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Abstract

A vertex set D of a graph G is a dominating set if every vertex
not in D is adjacent to some vertex in D. The domination number
v of a graph G is the minimum cardinality of a dominating set in G.
In 1989, Brigham and Dutten [1] proved

n—g
75[ 5 ]

for each graph G of order n, minimum degree § > 2, and girth g > 5.
If G is a graph of order n, minimum degree § > 2, girth g > 5 and
neither a cycle nor one of two exceptional graphs, then we give in
this paper the better bound

Ve[ 21 %)

For § > 3 and g > 5, we also prove v < [(6n — g)/15], and this
inequality is better than (*x) when n > g + 10. In addition, if § > 3,
then we show that

2y <n—(8-2)(1+(d/3]),

where d is the diameter of the graph. Some related bounds in terms
of the diameter, girth, order, and minimum degree are also presented.
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1. Terminology

We consider finite, undirected, and simple graphs G with the vertex set
V(G) and the edge set E(G). The number of vertices |V (G)| of a graph G
is called the order of G and is denoted by n = n(G). The open neighborhood
N(v) = N(v,G) of the vertex v consists of the vertices adjacent to v, and
the closed neighborhood of v is N[v] = Nfv,G] = N(v) U {v}. For a subset
S C V(G), we define N(S) = N(S,G) = U,es N(v) and N[S] = N[S,G] =
N(S)US. The vertex v is an endverterif d(v,G) = 1, and an isolated verter
if d(v,G) = 0, where d(v) = d(v,G) = |N(v)| is the degree of v € V(G).
An edge incident with an endvertex is called a pendant edge. Let Q(G) be
the set of endvertices in a graph G. By § = §(G) we denote the minimum
degree of the graph G. Furthermore, the diameter d = d(G) of a graph G is
the maximum distance between two vertices of G, and the girth g = g(G)
is the length of a shortest cycle of G. We write Cy, for a cycle of length n
and K,, for the complete graph of order n. A cycle with length n is also
called an n-cycle.

A set D C V(G) is a dominating set of G if N[D,G] = V(G). The dom-
ination number v = v(G) of G is the cardinality of any smallest dominating
set.

The corona H o K of the graph H is the graph constructed from a copy
of H, where for each vertex v € V(H), a new vertex v’ and a pendant edge
vv’ are added.

For detailed information on domination and related topics see the com-
prehensive monograph [4] by Haynes, Hedetniemi, and Slater.

2. Preliminary results

The following well-known results play an important role in our investi-
gations.

Proposition 2.1 (Ore (6] 1962). IfG is a graph without isolated vertices,

then
v6)s |12,

Theorem 2.2 (Payan, Xuong [8] 1982, Fink, Jacobson, Kinch,
Roberts [2] 1985). For a graph G with even order n and no isolated
vertices, 7(G) = |n/2] if and only if the components of G are the cycle C4
or the corona H o K, for any connected graph H.
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In 1998, Randerath and Volkmann [9] and independently, in 2000, Xu,
Cockayne, Haynes, Hedetniemi, and Zhou [12] (cf. also [4], pp. 42-48)
characterized the odd order graphs G for which 4(G) = |n/2]. In the next
theorem, we only note the part of this characterization which we will use
in Section 4.

Theorem 2.3 (Randerath, Volkmann [9] 1998, Xu, Cockayne,
Haynes, Hedetniemi, Zhou [12] 2000). Let G be a connected graph
of odd order n with §(G) > 2. Then ¥(G) < (n — 3)/2, unless G = Cs,
G = Cr, or G belongs to a family of 10 graphs of order at most 7 with girth
less than or equal 4.

Theorem 2.4 (McCuaig, Shepherd [5] 1989). Let G be a connected
graph of order n with §(G) > 2. Then ¥(G) < 2n/5, unless G = C; or G
belongs to a family of 6 graphs of order at most 7 and with girth less than
or equal 4.

Theorem 2.5 (Flach, Volkmann [3] 1990). Let G be a graph of order
n and minimum degree § > 2. If A C V(G) is an arbitrary subset, then

27(G) < n+ 14| - (5 - A Al

Proofs of the Theorems 2.5 and 2.2 can also be found in [11], pp. 217-
219 and 223-224.

Theorem 2.6 (Reed [10] 1996). If G is a graph of order n with §(G) > 3,
then v(G) < 3n/8.

3. Upper bounds based on mlmmum degree, diameter
and order

Theorem 3.1. If G is a connected graph of order n and minimum de-
gree 6 > 3, then

2y<n—(6-2)(1+[d/3)).
Proof. Let d = 3t + r with 0 < r < 2 and let zoz;...z4 be 2 minimum

length path between the vertices z¢ and z4. If A = {zg,z3,...,z3:}, then
|A] =1+ |d/3] and N(A) N A = @. This implies

= IN(zai)| > d]A.

i=0

U N(zsi)

1=0

IN(A) — Al = [N(4)| =
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Applying Theorem 2.5, we obtain

2 < ntlal--pA=A
< n+lAl-(@E-1)lA
= n—(6—2)(1+[d/3]). O

Corollary 3.2 (Payan [7] 1975). If G is a graph of order n with § > 3,
then
2y<n+2-4.

For the special family of graphs with no C4 subgraphs, Brigham and
Dutton [1] have presented the following better bound.

Theorem 3.3 (Brigham, Dutton [1] 1989). Let G be a connected
graph of order n with § > 3. If G has no Cj subgraphs, then

27 <n—1— (5 - 1)((d/3] - 1+6/2).

Inspired by Theorem 3.3, we will prove, similarly to the proof of Theo-
rem 3.1, the following related bound.

Theorem 3.4. Let G be a connected graph of order n with § > 4. If
G does not contain the 4-cycle and the diamond (a 4-cycle with a chord)
as induced subgraphs, then

2y <n—1—(5—3)(1+(d/2]) - |/2]/6.

Proof. Let d = 2t + r with 0 < r < 1 and let zyz;...z4 be a minimum
length path between the vertices zo and zq. If A = {70, z2,...,22:}, then
|A|=1+|d/2) =1+t and N(A)N A = . Since G does not contain the
4-cycle and the diamond as induced subgraphs, we observe that

U N(xz,')

i=0

IN(4) — Al IN(A) =

t
Y IN(z)| =t > 6]4] - A +1.

i=0
Thus, it follows from Theorem 2.5 that

2y < nla-(s-nA=4
< ntldl- (-l +1a - AL 221
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Al -1
8

n—1- (-390 + a2 - 42 o

= n-1-(5-3)JA|-

Note that the family of graphs with no C4 subgraphs is a subclass of
the graphs which do not contain the 4-cycle and the diamond as induced
subgraphs. In addition, for § > 8 and d(G) great enough, for example
d(G) > 36(6 —1)/(6—7), the bound in Theorem 3.4 is better than this one
in Theorem 3.3.

4. Upper bounds based on girth, order and minimum
degree

In 1989, Brigham and Dutton [1] gave the following upper bound for
the domination number based on the girth and the order (a proof of this

theorem can also be found in [4], pp. 56-57).

Theorem 4.1 (Brigham, Dutton [1] 1989). If G is a graph of order n,
minimum degree § > 2, and girth g > 5, then

v [Pl o] )

The main theorem of this paper is the following improvement of Theo-
rem 4.1, which shows in particular, that equality holds in (1) if and only if
G is a cycle, the twin-Cy (see the figure), or G = 2C7.

S

Figure: twin-C

Theorem 4.2 Let G be a graph of order n, minimum degree § > 2, and
girth ¢ > 5. If G is not a cycle and not isomorphic to 2C7 and to the

twin-C7, then
3n—g—6]_ [3n—g _
vs[m=R- [E )
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Proof. Observe that in general, a g-cycle can be dominated by [g/3]
vertices. Assume that G is not a cycle, and remove a g-cycle Cy from G
to a form a graph H. Since g > 5 and § > 2, the graph H has minimum
degree at least d — 1 > 1.

Case 1. One of the components of H is a corona graph F.

Subcase 1.1. The corona graph F = F’ o K; has at least four vertices.
Let u be an endvertex of F. Because of § > 2, the vertex u is adjacent with
a vertex £ € V(C,). If we choose, without loss of generality, a minimum
dominating set Dy of Cy such that = € Dy, then D, dominates the vertex
u. Since F—u is a connected graph of odd order with at least three vertices,
Proposition 2.1 implies y(F — u) < |(n(F) — 2)/2]. Applying once more
Proposition 2.1 on all the remaining components of H, we obtain

v [ gl [ [

Subcase 1.2. The corona graph F = F' o K consists of two vertices u
and v. Since each of the two vertices u and v has a neighbor in Cy, we
conclude that g < 6.

If Cy = z1z22324252), then let, without loss of generality, uz,,vzs €
E(G). Obviously, the vertices z; and 3 dominate V(C,) U {u,v}, and
thus, it follows from Proposition 2.1 that

n—7| [3n-9 n—g—=6
’52+l 2]‘[ 6 JS[ 6 l
If Cy = z12273242526%), then let, without loss of generality, uz,,vz4 €

E(G). Obviously, the vertices z; and =4 dominate V(Cy)U{u, v}, and thus,
it follows from Proposition 2.1 that

n—8 3n—12 3n—g—-6
e e S |
Case 2. None of the components of H is a corona graph, and H contains
a component F of even order. The hypothesis g > 5 implies F # C, and

n(F) > 4. Hence, it follows from Theorem 2.2 that v(F) < (n(F) — 2)/2.
Therefore, Proposition 2.1 leads to

< S0 e =]

Case 3. The graph H contain two odd components H, and H,. We
conclude from Proposition 2.1 that y(H;) < (n(H;) — 1)/2 for i = 1,2 and
hence, we arrive at

< S e o]
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Case 4. The graph H is connected and of odd order.

Case 4.1. The graph H has an endvertex u and H — u is not a corona
graph. The vertex u is adjacent with a vertex z € V(C,). If we choose,
without loss of generality, a minimum dominating set Dy of C,y such that
z € Dy, then Dy, dominates the vertex u. Since H — u is connected,
of even order, and not a corona graph, it follows from Theorem 2.2 that
Y(H — u) < |(n(H — u) — 2)/2]. This leads to

[ 2 ]

Case 4.2. The graph H has an endvertex u and H — u is a corona graph.

Subcase 4.2.1. The vertex u is adjacent with an endvertex w of H — u
and H — u consists of two vertices w and z. Since z is adjacent with a
vertex of Cy, we observe that g < 8.

If ¢ =5, then
_a_[13]_[3n—-g-6
7‘3’[6]‘[ 6 l

i

If g = 7, then G is isomorphic to the forbidden graph twin-C7, and we
observe that ¥(G) =4 = [(3n — ¢)/6].

If ¢ = 8, then
.19 _[3n—g—6
7‘4‘[6]‘[ 6 l

Subcase 4.2.2. The vertex u is adjacent with an endvertex w of H — u,
and H — u consists of at least 4 vertices. Let z € V(Cy) be adjacent with
u.

If g = 6, then

If g = 35+ 1 with s > 2, then observe that u dominates the vertices =
and w and y(Cy — z) = (¢ — 1)/3. As H — {u, w} is connected and of odd
order with at least three vertices, Proposition 2.1 yields y(H — {u,w}) <
(n(H) — 3)/2. Altogether, we obtain

<[ ]

Let ¢ = 35+ 2 with s > 1. If we choose a minimum dominating
set Dy of Cy such that z € Dy, then Dy dominates the vertex u. As
H - {u}is connected with at least four vertices, Proposition 2.1 yields
¥(H — {u}) < (n(H) — 1)/2. Thus, it follows that

<[]
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However, in this situation, 3n and g have opposite parity so it is straight-
forward to verify that

[3n —6g - 3]= {31: —6g - 6].

Let g = 35 with s > 2. If we choose a minimum dominating set Dy of
Cy such that & € Dy, then Dy dominates the vertex u. As above, it follows

B e L L

Subcase 4.2.3. The vertex u is adjacent with a vertex w of H — u and
w is not an endvertex of H — u. Let z be an endvertex of H — u which
is not adjacent with w, and let v be adjacent with z in H — u. Since z is
an endvertex of H, there exists a neighbor y € V(Cy) of z. If we choose a
minimum dominating set Dy of Cy such that y € Dy, then D, dominates
the vertex z. Furthermore, we observe that V(H) — (Q(H) U {v}) is a
dominating set of H — z. Combining these two dominating sets, we deduce

that
<22 ]

Subcase 4.8. The graph H has no endvertex. Since H is of odd order, it
follows from Theorem 2.3 that H = Cs, H = C7, or y(H) < (n(H) - 3)/2.
In the last case, we obtain

e

If H=Cs,thenCy =Csand y <4=[(3n—-g—-6)/6]. If H=Cy,
then Cy = C5, Cg = Cs, or Cg = C7. In the cases C; = Cs and Cy = Cs,
the desired inequality ¥ < 5 = [(3n — g — 6)/6] is immediate. In the
remaining case C; = C7, we arrive at the forbidden graph G = 2C7 or
the cycles of length 7 are connected by an edge. In the last case it is
easy to see that v < 5 = [(3n — g — 6)/6]. Finally, we observe that
7(2C7) =6 =[(3n — g)/6]. D

The next result of Brigham and Dutton [1] is identical with Theorem
4.1 when § = 2, and an improvement of (1) when § > 3.

Theorem 4.3 (Brigham, Dutton [1] 1989). If G is a graph of order =,
minimum degree § > 2, and girth g > 5, then

[n— lg/3) — (¢ — 49)4=20=3) —2(6—2)]‘

v<

2
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If the order n of a graph G is great enough, then the following results
are better than Theorem 4.3.

Theorem 4.4. If G is a graph of order n, minimum degree § > 4, and

girth ¢ > 5, then
On—g
7< [ 24 ]

Proof. Remove a g-cycle Cy from G to form a graph H. Since g > 5 and
d > 4, the graph H has minimum degree at least § —1 > 3. Thus, Theorem

2.6 leads to 3 ) o
n-—g g n—g
< . a
75[ 8 J*[s]s 24]

Theorem 4.5. If G is a graph of order n, minimum degree § > 3, and
girth g > 5, then _
< [Gn -9

15

Proof. Remove a g-cycle Cy from G to form a graph H. Since g > 5 and
§ > 3, the graph H has minimum degree at least § —1 > 2. If Fisa
component of H, then it follows from Theorem 2.4 that v(F) < 2n(F)/5
or F = C7.

Suppose that there exists a component F = C7 = z,Z223T4Z5Z6Z7%1.
This yields 5 < g < 7, and because of § > 3, we conclude that each vertex
of F is adjacent with a vertex of Cj.

Let g = 7. Since z; and z, have a neighbor in Cy, it follows immediately
that z; and z, are contained in p-cycle with p < 6. This is a contradiction
to the hypothesis that g = 7. '

Let g = 6 such that Cy = y1y2y3yaysysy1. We assume, without loss of
generality, that z;y; € E(G). This implies z2y4 € E(G). Since z3 is also
adjacent with one vertex of Cy, we observe that z3 is contained in a p-cycle
with p < 5, a contradiction.

Analogously to the case ¢ = 6, one can show that g = 5 is also not
possible.

Consequently, we have y(F) < 2n(F)/5 for all components F of H and

s s [o]

Following the idea of the proof of Theorem 4.3 by Brigham and Dutton
[1], which is an improvement of Theorem 4.1 for § > 3, we will present simi-
lar improvements of Theorems 4.4 and 4.5 for § > 5 and § > 4, respectively.

us,
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Theorem 4.6. If G is a graph of order n, minimum degree § > 4, and
girth g > 5, then

< [Qn —g—4(g—4)(s ;44)(5- 9) — 18(4 —4)].

Proof. We proceed by induction on § > 4. According to Theorem 4.4, the
bound is valid for § = 4. Now let § > 5, ,and let F be the induced subgraph
of G consisting of g—4 consecutive vertices of a g-cycle and all the neighbors
of these vertices, and let H = G — V(F). This implies §(H) > — 1 > 4,
V(F)| > (9-4)(d—1)+2, v(F) < g~ 4, and n(H) < n—(g—4)(§—1)—2.
Now the induction hypothesis leads to

7 < v(F)+v(H)

< g_4+[Qn(H)—g—4(g—4)(¢;4—5)(6-3)—-18(6—5)]
< [9n—g—18(6 —4)— (g —4)(9(0 — 1) +4(6 —5)(6 - 3) - 24)"
= 24
_ [9n—g—18(5—4) — (g — 4)(46% — 236 + 27)
- 24 ]
< [(In—g—4(9—4)(6 —4)(6 —2) —18(6 — 4)
< - |
since § > 5. O.

Analogously, one can give the following improvements of Theorem 4.5,
where the second one is better than the first one when 4 < 4 < 5.

Theorem 4.7. If G is a graph of order n, minimum degree § > 3, and
girth g > 5, then

6n—g—3(g—4)(6 —3)(6 — 4) — 12(6 — 3)
75[ 15 ]

Theorem 4.8. If G is a graph of order n, minimum degree § > 3, and
girth g > 5, then

< 6n — g — Ae=A@=3)0=2) _ 195 _ 3)
7= 15 ‘
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