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Abstract

It is shown that for any rank r with n~log(n+1)+4<r <n-—4
and any length n, where n = 2¥ — 1 and k > 8, there is a perfect
code with these parameters and with a trivial group of symmetries.

1 Introduction

We consider the direct product Z3 of n copies of the ring Z2. The elements
of ZZ will be called words. The distance, d(c,v), between two words ¢ and v
is the number of positions in which they differ. A perfect 1-error correcting
binary code is a subset C of Z3, satisfying the following condition:

to any word v of Z7' there is a unique word c of C'such that d(c,v) < 1.

Below we will write perfect code instead of perfect 1-error correcting binary
code.

Perfect codes of length n exist if and only if n = 2% — 1 where k > 2
is an integer. If n = 3 or n = 7 they are unique and linear subspaces
of the vector space Z}. In case n > 15 there are both linear and non
linear perfect codes. There are now many different constructions of non
linear perfect codes, see [11]. Many constructions are given by switching
processes, see [1], and many by concatenations, see [10].

Let the rank, r(C), of a code C be the dimension of the linear span,
< C >, of the words of C. The linear perfect code H of length n has rank
n —log(n + 1) and is unique. (If n = 2* then log(n) = k.) This code will
be called the Hamming code of length n.

Let the symmetry group of C, Sym(C), be defined as the set of permu-
tations 7 of the coordinate set that fixes C, that is for any ¢ € C, n(c) € C.
The purpose of this note is to show the following theorem:
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Theorem 1 For any possible length n = 2* — 1, where k > 8, and rank r
with

n-log(n+1)+4<r<n—-4,
there is a perfect code with these parameters and with a trivial symmetry
group.

It is well known that the number of different perfect codes of length n is
extremely large, more than 92"/271e8" ) g there is a need for some kind
of classification or a tool to distinguish perfect codes.

Beside the rank and symmetry group mentioned above, the kernel of a
perfect code has also been studied and seems to be of great importance for
the classification of perfect codes.

A word p is a period of the code D if

p+D={p+d|deD}=D.

The set of periods of a code D will be called the kernel of D, ker(D). We
note that the kernel is a linear subspace of Z3'.

All possible pairs (r, k), for which there is a perfect code of length n,
rank r and with a kernel of dimension k have been determined, see e.g.
[5]. Theorem 1 above is perhaps a little step on the way to see which the
possibilities are for the symmetry group of a perfect code. It has already
been proved that there are perfect codes with a trivial symmetry group.
Phelps [9] proved that any finite group is the symmetry group of some
perfect code. Avgustinovich and Solov’eva [2] showed that for any length
> 255 there is a perfect code of rank n, with a trivial symmetry group and
a trivial kernel. This result was extended to perfect codes of length > 31 by
Malyugin [7] and of length 15, also by Malyugin (8], by using a computer
search. Theorem 1 shows that this is true for any length n and any rank r
as stated in the theorem.

2 Preliminaries

We will let N denote the set {1,2,...,n}.

The weight of a word ¢, w(c), is the number of non zero positions of c.
We denote by e; the word of weight one with the only one in the position
i. We denote by ey the word ) _;.; ;.

In (3] we showed that to any perfect code of rank r with

n—logn+1)+2<r<n—-1
there is a partition of the set N:
huhulu..uUl; =N,
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where t =2""" -1, NIl =0fori#jand |fo| +1=|h|=|kL|=..=
[It] = (n+1)/(¢ + 1), such that each of the words ej,, i =0,1,2,...,¢, are
periods. This partition is called the fundamental partition of N associated
with C.

With the support of a word ¢ = (¢, ...,¢,) we mean the set

supp(c) = {i| ¢; # 0}.

The set of vectors v of Z3 satlsfymg supp(v) C I; is a subspace of the
vector space Z7' that we denote by Z :.

For words ¢ of Z}, we sometimes wnte c = (coley]-- )lct), where ¢;, for
1=0,1,2,...,¢,is the prOJectlon of ¢ on the subspace Z,*

If ¢ is & word of Z5*1 then c* denotes the word of 22 obtained from ¢
by deleting the last coordma.te of c. If ¢ = (e1,¢2,...,¢;), then we denote
by c® the word (c1,¢2,...,¢5,61 +C2+ ...+ ¢;) of Z,_‘,”'l. For any code D
we denote by D¢ the set {c® | c € D}.

If 7 is a permutation of the coordinate set of Z§ then # induces in the
most natural way a map on the subsets of Z}. If under this map a set D
is mapped on a set D' we denote D’ by 1r(D)

We denote by 1 and 0 the words (1,1,...,1) respectwely (0 0,...,0).

Let, for z € (Z3)}, oi(z) = 35, :c., and ) Lz) = Yoo, x;, Let
o(z) = (01(2),...,0:(2)) and o'(z) = (01(2),...,0%())-

3 Proof of the Theorem 1

We consider Z3 where n = (8+41)(¢+ 1) — 1. The words of Z} are denoted
by

(Zor,-- 1 Z0s|T11s- -+ s T1,041]|T205 - - - s Z201] - o - | o1y - oy Bt o 41)

where z;; € Z,.
Let H be a Hamming code of length ¢. We define 7 to be the following
map from H to Z}:

7((R1, hay .- ., hs)) = (0]0...0R4[0...0hy|...|0. .. Ohy).

We will use a construction similar to the Krotov construction [6] to define
a perfect code Cy, r of length (s + 1)(t + 1) — 1, where s > 15 and ¢ > 15,
with the desired properties. The code Cy,x will be the disjoint union of
codes Cp, h € H.

Let Cp be a perfect code of length s and with Sym(Co) = {id} and
such that 0 € Cy. For the existence of such codes, see the introduction.
For h =0 € H we let

Co={(cf+...+ ¢ +Colci|ea| ... |et) | e1y €2, c0 € Z5F1).
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Let C; be a perfect code of length s with a trivial kernel, see [4], and
containing the zero word 0. Trivially h = 1 € H and we define C; to be
the code '

7((1,1,...,1)) + {(CI +...4+¢ +01|61|62| ...et) |61,62,.. 0 € Z§+l}.

To describe the codes Cj, for h € H \ {0,1} we need a notation: For any
integer ¢ = 1,2,...t, fio denotes the zero word (0|0|...|0) and fi, for
i=1,2,...,tand k=1,2,...,8, the word e;; + €;441-

Denote the dimension of the dual space of H by p. Let {d1,dz,...,dp}
be a set of base vectors for the dual code of H. Let G be a non linear
perfect code of length s. Below we will use the extended codes H¢ and G°.

Define, for h = (hy ..., k) € H\ {0,1}, Cj, to be the code

(Ugky,....k)est (0(fik, +- - -+ fik,) +Chol ik, +Chal. .. | fir, +Ch,t)) +7(h)

where S = {0,1,2,...,8} and Chy, for I =1,2,...,¢, are extended perfect
codes that we will describe below.
The weight spectrum of the Hamming code H of length n > 15 contains
n — 3 integers. Thus we may define Cp , for h € H, with 3 < w(h) < p+2,
e
tob Chy = He¢ if ! € supp(dy(n)-2);
MEZ1 6 i 1 ¢ supp(dwry—2);

and for p+2 < w(h) <t—2,Chy, 1 =1,2,...,1t to be any extended perfect
code of length s.

By considering the minimum distance and the number of elements of
CH,r we get that Cy, r is a perfect code, see also [6].

We first note that if 7 belongs to Sym(C) then m maps the fundamental
partition of N associated to the perfect code C to the same fundamental
partition of N. As C) has a trivial kernel, we may conclude from Corollary
1 of [4], that r(C) = n — log(t + 1), and as a consequence, that the sets
I = {(0,1),(0,2),...(0,8)}, L = {(1,1),(1,2),...,(1,8+ 1)}, ..., Iy =
{@¢,1),(#,2),...,(¢,8 + 1)} in fact form the fundamental partition of the
set N. Hence:

if 41,42 € Ix then there is k' such that w(iy), w(i2) € Its.

As Iy is the only set with s elements in the fundamental partition, we get
that w(lp) = Iy. We now prove that n(Il) = I, for k=1,2,...,t.
Assume that 7 € Sym(C), and that n(I}) = Iiv, k # k'. As the
minimum distance in H is three, we deduce that there must be a base vector
dg, g € {1,2,...,p}, of the dual code of H such that |{k, k'}Nsupp(d,)| = 1.
Assume that k € supp(d,) and k' ¢ supp(d,). Let h € H be such that
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g = w(h) — 2 and consider the code Cy. The symmetry = maps Cj to
another code Cj» with w(h) = w(h'). The code Cj contains words

(colca]-..lce) + 7(h)  where c,-e{g}iiffii:: i=0,1,...,¢

and Cj contains words

es 41t
(colcr].--lee) +7(h')  where o€ { g)‘}i;fizjk’f i=0,1,...,t
If w(Ii) were equal to I, then, as w(C) = C, we get that w(H®) = G°. As
an extended non linear perfect code never can be equivalent to an extended
Hamming code, this is not true and hence we get a contradiction and (1)
must be equal to Iy, for k=1,2,...%.
We observe that if 7 € Sym(C) then, as

(Co|0]...10) C Ch x

is mapped to 7(Co|0|...|0) and as Sym(Co) = {id}, the restriction of =
to the set Ip must be the identity.

We now show that if # € Sym(C) then, for (k,i) € I, k = 1,2,...1,
w((k,1)) = (k, ).

Assume that n(é;) = ji (where i; and j; are contained in the same
set I;) and let iz = w~1(3;). From the definition of C and from the
observation above we deduce that C contains the words ¢ = (o*(e;, +
e;;)|0]...[0}e;, + €:,[0]...|0), ¢ = (0*(es, + €;,)]0|...|0le;, +e€;10]...]0)
and w(c) = (o*(ei, +€i,)|0| ... |0le;, + e, 0] ...[0).

We note that

d(o* (i, + ) 0% (e +ex)) = {5 X A=
As d(¢/,m(c)) > 3, we may conclude that 7(i;) = j; = i2 and hence that 7
must be a product of disjoint 2-cycles.

Without loss of generality we may thus assume that if # € Sym(C)
then

7(2b-1) =2b and w(20) =2b-1 for b=1,2...,8/2.

We now show that this implies that Cy has a non trivial kernel.
Ha= (al, asg,.. .,a,_l) € C} then:

a = (a+al(a1,--.,as-1,0(a))|0]...|0) + (0]0...01|...]0...01]) € C.
As m € Sym(C) we get that n(@) € C and that #(@) equals
(0|(az,a1,a4,as,...,0(a),a;-1)|0|...[0) + (0]0...01]...]0...01)) € C
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and hence, for any z =1,2,...,(s - 2)/2,
a = (e2z|(a'21 ai,a4,a3, ... ,a(a),a,_l + 1) + e2z|0| s |0)+

(0]0...01]...]0...01])

belongs to C. This implies that also the word

n(@') = (e2:l(a1,0a2,a3,04,...,8,—1 + 1,0(a)) + 2,10 ...]0)+

(0|0...01]...]0...01))

as well as the word

(a+e2;-1 + 63_1|(al,a2,63, Q4y...y85-1 + 1, a(a)) + 62,,._1|0| cen |0)+

(0]0...01)...]0...01))

belongs to C' and hence that

a+ey_1+e,-1 €er; +C.

As a € C) was chosen arbitrarily and as @ + ez, + €,_1 + €2, € C, we
get that the word ez,;—; + €;—1 + €2, is a period of C;. As C) is assumed
to have a trivial kernel we get a contradiction.

The theorem is proved.
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