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Abstract
An edge-ondering of a graph G = (V, E) is a one-to-one function
f from E to the set of positive integers. A path of length k in G is
called a (k, f)-ascent if f increases along the edge sequence of the
path. The altitude a(G) of G is the greatest integer k such that for
all edge-orderings f, G has a (k, f)-ascent.
We obtain a recursive lower bound for a(Kin,») and show that

4 f5<n<g9
a(Kan)=4{ 5 ifl0<n<12
6 ifn>13.
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1 Introduction

A one-to-one function f from E to the set of positive integers is called an
edge-ordering of the graph G = (V, E). For e € E, we call f(e) the label of
e, and use e and f(e) interchangeably. Denote the set of all edge-orderings
of G by F. For f € F, a path of G for which f increases along the edge
sequence is called an f-ascent of G, and a (k, f)-ascent if it has length k.
The height h(f) of f is the maximum length of an f-ascent. The altitude
a(G) of G is defined by

o(G) = min h(f).

Observe that a(G) is the greatest integer k such that G has a (k, f)-ascent
for each edge-ordering f € F.
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Clearly, a(G) > 2 for any graph G with a vertex of degree at least
two. It is also evident that if H is a subgraph of G, then a(H) < o(G).
The altitude of some classes of graphs is easy to determine, for example,
a(Ca,) = 2, a(Cony1) = 3 for all n > 2 and a(C3) = 2 (since C3 has no
path of length three).

Although the term “altitude” was first used in [3], the concept was in-
troduced by Chvatél and Komlé6s [5] who posed the problem of determining
a(K,). The best general bounds for a(K,,) are

o(Kp) > 3(VAn=3-1)
obtained by Graham and Kleitman [6], and
o Kn) < 8[258] +2 (1)
(see e.g. [3], [7]). For small even n, the upper bound

La) if » = 10 (mod 16)
a(Kn—l) S Q(Kn) S

[22=2|  otherwise,

obtained in [3], is better than the bound in (1). (The largest integer for
which this bound is smaller than that in (1) is n = 270.) The best asymp-
totic upper bound

ofKa) < (5 +o(1)n

was obtained by Calderbank, Chung and Sturtevant [4]. Results on the
altitude of other classes of graphs can be found in [1, 2, 8, 9].

This paper is mainly concerned with the altitude of complete bipartite
graphs K3 ,. It was proved in [3] that for m < n,

o(Kpmn) < min{2m, [2 [2]]}, (2)
thus a(K3,,) < 6. Combining results in [2], [3] and [8], we have the follow-
ing exact values for a(Kp, »).

Proposition 1
(1) o(K12) = oKy 2) =2.
(i) a(Kmn) =3 for2<m<4,3<n<4.
(#) o(Kayp) =4 forn > 5.
() a(Kmn)=4for3<m<4,5<n<6.
(v) a(Ks5)=4.
Thus we see that a(Ks.,) is known for all n > 2, while a(K3,,) is

known for 3 < n < 6. In this paper we obtain a recursive lower bound for
the altitude of K,, ,, and determine a(Kj3,,) for alln > 7.
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2 Lower bounds

We denote a (k, f)-ascent whose edges (in sequence) have the labels uy, ..., ug
by (ug...ug). If A = (uy...ux) is a (k, f)-ascent and (v;...v) is an (, f)-ascent
with v < uy, then (v;...v)) denotes the (k + I, f)-ascent (v;...vuy...ux).

Theorem 2 Given arbitrary m and n, if, for any edge-ordering f, Ky p
has a (k, f)-ascent starting at a vertex of degree m, then for any edge-
ordering f', K1 (m+1)ns1 has a (k+2, f')-ascent starting at a vertez of
degree m+ 1.

Proof. Let p = (m + 1)n + 1 and suppose K41 p has bipartition (U, X),
where X = {X),...,X,}. Consider an arbitrary edge-ordering f’ of Kyn11.p.
For each i = 1, ...,p, let e; be the edge incident with X; with smallest label
and let E) = {e; : i = 1,...,p}. By the pigeonhole principle, some vertex
A € U is incident with at least n + 1 edges in E;. Let these edges be
AX; with labels ¢; = f'(AX;), ¢ = 1,..,n+ 1. Assume without loss
of generality that a; = min?*'{e;}. Consider the subgraph H = K, .
of Kpy1,p induced by (U — {A}, {Xa2,..., Xn41}). For the edge-ordering
f = F|E(H), let X be a (k, f)-ascent of H starting at X; (a vertex of
degree m in H) for some i = 2,...,n + 1. Since a; is the smallest of the
labels of all edges incident with X, (a1a;)Ais a (k+2, f')-ascent of Kpnyi,p
starting at vertex X, which has degree m + 1. ]

Corollary 3 Let m and n be integers such that for any edge-ordering f,
K has a (k, f)-ascent starting at a vertez of degree m.

(#) (K1 (meryns1) 2k +2.

(@) Ifp=[Z+ m +- 4 -(;n—_l,,q-)-[](m+q)!, then a( Kniq,p) > k+2g.
Proof. Statement (i) is a direct consequence of Theorem 2 and (#%) is ob-
tained by applying Theorem 2 q times. [
Corollary 4

(1) a(Ka23) > 3, a(Ka.10) 2 5, a(Ka1) 2 7. If n > |(e — 1)m!], then
(K p) 2 2m-1.

(li) Q(Kz'g.) 2 4, a(Ka,m) 2 6, a(K4,65) Z 8. Ifn Z [_em!], then
a(Kmn) > 2m.

Proof. (i) Clearly K satisfies the hypothesis of Theorem 2 and (K1) =
1, so if we substitute m =n =k =1 and ¢ = 1, 2 and 3 respectively in
Corollary 3(ii), we obtain a(Ko3) > 3, a(K3,10) = 5 and oKy 41) > 7.
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Further, if we first substitute m = n = &k = 1 and then ¢+ 1 = m in
Corollary 3(i%) and use the expansion of e, we get

1

=[l+ g+t ),l(q+1) =1+ 3+ —fm! < (e~ m!

( +1
and so p < |(e—1)m!]. Since any supergraph H of a graph G satisifes
o(H) 2 a(G), we obtain a(Km.n) 2 2m — 1 for n > [(e — 1)m!].

(#) Similarly, using K » as the initial case (thus m = 1, n = k = 2) and
the fact that 2+ % +--- + & < e, we obtain (i). n

In some cases the bounds given by Corollary 4 are best possible in two
ways. For example, by Proposition 1, (K2 5) = 4, thus the bound is cxact,
and also 5 is the smallest integer n such that a(Kz,) = 4, i.c. such that
a(K> ) attains the bound in (2).

For m fixed, we denote the smallest integer n such that a(K,, ) = 2m
by 8(m). Thus 6(2) =5 and by Corollary 4(é), 8(m) < |em!|. We do not
expect this bound to be good in general. For example, the bound gives
6(3) < 16, but more detailed analysis with the proof technique of Theorem
2 will establish 8(3) = 13 (Corollary 12).

We now consider K3, with bipartition ({A,B,C}, {X),...,Xn}) and
edge-orderings f with labels f(AX;) = a;, f(BX;) = b; and f(CX:) = ¢;
for each i = 1,...,mn. We will be concerned with the ordered partition
(£r, Ez, E3) of E(K3,) induced by f in the following way. For each i =
L,..,n and any edge e; € {a;, b;, c;},

E, ife= min{ai,biaci}v
Ey  if e; = max{a;, b;, c;},
Ey;  otherwise.

Our next result concerns ascents in K5 3, and with notation as above, we
consider the bipartition ({B,C}, {X;, X3, X3}) of Ky 3, with its edges la-
belled b; and ¢;,71 =1,2,3.

Proposition 5
(?) In any edge-ordering f of Ka 3 there is a (3, f)-ascent starting at a
vertex of degree two and one starting at a vertez of degree three.
(i) If f is an edge-ordering of K23 with b; < ¢; fori=1,2,3, then there
is a (4, f)-ascent starting at a vertez X, j =1,2,3.

Proof. (i) Consider an arbitrary edge-ordering f of Ky 3. Without loss
of generality we may assume that by < ¢; and bo < cg, and so (bybacy)
(if by < b2) or (babrer) (if b2 < b)) is a (3, f)-ascent starting at a vertex
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of degree two. Similarly, (bacacy) (if c2 < ¢1) or (bicice) (if €1 < ¢2) is a
(3, f)-ascent starting at a vertex of degree three.

(i) Assume without loss of generality that b, = min{b;,b2,b3}. Then
(b1bacacs) (if co < c3) or (bybscses) (if c3 < c2) is a (4, f)-ascent starting
at a vertex of degree two. n

The following two propositions involve ascents in K34 and will be used
extensively in the proof of Theorem 8. In each of these propositions, K3 4
has bipartition ({4, B,C}, {X1,...,X4}) and we use the notation defined
above.

Proposition 6

(a) Let f be an edge-ordering of Kz such that a; € Ey fori =1,...,4
and a; = min;_,{a;}.

(i) There is a (5, f)-ascent starting at vertez X;.
(%) If b; € Ey fori=2,3,4, then there is a (6, f)-ascent starting at
verter X,.
(b) Let f be an edge-ordering of Ks 4 such that a; € E3 fori = 1,...,4
and a; = max}_, {a;}.
(¢) There is a (5, f)-ascent terminating at verter X,.
(i) Ifb; € E2 fori = 2,3,4, then there is a (6, f)-ascent terminating
at verter X,.
Proof. (a) Consider the K3 induced by {B,C, X,, X3, X4}.
(?) By Proposition 5(i) there is a (3, f)-ascent A beginning at X; for some
j =2,3,4. Then (a;a;)X is a (5, f)-ascent.
(i) By Proposition 5(é) there is a (4, f)-ascent A beginning at X; for
some j = 2, 3,4, and thus (a;a;)X is a (6, f)-ascent.

(b) These statements follow by applying (a) to the edge-ordering formed
by reversing the order of f. n

Proposition 7 Let f be an edge-ordering of K34 such that a; € Ey for
1=1,2,3, ¢; € E3 fori=2,3,4,

21 < a; where by = min{b,, b3} (3)

and
cq4 > ¢y where by = max{b,,b3}. (4)

Then K34 has the (6, f)-ascent (ayasbsbecicy).
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Proof. The hypothesis implies that {b2,b3} C E> and the result follows.H

It is important to observe that a; = min{a;,az, a3} (respectively ¢4 =
max{cz, c3,c4}) is a sufficient condition for (3) (respectively (4)) to hold.
This fact will also be used repeatedly.

We now prove the final theorem of this section. The argument includes
frequent applications of Propositions 6 and 7 or their contrapositives to
specific induced subgraphs isomorphic to K34. Earlier applications are
detailed but in later cases we merely use statements such as “By Proposition
6 (or 7) applied to ({B, A,C}, {Xi, X;, Xx, Xi}), ... .” We mean that the
proposition is applied to the K34 with this bipartition. Moreover, in the
application, B (respectively A, C) has the role of A (respectively B, C) in
Proposition 6 (or 7), while X; (respectively X, Xk, X;) has the role of X;
(respectively Xo, X3, Xa).

Theorem 8 a(K3;3) > 6.

Proof. Let K313 have bipartition ({A, B,C}, {X1,...,X13}) and an arbi-
trary edge-ordering f. We use the notation ai, b;, ¢; (i = 1,...,13) and
E,, E,, E3 as dcfined above. By Corollary 4(%), a(K3,10) = 5, henee any
edge-ordering of K313 has height at least five. Suppose contrary to the
statement of the theorem that there exists an edge-ordering f of K313
with h(f) = 5.

By the pigeonhole principle, one of the vertices A, B and C, say A,
is incident with k > 5 edges in Ej, say ai,--- ,a; with a; = min®_, {a;}.
By Proposition 6(a)(ii), B is incident with at most two edges b; € E;
where i € {2,...,k}, and similarly (interchanging the roles of B and C
in Proposition 6(a)(é)), C is incident with at most two edges ¢; € Es,
i € {2,...,k}. Since each X; is incident with exactly one edge in each E;,
J=1,2,3, it follows that each of B and C joins exactly two of the vertices
X2,..., X) with edges in E,, and in particular, & = 5. Note that similar
arguments show that each of B and C is incident with at most five edges
in El.

Assume without loss of generality that bo,bs € Ep and by, b; € Es.
Then c3,¢3 € E3 and ¢4, ¢5 € Eo. Note that we make no assumption about
the cdges by and ¢, but it is clear that b;,¢; € E; U E3 and that b; € E;
if and only if ¢; € Ej.

We now define additional notation. For j =1,2,3,

Aj={a;:0; € Ej, i=1,..,13)}.

The edge-sets B;,Cj, j = 1,2, 3 are defined similarly. Further, for j = 2,3,
let C; = Cj —{a1}.

Lemma 8.1 |C; — {c2,c3}| =2.
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Proof. We note that 4, = {ay,...,a5} and deduce

{a; : ¢;€Cy—{es,c5}} C As, (5)

{a't : G € C;Ig - {027 03}} g A29 (6)
hence

{b;i : ci€Cy—{cacs}} C By, (m

{b,’ L Cé - {Cg, 63}} C B,. (8)

Suppose that {c;n CqsCry cs} - Cé - {62, 03}- By (6), {apy Qgqy Cr, a,} C A C
E; and by (8), {bp,bg,br,b;} € B1 C E;. Thus, regardless of the order
of labels by, by, br, b,, the K34 with bipartition ({B, A, C}, {bp, bg, bs, bs})
satisfies the hypothesis of Proposition 6(a)(ii) and hence has a (6, f)-ascent.
This contradiction shows that

|C:'3 —{ca,c3}| £3. 9
A similar argument involving (5), (7) and Proposition 6(a)(ii) establishes
|C3 — {ca,c5} < 3. (10)

Next suppose that there is equality in (9) and, without loss of gener-
ality, C3 — {c2,¢c3} = {cs:c7,c8}. By (6) and (8), {as,ar,as} T A2
and {bs,b7,bs} C Bi. Let p € {6,7,8}. In the K34 with bipartition
({As Br C}) {Xla X20 X31 Xp})s

{alya21a3} C B, {Cg,Ca,cp} - E3
and
3
o = min{oc).
Hence by the contrapositive of Proposition 7,
¢p < ¢, where b, = max{bs,bs}.

Now without loss of generality, let bg = min{bg, b7 bg}. In the K34 with
bipartition ({ B, A, C}, {Xe, X7, Xs, X:}) we have

{bﬁ, h, bS} - Ela {CT)CS) Ct} g E31

8
bg = miéx{bi} and c¢; = max{cz, cs, ¢}
=i

By Proposition 7 there exists a (6, f)-ascent. This contradiction together
with (9) shows that

|C3 — {c2,ca}l < 2. (11)
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In order to establish the lemma, it remains to show that |C§—{co,c3}| >
2. Suppose to the contrary that (without loss of generality) C5 C {¢2,¢3,¢6}-
By (10), |C3| < 5 and the argument used for A; shows that |C;| < 5. Since
|Cy| +1C5] + |C3| = 12, there are three possible triples for these quantities.
These will be eliminated in the following two cases.

Case 1. (|C1],]C5), |C4l) = (4,5,3) or (5,5,2)
Suppose
{e1y ey c10} C C) with ¢7 = r'_ng"xrx{c,-} and Cj = {ca4,c5,¢11, €12, C13}-

From (7) we deduce that {by), b12,b13} C B; and without loss of generality
we may assume that by = min}2,,{b:;}. By (5), {a11,a12,a13} C As.
Observe that for i € {8,9, 10},

a; € A, (respectively Aj) if and only if b; € Bj (respectively Bo). (12)
Applying Proposition 6(a)(i) to

({C, A, B}, {Xq,...,X1}) and ({C,B,A},{Xy,...,X10}),

we deduce that

{as,a9,a10} N A3 # ¢ and {bs,by,b10} N B3 # ¢. (13)
By (12) and (13),
{bs,bg,blo} N By # ¢ and {ag,a.g,am} N A, 75 ¢. (14)

The relations (12), (13) and (14) imply that the following two subcases are
sufficient to complete Case 1.

Subcase 1(a) Az N {ag,a9,a10} = {ag}, 43 N {as,a9,610} = {a9,a10},

BQn Ibst bg,blf)} = {bg,blo}, BS n {bs.bg, b[o} = {bg}

Let ¢; = max{ci2,¢13} and for each p € {9,10}, apply Proposition 7 to
({B,C, A}, {X11,X12, X13,X,}). To avoid the existence of a (6, f)-ascent,
we have aj, < a;. Now apply Proposition 7 to ({C, B, A}, { X7, Xg, X10, Xt }).
There exists a (6, f)-ascent and this contradiction completes Subcase 1(a).

Subcase 1(b) As N {ag,a9,a10} = {ag,a10}, A3z N {as,a9,a10} = {as},

By N {bs, by, b0} = {bs}, B3 N {bs,bo,b10} = {bg, b10}-

Let a; = max{ag,a10} and for each p € {4,5}, apply Proposition 7 to
({C,A, B}, {X7, Xo,X10,X,}). To avoid the (6, f)-ascent, b, < b;. But
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then Proposition 7 applied to ({4, C, B}, {X1, X4, X5,X:}) ensures the ex-
istence of a (6, f)-ascent. This contradiction completes Case 1.

Case 2. (ICII1 |C£|’ |C:',|) = (5’4’3)

Without losing generality, let C; = {cs,...,c12} where cg = min}2,{c;},
Cé = {64, ...,C7} and C:'; = {62,63,613}. Then by (5) - (8),

{as a7} C As, a13 € Az and {bg, b7,b13} C Bs.

Applications of Proposition 6(a)(éi) to ({C, B, A}, {Xs, Xi, Xj, Xi}) and
({C,A, B}, {Xs,Xi,Xj,Xk}), where {i,j,k} - {9,..., 12}, establish that

|42 N {ag,...,a12}| = |Bz N {bg,...,b12}| = 2,
and without losing generality we may assume that
a9,a10 € A2, an,a12 € Az, bi,bi2 € Ba, bg,b1o € Bs.

Let ¢; = max{cy,c3}. For each p € {9,10}, to avoid the 6-ascent implied
by Proposition 7 applied to ({4, C, B}, {X1, X4, X5, Xp}), we obtain b, <
b;. Now Proposition 7 applied to ({C, A, B}, {X3g, Xy, X10, X:}) gives a
6-ascent and this contradiction completes the proof of Lemma 8.1. O

By symmetry we also have the following lemma, where for j = 2,3,
B} = B; — {b1}.

Lemma 8.2 |Bj — {by, b5} =2.

Using Lemmas 8.1 and 8.2 we assume without loss of generality that
Ch = {co,c3,¢8, 00} and Bj = {ba, bs, b, b7}. There is exactly one edge of
each of the sets Ey, E; and Ej incident with each X;, and A, = {a,...,as5}-
Hence

A = {as,...,a9}, Az ={aio,....a13}, {bs,b9} C B, and {cg,c7} C C;.

Without loss of gencrality assume that a3 = max!2,,{a;}. By Proposition
G(b)(li) a'pplied to ({As Bs C}a {X137 X12) -Xlla Xlo})a

By N {b19,b11,b12} # ¢ and CiN {c1o, c11,¢12} # @

IHence
CanN{cro,cryc12} # @ and BaN {byo, b1y, b12} # ¢.

There are two remaining cases to consider.
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Case 1. byg € B; and {bn,bn} C By

Then ¢10 € C2 and {e11,¢12} C €, hence C; = {cs,c7,011,¢12}. Let
¢; = min{cs,c7,¢11,¢12}. If ¢ = 6 or 7, then Proposition 7 applied to
({C, B, A}, {X,, X11, X12, X13}) forces a 6-ascent. Hence without loss of
generality ¢ = 11. Now for each p € {4,5}, we apply Proposition 7
to ({C, A, B}, {X11,X6,X7,Xp}). To avoid 6-ascents, max_,{b;} = by,
where ¢ € {6,7}. However, Proposition 7 applied to

({As By C}$ {-Xth? XS: Xt})
ensures the existence of a 6-ascent, which contradiction concludes Case 1.
Case 2. {byg,b11} C By and b2 € B,

Then {c19,¢11} C Ca, c12 € C and By = {bg,...,b11}. Let by = min}lg{b;:}.
If ¢ = 8 or 9, then by Proposition 7 applied to

({B,C, A}’ {XQ’XIOyXll’Xl:’})

there is a 6-ascent. Hence without loss of generality ¢ = 10. Now for
cach t € {2,3} we apply Proposition 7 to ({B, A, C}, {X10, Xs, Xg, X:})-
To avoid 6-ascents, maxc; {e;} = ¢,, where ¢ € {8,9}. However, Proposi-
tion 7 applied to ({4, B,C}, {X, X2, X3,X,}) gives a 6-ascent. This final
contradiction completes Case 2 and the proof of the theorem. |

Observe that any path of length six, and thus 6-ascent, in K313 nec-
essarily starts at a vertex of degree three. The final result in this section
extends and improves results in Corollary 4(i) and ().

Corollary 9 (i) a(Kag) =5 and a(K4.53) = 8.
(#) Ifm >3, then O(m) < |(e — 1 )m!].
Proof. (i) By Proposition 5(2), K32 has a (3, f)-ascent starting at a vertex
of degree three for any edge-ordering f, hence by Corollary 3(z), a(Kag) >
5. Similarly, using 6-ascents in Ks13 (Theorem 8), we get a(K453) > 8.
(i) Substitutingm =3, n=13 and k=6 in Corollary 3(iz), we get
13 1
P = G+ETm (3+1)

1
=[2+ +

+eot ),](3+q)

(3+
1

aroi vt (3+q)'z](3+ o

< (e- -)(3 +4Y)

and so p < |(e— 3)(3+q)!|. Therefore, if n > |(e — 3)(3 +¢)!}, then
&(K34qn) =2 6+ 2g. Substituting ¢ + 3 = m, we obtain that if n >
l(e = 3)(m!)], then a(Km ) = 2m and the result follows. ]
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3 Upper bounds

Altitude upper bounds will be established using the following methods,
which were also exploited in [4, 6, 8, 9].

Let P = (E,, ..., E;) be an ordered partition of the edge set E of G and
let f be any edge-ordering of G satisfying

e; € E; and ¢; € E;, where 7 < j, implies f(e:) < f(e;).

Such an edge-ordering is called P-consistent.

For i = 1, ..., we use the abbreviations f; = f|E; and G; = G[Ej] (the
subgraph of G induced by E;); note that f; is an edge-ordering of G;.

Let f be P-consistent. In the edge-sequence X of any f-ascent of G,
for each i < j, edges in E; precede edges in E;. Hence X = X;,...,X;,
where X; (possibly empty) is an f;-ascent of G;.

Proposition 10 [3] For any graph G, a(G) < Z:=1 a(G;).

Judicious choice of the ordered partition P and the P-consistent edge-
ordering f often enables us to improve the upper bound of Proposition 10.
Such a choice may allow us to find consecutive sets Ej, ..., Ex so that the
maximum length of an ascent in f|(E;U...UEy) is equal to E{F:ja(Gi) —c for
some ¢ > 0, in which case it is easily seen that the bound may be improved
to T!_,a(G;) — c. Situations of this type involving just two consecutive

sets E;, E;4) of the partition include:

(¢) Gi and G4 are vertex disjoint. In this case no edge of E;4, may
follow an edge of E; in an f-ascent A. Hence A (considered as an edge
set) satisfies AN E; = ¢ or AN E;+; = ¢, and the upper bound may
be decreased by min{e;, i1}

(#2) Property (i) does not hold, but there is no vertex which is both the
terminal vertex of an (o, f;)-ascent in G; and the initial vertex of an
(i1, fit1)-ascent in Giy;.

(%i%) Properties (i) and (%) do not hold. However, paths which negate
Property (¢i) have more than one common vertex.

Theorem 11 (i) a(K39) <4
(#) a(Ks12) £5.

Proof. (i) Consider the ordered partition P = (E,, Ey, E3) of E(K3)
with G; = Kj39[E;] 2 3K, 3 for each i, as shown in Figurc 1, where we
use the same labelling as defined in Section 2 and where the thinnest edges
are in £y and the thickest in E3. Note that any edge-ordering of K; 3 has
height two and so any edge-ordering of G;, i = 1,2, 3, has height two.

Let f with labels as in Figure 1 be an edge-ordering of K39 such that
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Figure 1: An edge-ordering of K39 of height four

f is P-consistent,

inGi, a1 <az<az, by <b; <bsand ¢7 < ¢z < cg,
in G, a7y < ag, by < bs and ¢4 < ¢35, and

in G3, ag < as, by < bg and ¢ < co.

Suppose that A = (uvzyz) is a (5, f)-ascent. Then X contains at least
one and at most two edges in each E;, hence u € Ey, z € Es and z € Ej.
We consider edges in E; incident with A; the proofs in the cases where A
starts with edges in E) incident with B or C follow by symmetry.

Suppose v € E;. Then any (3, f)-ascent (uvz) terminates at vertex
B or C and so can be extended to no more than a (4, f)-ascent (uvzy)
if y € E3. Hence y € E;. The only possible (4, f)-ascents (uvzy) with
u,v € F) incident with A and z,y € E; are (aja2b2bg) and (uazczy) where
u € {a1,az2} and y € {c4,¢5}. In each case the addition of the unique edge
z € E3 adjacent to y forms a 4-cycle vzyz and thus (uvzy) does not extend
to a (5, f)-ascent.

We therefore conclude that v € E; and so y € E3. Note that any (4, f)-
ascent (uvzy) with u € E) incident with A and v,z € E, starts at vertex
A. With the properties of f mentioned above, the only such (4, f)-ascent
is (@1b1b2cz), which does not extend to a (5, f)-ascent because ¢ < ¢ and
¢; is adjacent to b;.
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Figure 2: An edge-ordering of K3 ;2 of height five

We have thus shown that there is no (5, f)-ascent in K39, hence h(f) <
4 and the result follows.

(i¢) Consider the ordered partition P = (E), Es, E3) of E(Kj3,12) with
G; = Kj12[F;] = 3K, 4 for each i, as shown in Figure 2. Note that
any edge-ordering of K 4 has height two and so any edge-ordering of G;,
1= 1,2,3, has height two.

Let f with labels as in Figure 2 be an edge-ordering of K3 ;2 such that
[ is P-counsistent,
inG,a <---<ay, bs<---<bgand ¢g < --- < €32,
in G, ay; < ajp < ag, b3 < by < by and ¢7 < ¢g < ¢35, and
in Gs, a2 < min{as,as}, by < min{bg,bu)} and ¢cg < min{c;, Cz}.

Suppose that A = (uwvwzyz) is a (6, f)-ascent. Then A contains exactly
two edges in each F;, hence ) starts at a vertex X; (only X; and X, are
labelled), and u,v € E1, w,z € E3 and y, z € E3.

First consider the edges of F; incident with A. The only (4, f)-ascents
(uwvzy) beginning with two of these edges are

(e1a3b3b2), (a1a3b3bi2), (a2asbsby), (azasbsbi2)

and
(aiascsc;), wherei=1,2,3 and j =5,86,7.
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Since cg < min{c;,c2}, (ajasbsbe) and (aza3b3b;) cannot be extended to
(6, f)-ascents, since aj2 is incident with A, (a;a3bzb12) and (azazbsbia)
cannot be extended to (5, f)-ascents, and since a;, j = 5,6,7 is incident
with A, (a;aqcsc;) also cannot be extended to a (5, f)-ascent. By symmetry
there are no (6, f)-ascents beginning with edges in E; incident with B or
C and the result follows. [ |

Combining the upper bound (2) in the introduction, Proposition 1,
Corollary 4(:) and Theorems 8 and 11, and using the simple observation
that if H is a subgraph of G, then a(H) < a(G), we have therefore com-
pleted the evaluation of a(K3,,,) for all n > 3, sunmarised as

3 if3<n<4
4 if5<n<9

oKsn)=1q ¢ if10<n <12
6 ifn>13.

We also have
Corollary 12 8(3) = 13.
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