_1 = (1, 2), x_2 = (2, 4), x_3 = (4, 1), x_4 = (3, 1), x_5 = (3, 4), x_6 = (3, 2).$$

Then we have

$$\mathbf{L} = \mathbf{L}_T(\gamma) = \left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{array} \right].$$

Set

$$\alpha_i = \alpha(x_i) \ (i = 1, 2, 3); \ \bar{\alpha} = (\alpha_1, \alpha_2, \alpha_3).$$

By Theorem 3, there exists  $\lambda \in (Aut \mathbb{Z}_4)_2$  such that

$$\mathbf{L}\bar{\alpha} = \lambda\bar{\alpha} - (\lambda q - q)\bar{\epsilon}.$$

But we have

$$(Aut \mathbf{Z}_4)_2 = Aut \mathbf{Z}_4 = \{1, -1\}.$$

Furthermore,

$$\bar{\epsilon} = {}^t(1,1,1).$$

Thus,

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \lambda \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} - (\lambda - 1)g \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix},$$

i.e.,

$$\left\{ \begin{array}{l} \alpha_1 = \lambda \alpha_1 - (\lambda - 1), \\ \alpha_3 = \lambda \alpha_2 - (\lambda - 1), \\ -\alpha_1 - \alpha_2 - \alpha_3 = \lambda \alpha_3 - (\lambda - 1). \end{array} \right.$$

In the case of  $\lambda = 1$ , we have

$$\alpha_1 = \alpha_2 = \alpha_3$$
, i.e.,  $\bar{\alpha} = a^t(1, 1, 1), a = 0, 1, 2, -1$ .

Next, we determine the functions  $\alpha$  which are 1-proper. For 1 = 1, 2, 3, let  $C_i$  be the unique (directed) cycle of the subgraph  $T + e_i$  containing  $x_i$ , where each  $e_i$  is the undirected edge deleting the direction from  $x_i$ . Then we have

$$\alpha_1(C_i)=a-3$$

for each i = 1, 2, 3. Thus,

$$lpha_1(C_i) = \left\{ egin{array}{ll} 1 & ext{if } a = 0, \ 2 & ext{if } a = 1, \ -1 & ext{if } a = 2, \ 0 & ext{if } a = -1. \end{array} 
ight.$$

If  $\alpha_1 = 0, 2$ , then  $\alpha_1(C_i^n) = \pm n$  for  $n \in \mathbb{Z}$ . Otherwise,  $\alpha_1(C_i^n) = 0, 2n, n \in \mathbb{Z}$ . If  $\alpha_1 = 0, 2$ , then  $\alpha$  is 1-proper.

If  $\lambda = -1$ , then we have

$$\bar{\alpha} = {}^{t}(1, 1, 3), {}^{t}(3, 3, 1)$$

as in the case of  $\lambda = 1$ . For each i = 1, 2, 3, we have

$$\alpha_1(C_i)=0,2,$$

and so

$$\alpha_1(C_i^n)=0, 2n, n\in \mathbb{Z}.$$

In this case, no function  $\alpha$  is 1-proper.

Therefore,  $\gamma = (123)$  lifts to an automorphism of  $D_1(\alpha)$  if  $\bar{\alpha} = {}^t(1, 1, 1)$ ,  ${}^t(3, 3, 3)$ .

#### Acknowledgment

We would like to thank the referee for many valuable comments and suggestions.

#### References

- Y. Cheng and A. L. Wells, Jr., Switching classes of directed graphs, J. Combin. Theory Ser. B, 40 (1986), 169-186.
- [2] J. L. Gross and T. W. Tucker, Generating all graph coverings by permutation voltage assignments, Discrete Math. 18 (1977), 273-283.
- [3] J. L. Gross and T. W. Tucker, Topological Graph Theory, Wiley-Interscience, New York, 1987.
- [4] P. Gvozdjak and J. Širáň, Regular maps from voltage assignments, in: "Graph Structure Theory" (Contemporary Mathematics, AMS Series) 147 (1993), 441-454.
- [5] A. Malnič, Group actions, coverings and lifts of automorphisms, *Discrete Math.* **182** (1998), 203-218.
- [6] H. Mizuno and I. Sato, Isomorphisms of cyclic abelian covers of symmetric digraphs, Ars Combinatoria 54 (2000),3-12.
- [7] I. Sato, Lifts of automorphisms of symmetric digraphs associated with cyclic abelian covers, Far East J. Math. Sci. 2(4) (2000), 517-538.
- [8] I. Sato, Lifts of automorphisms of symmetric digraphs associated with cyclic abelian covers II, Far East J. Appl. Math. 5(1) (2001), 27-44.
- [9] J. Širáň, The "walk calculus" of regular lifts of graph and map automorphisms, Yokohama Math. J. 47 (1999), 113-128.

[10] J. Širáň, Coverings of graphs and maps, orthogonality, and eigenvalues, J. Algebraic Combin. 14 (2001), 57-72.