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Abstract
Let D be a connected symmetric digraph, I" a group of automor-
phisms of D, and A a finite abelian group. For a cyclic A-cover of D,
we consider a lift of y € I', and the associated group automorphism
of some subgroup of Aut A. Furthermore, we give a characterization
for any v € T to have a lift in terms of some matrix.
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1 Introduction

Graphs and digraphs treated here are finite and simple.

Let G be a graph and D(G) the arc set of the symmetric digraph corre-
sponding to G. For e = (u,v) € D(G), let i(e) = u and t(e) = v. The in-
verse arc of e is denoted by e~1. A walk P in G is asequence P = (e, -- -, e)
of arcs with t(e;) = i(ej4q) for i = 1,..-,1 — 1. Also, P is called an
(i(e1), ¢(er))-walk. Furthermore, set P! = (g~1,.--,e;1) A (v, w)-walk
is called a closed v-walk if v = w. For two walks P = (e, - +,em) and
Q = (f1,:+-, fi) such that t(em) = i(f1), set PQ = (e1,"+,em, f1,"*+, fi).

A graph H is called a covering of a graph G with projection 7 : H — G if
there is a surjection 7 : V(H) — V(G) such that | Nyt N(@') — N(v)
is a bijection for all vertices v € V(G) and v' € 7~ 1(v). The projection
m: H — G is an n-fold covering of G if  is n-to-one. A covering = :
H — G is said to be regular if there is a subgroup B of the automorphism
group Aut H of H acting freely on H such that the quotient graph H/B
is isomorphic to G.
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Let G be a graph and 4 a finite group. Then a mapping a : D(G) — 4
is called an ordinary voltage assignment if a(v,u) = a(y, v)’1 for each
(u,v) € D(G). The ( ordinary ) derived graph G* derived from an ordinary
voltage assignment a is defined as follows:

V(G®) = V(G) x A, and ((u, k), (v, k)) € D(G*) if and only
if (u,v) € D(G) and k = ha(u,v).

The graph G* is called an A-covering of G . The A-covering G*isan | A |-
fold regular covering of G. Every regular covering of G is an A-covering of
G for some group A (see [2]).

Cheng and Wells [1] discussed isomorphism classes of cyclic triple covers
(1-cyclic Zs-covers) of a complete symmetric digraph. For a connected
symmetric digraph D and a finite group A, Mizuno and Sato (6] introduced
a cyclic A-cover of D as a generalization of regular covering graphs and
cyclic triple covers, and discussed the number of isomorphism classes of
cyclic A-covers of D with respect to the group I' of automorphisms of D.

Let D be a symmetric digraph and A a finite group. Let A(D) be the set
of arcs in D. A function a : A(D) — A is called alternating if a(y,z) =
alz,y)~?! for each (z,y) € A(D). Let C(D) denote the set of alternating
functions from A(D) to A. For g € A, a g-cyclic A-cover Dy(a) of D is the
digraph as follows:

V(Dg(a)) = V(D) x A, and ((u, h), (v,k)) € A(Dy(a)) if
and only if (u,v) € A(D) and k~tha(u,v) = g.

The natural projection 7 : Dy(a) — D is a function from V(Dg(a)) onto
V(D) which erases the second coordinates. A digraph D’ is called a cyclic
A-cover of D if D' is a g-cyclic A-cover of D for some g € A. In the
case that A is abelian, then Dy(a) is called simply a cyclic abelian cover.
Furthermore the 1-cyclic A-cover D;(a) of a symmetric digraph D can be
considered as the A-covering G* of the underlying graph G of D.

Let o and 8 be two alternating functions from A(D) into A, and let
I' be a subgroup of the automorphism group Aut D of D, denoted ' <
Aut D. Let g,h € A and v € I'. Then two cyclic A-covers Dy(c) and
Dr(B) are called y-isomorphic, denoted Dy (a)=yDp(0), if there exists an
isomorphism ® : Dy(a) — Dx(B) such that 7® = 4, i.e., the diagram

Dy(a) Dp(8)
Nk
D D



commutes. Furthermore, cyclic A-covers Dy(a) and Dy (8) are called I'-
isomorphic, denoted D,(a)2r Dj(B), if there exist an isomorphism & :
Dy(a) — Dp(B) and v € I' such that #® = 4. Let I = {1} be the trivial
group of automorphisms.

Let D be a symmetric digraph, A a finite group, a € C(D) and T' <
Aut D. Furthermore, let g € A and v € I'. Then an automorphism & of
the g-cyclic A-cover D,(a) is called a lift of «y such that #® = . If each
v € I has a lift, then the set of all such lifts is called the kfted group or the
lift of T.

Siran [9] gave a necessary and sufficient condition for graph automor-
phisms to have a lift, and discussed the lift of a group of automorphisms
of a graph which is a split extension of the voltage group by it. Associated
with lifts of a group of automorphisms of a graph, Gvozdjak and Siréii
(4] presented a construction of highly symmetric regular maps. A gen-
eral approarch based on group actions and their morphisms to coverings of
topological spaces related to graphs can be found in Malnié [5]. Sato [7]
gave a necessary and sufficient condition for a group I' of automorphisms
of a symmetric digraph D to have a lift with respect to a g-cyclic A-cover
of D for a finite group A, and discussed the lift of I' which is isomorphic
to a split extension of A by I' for a finite abelian group A and a g € A of
odd order. Furthermore, Sato (8] discussed the lift of I' which is isomor-
phic to a split extension of A by I for a finite abelian group A. Sirai [10]
presented an algebraic characterization for an automorphism of a graph to
lift to an automorphism of its A-covering for a finite abelian group A by
using certain matrices and orthogonality in Z-modules.

In Sections 2 and 3 we consider a lift of vy € I', and describe the com-
patiblity of alternating function and the associated group automorphism
of some subgroup of Aut A. In Section 4 we give a characterization for
any v € I to have a lift in terms of some matrix. In Section 5 we discuss
characterizations for any «v € I' to have a lift in the special cases.

A general theory of graph coverings is developed in [3].

2 Compatible, proper voltage assignments

Let D be a connected symmetric digraph and A a finite group. For any
a € C(D),g € A and walk W in G, the net-g-voltage of W, denoted o, (W),
is defined by

ag(W) =ale1)g™" -+ alen)g™, W = (1, -+, €n).

Note that the net-1-voltage of W is the net-voltage of W, where 1 is the
unit of A(see [3]).



An alternating function o : A(D) — A is called g-proper if there exists
some closed u-walk W of D such that ay,(W) = h for each u € V(D)
and h € A. If a is g-proper, then there exists a (u,v)-walk W such that
ag(W) = h for any u,v € V(D) and any h € A. In the g-cyclic A-cover
Dy(a), set vp, = (v,h) and e, = (e, h), where v € V(D),e € A(D),h € A.
For e = (u,v) € A(D), the arc ep, emanates from up, and terminates at
Vhay(e):

L:et )l" < Aut D. For a v € T, a is called ¥ — g—compatible if for each
vertex u € V(D),

ag(W) =1if and only if ag(v(W)) =1
for each closed u-walk W of D, and
og(U) = ag(V) if and only if ag(v(U)) = ag(v(V))

for any two closed u-walks U,V of D. Note that the second condition
is obtained from the first condition if ¢ = 1. Furthermore, a is called
" — g—compatible if a is v — g—compatible for each y € I'.

Sato [7] gave a condition for I’ to have a lift.

Theorem 1 (Sato) Let D be a connected symmetric digraph, A a finite
group, T < Aut D, g € A and a € C(D). Then a v €T has a lift if and
only if a is 7 — g—compatible. If, in addition, o is g-proper, then, for o
fized vertex u, all lifts of a v € T are of the form Ypu, h € A:

Yh,u((0y Way@y) = (V(©), Y(W)hag vy for any (w,v) —walk U.

3 Lifts of automorphisms

From now on, assume that A is abelian.

Let D be a connected symmetric digraph, G its underlying graph and
A a finite abelian group. The set of ordinary voltage assignments of G
with voltages in 4 is denoted by C*(G; A). Note that C(D) = C*(G; A).
Furthermore, let C°(G; A) be the set of functions from V(G) into A. We
consider C°(G; A) and C*(G; A) as additive groups. The homomorphism
§ : C°(G; A) — CY(G; A) is defined by (6s)(z,y) = s(z) — s(y) for s €
C°(G; A) and (z,y) € A(D). For each a € C'(G; A), let [a] be the element
of C1(G; A)/Imé which contains a.

The group ' of automorphisms of D acts on C°(G; 4) and C(D) =
C(G; A) by

s'(z) = s(y(z)) for all z € V(G)

and
a'(z,y) = a(v(z),7(y)) for dll (z,y) € A(D),



where s € C%(G; A), a € C(D) and v € . The automorphism group
Aut A acts on C°(G; A) and C'(G; A) as follows:

(05)(z) = a(s(z)) for z € V(D),

(0e)(z,y) = o(a(z,y)) for (z,y) € A(D),
where s € C°(G; A), a € C*(G; A) and o € Aut A.

For g € A and a g-proper alternating function a : A(D) — A, the
subgroup As—g of A generated by all net g-voltages of the closed v-walks
for any v € V(D) is equal to A, and so Dy(a) is connected.

For a function f: A(D) — A, the net-f-value of W, denoted f(W), is
defined by

f(W) = f(el)“'f(eﬂ)’w = (ela"'Qen)'

Form [8, Theorem 3], the following result follows. Let dr(u,v) be the

distance between u and v in T

Theorem 2 (Sato) Let D be a connected symmetric digraph, A a finite
abelian group, g € A\ {0} end o € C(D). Furthermore, let G be the
underlying graph of D, T a spanning tree of G and T' < Aut D. Assume
that a is g-proper. Then, for v € T, the following are eguivalent:

1. a isy — g—compatible.
2. There exist an automorphism 0., € (AutA)zg and s € C°(G, A) such

that
)y = 040eg + b5,
i.e., .
a'y(u’ ’U) - 67(7-", v)g = 0‘7(a(u3 'U) - G(ﬁ, ‘U)g) + 63(“9 v)’
where

€'(u,v) = { (1) f{ th”;u‘;?é“me dyr(yu, yv) is even,
and ¢(u, v) = €*(u,v).
Furthermore, if either of the above conditions is satisfied, then we have
OxCeg(W) = oy (W),

ie.,

a"(W) = 3 €(e)g = 05 (a(W) — 3 e(e)o),

eeW eeW
where W is any closed walk in D based at a fized vertez u.

For (v, z) € A(T), we have dr(v, z) = 1, and so €(v,z) = 0.



4 Matrices

We begin with recalling a few basic concepts from [10]. Let D be a con-
nected symmetric digraph, G the underlying graph of D and T a spanning
tree of G. Let E(G)\ E(T) = {ey,---,e-} be the set of all cotree edges,
and let B(T) = {€7+1,*,er4+t} be the set of all edges of T. For any edge
e; (1 < i < r+t), we fix one of the two arcs corresponding to e;. We denote
this fixed arc by ;. Set X = {z; |1<i<r+t}.

LetT' < Aut D and v € T. For 1 < i < r, Let C; be the unique (directed)
cycle of the subgraph T + e; containing ;. All the remaining arcs of C;
come from edges in T. We consider the image y(C;) of C;. Each arc of
4(C;) is either of the form z; or of the form z} ! for some j(1<i<r+1t).
Let

7(Ci) = (25;:, B 1‘;—:),
where €, € {+1,—1} (1 £ m < s) are suitable exponents. Then we define
an r X (r +t) matrix Cp(v) = (¢;;) as follows:

. _ ) €m ifj=jmn (1<m<s),
€5 = { 0 otherwise.

The matrix Cp(v) is called the cycle basis matriz of D cooresponding to -y
and T. Furthermore, the r x r matrix Lr(7y) formed by the first r columns
of Cr(v) is called the T-reduced matriz of y(see [10]).

Let A a finite abelian group, g € A\ {0} and a € C(D). Then the T-
voltage ap of a is defined as follows: ar(u,v) = a(Py)+a(y, v) —a(P) for
each (u,v) € A(D), where P, is the unique path from a fixed vertex w to
uin T etc. Note that ar(z) = 0 for each z € A(T'). Furthermore, it is well
known that Dy(a) & 1Dy(at). A B € C(D) is called T-reduced if 5(z) = 0
for each z € A(T). Suppose that « is T-reduced. Let o; = a(x;), 1< i<r
and let

a= t(ah'”;ar)9

where *(ay, -, ar) is the transpose of (ai,-:+,ar). Then & is called T-
reduced voltage vector. Furthermore, let

€= t(e(zl), St e(zr))-
For any o € AutA, let
0(&) = t(a(a1)9 b 10(01‘))'

Now, we give a characterization for any v € I' to have a lift in terms of
some matrix.



Theorem 3 Let D be a connected symmetric digraph, A a finite abelian
group, g € A\ {0} and a € C(D). Furthermore, let G be the underlying
graph of D, T a spanning tree of G and I' < Aut D. For v € T, let
L = Ly(y). Assume that o is g-proper and a is T-reduced. Then the
following two statements are equivalent:

1. a is y — g—compatible.
2. There ezists an automorphism o € (Aut A)zg such that
La=o(a) - (o(9) — 9)&

Proof. Let u be a root of T
1=>2: Let L; (1 < i < r) denote the i th row of the matrix L. Then we

have
Li& = a"(Ci)9

where C; is the unique cycle contained in T+ x;.
Let W; be any closed u-walk contained in T + z;. Then we have

a(Wy) = a(C;) = a(z;).

By the hypothesis and Theorem 2, there exists o € (AutA)z, such that

Q"(Wi)— Y €(e)g = o(a(Wi) - 3 e(e)g).

ecW; eceW;
Furthermore,

a¥(W;) = a”(C;) and €7 (e) = ¢(e) = 0, Ve € A(T).

Thus,
Lia—€'(z;)g = a'(G) —€"(zi)g
= o(a(C;) - e(xi)g)
= o(a(z;) — €(z:)9)
= o) —€(z;)o(g),
ie.,

L;a = o(a;) — (0(g) — g)e(z:)-
Therefore, it follows that

La =0(a) — (o(g) - 9)&.



2=>1: Let W= (--,2¢,--,232, -, Zi™,-++) be any closed u-walk in
D, where z; is the (not necessanly dlstmct) cotree arcs, ¢ = *1 and the
dotted spaces correspond to arcs in T. Then we have

a(W) =€+ +ema,, =thar + - +yror = §a,

where 7 = (y1,- -+, %) and each y; is the mteger determined by the number
of times the walk W travers&s the arc z; minus the number of times W

traverses the inverse z;
Now, let W; be the umque closed u-walk in T+ z;. Then the walk W is

" homotopic” to the walk
W= Wt W
Thus,

o(W) = a(W') = a(W!) + -+ (W) = a1as, + - + €mai,,.-
But, the walk y(W) is homotopic to the walk v(W’). Furthermore, we have
' (W) =" (W) = 1" (W;,)) + -+ + ema” (W)

Since L;a& = a7 (W;), we have
o' (W) = €1(Ly,@) + -+ + €m(Li &) = 11(1n &) + - - + yr(Lrd) = §(LE).
Now, we have
ag(W)=a(W)-|W|g=3a-|W|g. (1)

and
a](W)=a"(W)—- | W |g=ijLa)- |W|g. (2)

We see that oy (W) = 0 if and only if g& =| W | g. But,
gLa = §o(a) — (o(g) — 9)3€ = o(Fa) ~ (o(9) — 9)7&,
and so a,(W) = 0 if and only if
gLa=o(| W |g) - (o(9) — 9)5E.
Since o (2g) = 2g, we have

_ lg if | W | is even,
a(lwlg)—{ |(|W|_1)g+a(_q) if | W | is odd. 3

By (2), ag(W) = 0 if-and only if

_ [ —(olg) —9)5¢ if | W | is even,
ag(W) = { —(Z(Z) - g)(g§§ —1) otherwise.
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By the fact that e(z;) =| C; |=| Wi | (mod 2) (1 < i< r), we have

m m
gE=) |Wi l= ) | Ci [=|W | (mod 2). (4)
k=1 k=1 :
Therefore, it follows that

ag(W)=01if and only if a,(v(W)) =0.

Next, let U,V be any two closed u-walks of D. Set a(U) = @& and
a(V) = 5a. By (1), ag(U) = ay(V) if and only if a(U) —a(V) = (|U | — |
Vg, ie,

ga—va=(@-v)a=(|U]|-|V)sy.
Then we have
(@ -9)La

(@ —)(0(&) - (a(g) - 9)e)
= o((a-12)a) - (o(g) — g)(@ - v)¢
= o((U| -1V ])g)—(a(g) —g)(a—D)e

As in (3), we have

_JqUI-=-1VDe if|U|—|V]iseven,
@11V 00 ={ T I P00 40t e B

By (2), ag(U) = au(V) if and only if

_ [ —(o(g)—g)(a -0 if|U|—|V]i ,
% U) - o5V) = { "(g (g) —g)(?ﬁ —vﬁg? -1) ;tLer\Lise.I |15 ven

(4) implies that
ag(U) = ag(V) if and only if ay(v({U)) = a,(v(V)).
Hence, a is ¥ — g—compatible. Q.E.D.

5 Special cases

Now, we present a characterization for any v € I" to have a lift in some
special cases. Let ord(g) be the order of g € A.

Corollary 1 Let D be a connected symmetric digraph, A a finite abelian
group, g € A\ {0} and o € C(D). Furthermore, let G be the underlying
graph of D, T a spanning tree of G and ' < Aut D. For vy € T, let
L = Ly(y). Assume that o is g-proper and o is T-reduced. If ord(g) is odd
or G is a bipartite graph, then the following two statements are equivalent:

11



1. « is v — g—compatible.
2. There exists an automorphism o € (Aut A)ay such that

L& = o(a).

Proof. In the case that ord(g) is odd, we have o(g) = g if 0(2g) = 2¢.
Furthermore, if G is a bipartite graph, then all cycles are of even length,
and so we have € = 0. By Theorem 3, the result follows. Q.E.D.

Corollary 2 Let D be a connected symmetric digraph, A a finite abelian
group, g € A\ {0} and a € C(D). Furthermore, let G be the underlying
graph of D, T a spanning tree of G end I' < Aut D. For v € T, let
L = Lz(y). Assume that a is g-proper and « is T-reduced. If ord(g) is
odd, then the following two statements are eguivalent:

1. « is vy — g—compatible.
2. There exists an automorphism o € (Aut A), such that

La = o(a).

3. g& = kg if and only if jLa = kg for j € Z", where k € Z and
r=| E(G)\ E(T) |

Proof. 1 2: Clear.
2 = 3: Let § be an r-dimensional integer row vector. Then §a = kg if
and only if
g(La) = go(&) = o(ga) = o(kg) = kg.
3=1: Let ubearoot of T. Let W = (---,z¢},---, 233, -, 2™, )
be any closed u-walk in D, where z; is the (not necessarily distinct) cotree
arcs, ¢ = 31 and the dotted spaces correspond to arcs in T. Then we have

a(W) =604, ++++€emai,, =101+ + yrar = ja,

where § = (y1,- -, ¥r) and each y; is the integer determined by the number
of times the walk W traverses the arc z; minus the number of times W
traverses the inverse z; .

Similarly to the proof of Theorem 3, we have

o (W) = g(La).

By (1) and the hypothesis, ag(W) = 0 if and only if & =| W | g, i.e.,
gLa =| W | g. By (2), ay(W) = 0 if and only if ag(7(W)) =0.

12



Next, let U,V be any two closed u-walks of D. Set a(U) = 4a and
a(V) = va. By (1), ay(U) = ag(V) if and only if a(U) —a(V) = (| U | - |
Vg ie, @@—-da=(a—-o)a=(U|—-|V|[)g. Then we have

(@-v)ka=(U|-|V |g.

By (2), ag(U) = ay(V) if and only if ay(y(U)) = ag(y(V)). Hence, a is
~ — g—compatible. Q.E.D.

In the case of g = 0, the O-cyclic A-cover Dy(a) of D is the A-covering
G*° of the underlying graph G of D. Note that the second condition in the
definition of the ¥ — 0—compatibility is obtained from the first condition if
9 =0. If a is ¥ — 0—compatible, then it is called y-compatible(see [9,10]).
By Theorem 3, we obtain a part of [10, Theorem 5]. Furthermore, o is
called proper if it is O-proper(see [9,10]).

Corollary 3 (Sirdf) Let G be a connected graph, A a finite abelian
group, I' < Aut G and a : D(G) — A an ordinary voltage assignment.
Furthermore, let T be a spanning tree of G and L = Lp(y) for y € I’. As-
sume that a is proper and T-reduced. Then the following four statements

are equivalent:
1. « is y-compatible.
2. There exists an automorphism o € Aut A such that

L& = o(a).

6 Example

We conclude with an example. Let D be the symmetric digraph corre-
sponding to the complete graph K, with four vertices 1,2,3 and 4, and
A=2,={0,1,2,-1} (the additive group). Then we have

Aut D = S4.

Furthermore, let T be the spanning tree with edges {1, 3},{3,4} and {2, 3}.

Let ¥ = (123) € S4 and g = 1. We shall give a T-reduced alternating
function a : A(D) — Z, which v lifts to an automorphism of D;(a). Let
a be such a T-reduced alternating function which is g-proper. Furthermore,
let

I = (1, 2), To = (2, 4),2‘3 = (4, l),x4 = (3, 1),325 = (3, 4),2:6 = (3, 2).

1 0 0
L=Lr(y)=] 0 0 1 |.
-1 -1 -1

Then we have
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Set
a; = ofz;) (1= 1,2,3); &= (ay,o0z,03).

By Theorem 3, there exists A € (Aut Z;)2 such that

La = \a - (\g— g)&.

But we have
(Aut Z4)2 = Aut Z4 = {1, -1}.
Furthermore,
e="%1,1,1).
Thus,

1 0 0 ) a;
[0 0 1][az]=/\,:az]—(/\—l)g[l],
-1 -1 -1 Qs Qg3 1

{ a1 =)\01—()\—1),

ie.,
o3 = Aaz — (A—1),
-1 — Q2 —Q3 = Aaa —(A—l).
In the case of A = 1, we have

] = 02 = O3, t.e, = a‘(l, 1, 1),0. =0,1, 2, -1

Next, we determine the functions & which are 1-proper. For 1 = 1,2,3,
let C; be the unique (directed) cycle of the subgraph T + e; containing z;,
where each e; is the undirected edge deleting the direction from z;. Then
we have

. o (Ci))=a-3
for each i = 1,2,3. Thus,
. 1 ifa=0,
=] %, Ee
0 ifa=-1.

If a; = 0,2, then &1(C?) = +n for n € Z. Otherwise, 21(C}’) =0,2n, n €
Z. If a; = 0,2, then o is 1-proper.
If A = -1, then we have

a=41,1,3),%(3,3,1)

14



as in the case of A = 1. For each i = 1,2, 3, we have
a (Ci) = 0’ 2s

and so
a1(C7)=0,2n, n€ 2.

In this case, no function & is 1-proper.
Therefore, v = (123) lifts to an automophism of Di(e) if & = ¥(1,1,1),

£(3,3,3).
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