Upper bounds on the domination number of a graph in terms of diameter and girth

Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH Aachen, 52056 Aachen, Germany e-mail: volkm@math2.rwth-aachen.de

Abstract

A vertex set D of a graph G is a dominating set if every vertex not in D is adjacent to some vertex in D. The domination number γ of a graph G is the minimum cardinality of a dominating set in G. In 1989, Brigham and Dutton [1] proved

$$\gamma \le \left\lceil \frac{3n-g}{6} \right\rceil$$

for each graph G of order n, minimum degree $\delta \geq 2$, and girth $g \geq 5$. If G is a graph of order n, minimum degree $\delta \geq 2$, girth $g \geq 5$ and neither a cycle nor one of two exceptional graphs, then we give in this paper the better bound

$$\gamma \le \left\lceil \frac{3n-g}{6} \right\rceil - 1. \tag{*}$$

For $\delta \geq 3$ and $g \geq 5$, we also prove $\gamma \leq \lceil (6n-g)/15 \rceil$, and this inequality is better than (*) when n > g+10. In addition, if $\delta \geq 3$, then we show that

$$2\gamma \le n - (\delta - 2)(1 + \lfloor d/3 \rfloor),$$

where d is the diameter of the graph. Some related bounds in terms of the diameter, girth, order, and minimum degree are also presented.

Keywords: Domination number; Diameter of a graph; Girth of a graph

1. Terminology

We consider finite, undirected, and simple graphs G with the vertex set V(G) and the edge set E(G). The number of vertices |V(G)| of a graph G is called the order of G and is denoted by n = n(G). The open neighborhood N(v) = N(v, G) of the vertex v consists of the vertices adjacent to v, and the closed neighborhood of v is $N[v] = N[v, G] = N(v) \cup \{v\}$. For a subset $S \subseteq V(G)$, we define $N(S) = N(S, G) = \bigcup_{v \in S} N(v)$ and $N[S] = N[S, G] = N(S) \cup S$. The vertex v is an endvertex if d(v, G) = 1, and an isolated vertex if d(v, G) = 0, where d(v) = d(v, G) = |N(v)| is the degree of $v \in V(G)$. An edge incident with an endvertex is called a pendant edge. Let $\Omega(G)$ be the set of endvertices in a graph G. By $\delta = \delta(G)$ we denote the minimum degree of the graph G. Furthermore, the diameter d = d(G) of a graph G is the length of a shortest cycle of G. We write C_n for a cycle of length v and v and v for the complete graph of order v. A cycle with length v is also called an v-cycle.

A set $D \subseteq V(G)$ is a dominating set of G if N[D,G] = V(G). The domination number $\gamma = \gamma(G)$ of G is the cardinality of any smallest dominating set.

The corona $H \circ K_1$ of the graph H is the graph constructed from a copy of H, where for each vertex $v \in V(H)$, a new vertex v' and a pendant edge vv' are added.

For detailed information on domination and related topics see the comprehensive monograph [4] by Haynes, Hedetniemi, and Slater.

2. Preliminary results

The following well-known results play an important role in our investigations.

Proposition 2.1 (Ore [6] 1962). If G is a graph without isolated vertices, then

 $\gamma(G) \leq \left| \frac{n(G)}{2} \right|.$

Theorem 2.2 (Payan, Xuong [8] 1982, Fink, Jacobson, Kinch, Roberts [2] 1985). For a graph G with even order n and no isolated vertices, $\gamma(G) = \lfloor n/2 \rfloor$ if and only if the components of G are the cycle C_4 or the corona $H \circ K_1$ for any connected graph H.

In 1998, Randerath and Volkmann [9] and independently, in 2000, Xu, Cockayne, Haynes, Hedetniemi, and Zhou [12] (cf. also [4], pp. 42-48) characterized the odd order graphs G for which $\gamma(G) = \lfloor n/2 \rfloor$. In the next theorem, we only note the part of this characterization which we will use in Section 4.

Theorem 2.3 (Randerath, Volkmann [9] 1998, Xu, Cockayne, Haynes, Hedetniemi, Zhou [12] 2000). Let G be a connected graph of odd order n with $\delta(G) \geq 2$. Then $\gamma(G) \leq (n-3)/2$, unless $G = C_5$, $G = C_7$, or G belongs to a family of 10 graphs of order at most 7 with girth less than or equal 4.

Theorem 2.4 (McCuaig, Shepherd [5] 1989). Let G be a connected graph of order n with $\delta(G) \geq 2$. Then $\gamma(G) \leq 2n/5$, unless $G = C_7$ or G belongs to a family of 6 graphs of order at most 7 and with girth less than or equal 4.

Theorem 2.5 (Flach, Volkmann [3] 1990). Let G be a graph of order n and minimum degree $\delta \geq 2$. If $A \subset V(G)$ is an arbitrary subset, then

$$2\gamma(G) \leq n + |A| - (\delta - 1) \frac{|N(A) - A|}{\delta}.$$

Proofs of the Theorems 2.5 and 2.2 can also be found in [11], pp. 217-219 and 223-224.

Theorem 2.6 (Reed [10] 1996). If G is a graph of order n with $\delta(G) \geq 3$, then $\gamma(G) \leq 3n/8$.

3. Upper bounds based on minimum degree, diameter and order

Theorem 3.1. If G is a connected graph of order n and minimum degree $\delta \geq 3$, then

$$2\gamma \leq n - (\delta - 2)(1 + |d/3|).$$

Proof. Let d = 3t + r with $0 \le r \le 2$ and let $x_0x_1 \dots x_d$ be a minimum length path between the vertices x_0 and x_d . If $A = \{x_0, x_3, \dots, x_{3t}\}$, then $|A| = 1 + \lfloor d/3 \rfloor$ and $N(A) \cap A = \emptyset$. This implies

$$|N(A) - A| = |N(A)| = \left| \bigcup_{i=0}^{t} N(x_{3i}) \right| = \sum_{i=0}^{t} |N(x_{3i})| \ge \delta |A|.$$

Applying Theorem 2.5, we obtain

$$2\gamma \leq n+|A|-(\delta-1)\frac{|N(A)-A|}{\delta}$$

$$\leq n+|A|-(\delta-1)|A|$$

$$= n-(\delta-2)(1+|d/3|). \square$$

Corollary 3.2 (Payan [7] 1975). If G is a graph of order n with $\delta \geq 3$, then

$$2\gamma < n+2-\delta$$
.

For the special family of graphs with no C_4 subgraphs, Brigham and Dutton [1] have presented the following better bound.

Theorem 3.3 (Brigham, Dutton [1] 1989). Let G be a connected graph of order n with $\delta \geq 3$. If G has no C_4 subgraphs, then

$$2\gamma \le n-1-(\delta-1)(|d/3|-1+\delta/2).$$

Inspired by Theorem 3.3, we will prove, similarly to the proof of Theorem 3.1, the following related bound.

Theorem 3.4. Let G be a connected graph of order n with $\delta \geq 4$. If G does not contain the 4-cycle and the diamond (a 4-cycle with a chord) as induced subgraphs, then

$$2\gamma \le n - 1 - (\delta - 3)(1 + \lfloor d/2 \rfloor) - \lfloor d/2 \rfloor / \delta$$
.

Proof. Let d=2t+r with $0 \le r \le 1$ and let $x_0x_1 \dots x_d$ be a minimum length path between the vertices x_0 and x_d . If $A=\{x_0,x_2,\dots,x_{2t}\}$, then $|A|=1+\lfloor d/2\rfloor=1+t$ and $N(A)\cap A=\emptyset$. Since G does not contain the 4-cycle and the diamond as induced subgraphs, we observe that

$$|N(A) - A| = |N(A)| = \left| \bigcup_{i=0}^{t} N(x_{2i}) \right|$$
$$= \sum_{i=0}^{t} |N(x_{2i})| - t \ge \delta |A| - |A| + 1.$$

Thus, it follows from Theorem 2.5 that

$$2\gamma \leq n+|A|-(\delta-1)\frac{|N(A)-A|}{\delta}$$

$$\leq n+|A|-(\delta-1)|A|+|A|-\frac{|A|}{\delta}-\frac{\delta-1}{\delta}$$

$$= n-1-(\delta-3)|A|-\frac{|A|-1}{\delta}$$
$$= n-1-(\delta-3)(1+\lfloor d/2\rfloor)-\frac{\lfloor d/2\rfloor}{\delta}. \square$$

Note that the family of graphs with no C_4 subgraphs is a subclass of the graphs which do not contain the 4-cycle and the diamond as induced subgraphs. In addition, for $\delta \geq 8$ and d(G) great enough, for example $d(G) \geq 3\delta(\delta-1)/(\delta-7)$, the bound in Theorem 3.4 is better than this one in Theorem 3.3.

4. Upper bounds based on girth, order and minimum degree

In 1989, Brigham and Dutton [1] gave the following upper bound for the domination number based on the girth and the order (a proof of this theorem can also be found in [4], pp. 56-57).

Theorem 4.1 (Brigham, Dutton [1] 1989). If G is a graph of order n, minimum degree $\delta \geq 2$, and girth $g \geq 5$, then

$$\gamma \le \left\lceil \frac{n - \lfloor g/3 \rfloor}{2} \right\rceil = \left\lceil \frac{3n - g}{6} \right\rceil. \tag{1}$$

The main theorem of this paper is the following improvement of Theorem 4.1, which shows in particular, that equality holds in (1) if and only if G is a cycle, the twin- C_7 (see the figure), or $G = 2C_7$.

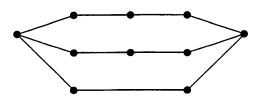


Figure: twin- C_7

Theorem 4.2 Let G be a graph of order n, minimum degree $\delta \geq 2$, and girth $g \geq 5$. If G is not a cycle and not isomorphic to $2C_7$ and to the twin- C_7 , then

$$\gamma \le \left\lceil \frac{3n - g - 6}{6} \right\rceil = \left\lceil \frac{3n - g}{6} \right\rceil - 1. \tag{2}$$

Proof. Observe that in general, a g-cycle can be dominated by $\lceil g/3 \rceil$ vertices. Assume that G is not a cycle, and remove a g-cycle C_g from G to a form a graph H. Since $g \geq 5$ and $\delta \geq 2$, the graph H has minimum degree at least $\delta - 1 \geq 1$.

Case 1. One of the components of H is a corona graph F.

Subcase 1.1. The corona graph $F = F' \circ K_1$ has at least four vertices. Let u be an endvertex of F. Because of $\delta \geq 2$, the vertex u is adjacent with a vertex $x \in V(C_g)$. If we choose, without loss of generality, a minimum dominating set D_g of C_g such that $x \in D_g$, then D_g dominates the vertex u. Since F-u is a connected graph of odd order with at least three vertices, Proposition 2.1 implies $\gamma(F-u) \leq \lfloor (n(F)-2)/2 \rfloor$. Applying once more Proposition 2.1 on all the remaining components of H, we obtain

$$\gamma \leq \left\lfloor \frac{n(H)-2}{2} \right\rfloor + \left\lceil \frac{g}{3} \right\rceil = \left\lfloor \frac{n-g-2}{2} \right\rfloor + \left\lceil \frac{g}{3} \right\rceil \leq \left\lceil \frac{3n-g-6}{6} \right\rceil.$$

Subcase 1.2. The corona graph $F = F' \circ K_1$ consists of two vertices u and v. Since each of the two vertices u and v has a neighbor in C_g , we conclude that g < 6.

If $C_g = x_1x_2x_3x_4x_5x_1$, then let, without loss of generality, $ux_1, vx_3 \in E(G)$. Obviously, the vertices x_1 and x_3 dominate $V(C_g) \cup \{u, v\}$, and thus, it follows from Proposition 2.1 that

$$\gamma \le 2 + \left\lfloor \frac{n-7}{2} \right\rfloor = \left\lfloor \frac{3n-9}{6} \right\rfloor \le \left\lceil \frac{3n-g-6}{6} \right\rceil.$$

If $C_g = x_1x_2x_3x_4x_5x_6x_1$, then let, without loss of generality, $ux_1, vx_4 \in E(G)$. Obviously, the vertices x_1 and x_4 dominate $V(C_g) \cup \{u, v\}$, and thus, it follows from Proposition 2.1 that

$$\gamma \leq 2 + \left\lfloor \frac{n-8}{2} \right\rfloor = \left\lfloor \frac{3n-12}{6} \right\rfloor \leq \left\lceil \frac{3n-g-6}{6} \right\rceil.$$

Case 2. None of the components of H is a corona graph, and H contains a component F of even order. The hypothesis $g \geq 5$ implies $F \neq C_4$ and $n(F) \geq 4$. Hence, it follows from Theorem 2.2 that $\gamma(F) \leq (n(F) - 2)/2$. Therefore, Proposition 2.1 leads to

$$\gamma \leq \left \lfloor \frac{n(H)-2}{2} \right \rfloor + \left \lceil \frac{g}{3} \right \rceil \leq \left \lceil \frac{3n-g-6}{6} \right \rceil.$$

Case 3. The graph H contain two odd components H_1 and H_2 . We conclude from Proposition 2.1 that $\gamma(H_i) \leq (n(H_i) - 1)/2$ for i = 1, 2 and hence, we arrive at

$$\gamma \leq \left \lfloor \frac{n(H)-2}{2} \right \rfloor + \left \lceil \frac{g}{3} \right \rceil \leq \left \lceil \frac{3n-g-6}{6} \right \rceil.$$

Case 4. The graph H is connected and of odd order.

Case 4.1. The graph H has an endvertex u and H-u is not a corona graph. The vertex u is adjacent with a vertex $x \in V(C_g)$. If we choose, without loss of generality, a minimum dominating set D_g of C_g such that $x \in D_g$, then D_g dominates the vertex u. Since H-u is connected, of even order, and not a corona graph, it follows from Theorem 2.2 that $\gamma(H-u) \leq \lfloor (n(H-u)-2)/2 \rfloor$. This leads to

$$\gamma \leq \left\lfloor \frac{n(H-u)-2}{2} \right\rfloor + \left\lceil \frac{g}{3} \right\rceil = \left\lfloor \frac{n(H)-3}{2} \right\rfloor + \left\lceil \frac{g}{3} \right\rceil \leq \left\lceil \frac{3n-g-9}{6} \right\rceil.$$

Case 4.2. The graph H has an endvertex u and H-u is a corona graph. Subcase 4.2.1. The vertex u is adjacent with an endvertex w of H-u and H-u consists of two vertices w and z. Since z is adjacent with a vertex of C_g , we observe that $g \leq 8$.

If g = 5, then

$$\gamma = 3 = \left\lceil \frac{13}{6} \right\rceil = \left\lceil \frac{3n - g - 6}{6} \right\rceil.$$

If g = 6, then

$$\gamma = 3 = \left\lceil \frac{15}{6} \right\rceil = \left\lceil \frac{3n - g - 6}{6} \right\rceil.$$

If g = 7, then G is isomorphic to the forbidden graph twin- C_7 , and we observe that $\gamma(G) = 4 = \lceil (3n - g)/6 \rceil$.

If g = 8, then

$$\gamma = 4 = \left\lceil \frac{19}{6} \right\rceil = \left\lceil \frac{3n - g - 6}{6} \right\rceil.$$

Subcase 4.2.2. The vertex u is adjacent with an endvertex w of H-u, and H-u consists of at least 4 vertices. Let $x \in V(C_g)$ be adjacent with u.

If g = 3s + 1 with $s \ge 2$, then observe that u dominates the vertices x and w and $\gamma(C_g - x) = (g - 1)/3$. As $H - \{u, w\}$ is connected and of odd order with at least three vertices, Proposition 2.1 yields $\gamma(H - \{u, w\}) \le (n(H) - 3)/2$. Altogether, we obtain

$$\gamma \leq \left \lfloor \frac{n(H)-3}{2} \right \rfloor + \left \lceil \frac{g}{3} \right \rceil \leq \left \lceil \frac{3n-g-9}{6} \right \rceil.$$

Let g=3s+2 with $s\geq 1$. If we choose a minimum dominating set D_g of C_g such that $x\in D_g$, then D_g dominates the vertex u. As $H-\{u\}$ is connected with at least four vertices, Proposition 2.1 yields $\gamma(H-\{u\})\leq (n(H)-1)/2$. Thus, it follows that

$$\gamma \le \left\lfloor \frac{n(H)-1}{2} \right\rfloor + \left\lceil \frac{g}{3} \right\rceil \le \left\lceil \frac{3n-g-3}{6} \right\rceil.$$

However, in this situation, 3n and g have opposite parity so it is straightforward to verify that

$$\left\lceil \frac{3n-g-3}{6} \right\rceil = \left\lceil \frac{3n-g-6}{6} \right\rceil.$$

Let g=3s with $s\geq 2$. If we choose a minimum dominating set D_g of C_g such that $x\in D_g$, then D_g dominates the vertex u. As above, it follows that

 $\gamma \leq \left \lfloor \frac{n(H)-1}{2} \right \rfloor + \left \lceil \frac{g}{3} \right \rceil \leq \left \lceil \frac{3n-g-3}{6} \right \rceil = \left \lceil \frac{3n-g-6}{6} \right \rceil.$

Subcase 4.2.3. The vertex u is adjacent with a vertex w of H-u and w is not an endvertex of H-u. Let z be an endvertex of H-u which is not adjacent with w, and let v be adjacent with z in H-u. Since z is an endvertex of H, there exists a neighbor $y \in V(C_g)$ of z. If we choose a minimum dominating set D_g of C_g such that $y \in D_g$, then D_g dominates the vertex z. Furthermore, we observe that $V(H) - (\Omega(H) \cup \{v\})$ is a dominating set of H-z. Combining these two dominating sets, we deduce that

$$\gamma \le \left\lfloor \frac{n(H)-3}{2} \right\rfloor + \left\lceil \frac{g}{3} \right\rceil \le \left\lceil \frac{3n-g-9}{6} \right\rceil.$$

Subcase 4.3. The graph H has no endvertex. Since H is of odd order, it follows from Theorem 2.3 that $H = C_5$, $H = C_7$, or $\gamma(H) \leq (n(H) - 3)/2$. In the last case, we obtain

$$\gamma \leq \left\lfloor \frac{n(H)-3}{2} \right\rfloor + \left\lceil \frac{g}{3} \right\rceil \leq \left\lceil \frac{3n-g-9}{6} \right\rceil.$$

If $H=C_5$, then $C_g=C_5$ and $\gamma\leq 4=\lceil (3n-g-6)/6\rceil$. If $H=C_7$, then $C_g=C_5$, $C_g=C_6$, or $C_g=C_7$. In the cases $C_g=C_5$ and $C_g=C_6$, the desired inequality $\gamma\leq 5=\lceil (3n-g-6)/6\rceil$ is immediate. In the remaining case $C_g=C_7$, we arrive at the forbidden graph $G=2C_7$ or the cycles of length 7 are connected by an edge. In the last case it is easy to see that $\gamma\leq 5=\lceil (3n-g-6)/6\rceil$. Finally, we observe that $\gamma(2C_7)=6=\lceil (3n-g)/6\rceil$. \square

The next result of Brigham and Dutton [1] is identical with Theorem 4.1 when $\delta = 2$, and an improvement of (1) when $\delta \geq 3$.

Theorem 4.3 (Brigham, Dutton [1] 1989). If G is a graph of order n, minimum degree $\delta \geq 2$, and girth $g \geq 5$, then

$$\gamma \leq \left\lceil \frac{n - \lfloor g/3 \rfloor - (g-4)\frac{(\delta-2)(\delta-3)}{2} - 2(\delta-2)}{2} \right\rceil.$$

If the order n of a graph G is great enough, then the following results are better than Theorem 4.3.

Theorem 4.4. If G is a graph of order n, minimum degree $\delta \geq 4$, and girth $g \geq 5$, then

 $\gamma \leq \left\lceil \frac{9n-g}{24} \right\rceil.$

Proof. Remove a g-cycle C_g from G to form a graph H. Since $g \geq 5$ and $\delta \geq 4$, the graph H has minimum degree at least $\delta - 1 \geq 3$. Thus, Theorem 2.6 leads to

 $\gamma \le \left\lfloor \frac{3(n-g)}{8} \right\rfloor + \left\lceil \frac{g}{3} \right\rceil \le \left\lceil \frac{9n-g}{24} \right\rceil. \ \Box$

Theorem 4.5. If G is a graph of order n, minimum degree $\delta \geq 3$, and girth $g \geq 5$, then

 $\gamma \leq \left\lceil \frac{6n-g}{15} \right\rceil.$

Proof. Remove a g-cycle C_g from G to form a graph H. Since $g \geq 5$ and $\delta \geq 3$, the graph H has minimum degree at least $\delta - 1 \geq 2$. If F is a component of H, then it follows from Theorem 2.4 that $\gamma(F) \leq 2n(F)/5$ or $F = C_7$.

Suppose that there exists a component $F = C_7 = x_1x_2x_3x_4x_5x_6x_7x_1$. This yields $5 \le g \le 7$, and because of $\delta \ge 3$, we conclude that each vertex of F is adjacent with a vertex of C_q .

Let g = 7. Since x_1 and x_2 have a neighbor in C_g , it follows immediately that x_1 and x_2 are contained in p-cycle with $p \le 6$. This is a contradiction to the hypothesis that g = 7.

Let g=6 such that $C_g=y_1y_2y_3y_4y_5y_6y_1$. We assume, without loss of generality, that $x_1y_1 \in E(G)$. This implies $x_2y_4 \in E(G)$. Since x_3 is also adjacent with one vertex of C_g , we observe that x_3 is contained in a p-cycle with p < 5, a contradiction.

Analogously to the case g = 6, one can show that g = 5 is also not possible.

Consequently, we have $\gamma(F) \leq 2n(F)/5$ for all components F of H and thus,

 $\gamma \le \left\lfloor \frac{2(n-g)}{5} \right\rfloor + \left\lceil \frac{g}{3} \right\rceil \le \left\lceil \frac{6n-g}{15} \right\rceil. \quad \Box$

Following the idea of the proof of Theorem 4.3 by Brigham and Dutton [1], which is an improvement of Theorem 4.1 for $\delta \geq 3$, we will present similar improvements of Theorems 4.4 and 4.5 for $\delta \geq 5$ and $\delta \geq 4$, respectively.

Theorem 4.6. If G is a graph of order n, minimum degree $\delta \geq 4$, and girth $g \geq 5$, then

$$\gamma \leq \left\lceil \frac{9n - g - 4(g - 4)(\delta - 4)(\delta - 2) - 18(\delta - 4)}{24} \right\rceil.$$

Proof. We proceed by induction on $\delta \geq 4$. According to Theorem 4.4, the bound is valid for $\delta = 4$. Now let $\delta \geq 5$, and let F be the induced subgraph of G consisting of g-4 consecutive vertices of a g-cycle and all the neighbors of these vertices, and let H = G - V(F). This implies $\delta(H) \geq \delta - 1 \geq 4$, $|V(F)| \geq (g-4)(\delta-1)+2$, $\gamma(F) \leq g-4$, and $n(H) \leq n-(g-4)(\delta-1)-2$. Now the induction hypothesis leads to

$$\begin{array}{ll} \gamma & \leq & \gamma(F) + \gamma(H) \\ & \leq & g - 4 + \left\lceil \frac{9n(H) - g - 4(g - 4)(\delta - 5)(\delta - 3) - 18(\delta - 5)}{24} \right\rceil \\ & \leq & \left\lceil \frac{9n - g - 18(\delta - 4) - (g - 4)(9(\delta - 1) + 4(\delta - 5)(\delta - 3) - 24)}{24} \right\rceil \\ & = & \left\lceil \frac{9n - g - 18(\delta - 4) - (g - 4)(4\delta^2 - 23\delta + 27)}{24} \right\rceil \\ & \leq & \left\lceil \frac{9n - g - 4(g - 4)(\delta - 4)(\delta - 2) - 18(\delta - 4)}{24} \right\rceil, \end{array}$$

since $\delta \geq 5$. \square .

Analogously, one can give the following improvements of Theorem 4.5, where the second one is better than the first one when $4 \le \delta \le 5$.

Theorem 4.7. If G is a graph of order n, minimum degree $\delta \geq 3$, and girth $g \geq 5$, then

$$\gamma \leq \left\lceil \frac{6n - g - 3(g - 4)(\delta - 3)(\delta - 4) - 12(\delta - 3)}{15} \right\rceil.$$

Theorem 4.8. If G is a graph of order n, minimum degree $\delta \geq 3$, and girth $g \geq 5$, then

$$\gamma \leq \left\lceil \frac{6n - g - \frac{3(g-4)(\delta-3)(\delta-2)}{2} - 12(\delta-3)}{15} \right\rceil.$$

Acknowledgements: I would like to thank an anonymous referee for detailed comments and suggestions.

References

- [1] R.C. Brigham and R.D. Dutton, Bounds on the domination number of a graph, Quart. J. Math. Oxford 41 (1989), 269-275.
- [2] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, *Period. Math. Hungar*. 16 (1985), 287 - 293.
- [3] P. Flach and L. Volkmann, Estimations for the domination number of a graph, Discrete Math. 80 (1990), 145-151.
- [4] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- [5] W. McCuaig and B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (1989), 749 762.
- [6] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ. 38, 1962.
- [7] C. Payan, Sur le nombre d'absorption d'un graph simple, Cahiers Centre Études Rech. Opér. 17 (1975), 307-317.
- [8] C. Payan and N.H. Xuong, Domination-balanced graphs. J. Graph Theory 6 (1982), 23 - 32.
- [9] B. Randerath and L. Volkmann, Characterization of graphs with equal domination and covering number, *Discrete Math.* 191 (1998), 159-169.
- [10] B. Reed, Paths, stars, and the number three, Comb. Prob. Comp. 5 (1996), 277-295.
- [11] L. Volkmann, Foundations of Graph Theory, Springer-Verlag, Wien New York, 1996 (in German).
- [12] B. Xu, E.J. Cockayne, T.W. Haynes, S.T. Hedetniemi, and S. Zhou, Extremal graphs for inequalities involving domination parameters, *Discrete Math.* 216 (2000), 1-10.