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ABSTRACT. Consider placing a guard on each vertex of a dominating
set So of a graph. If for every vertex v ¢ So, there is a corresponding
guard at an adjacent vertex u for which the resulting set S; = Sp —
{u}u{v} is dominating, then we say that Sp is 1-secure. It is eternally
1-secure if for any sequence v;,v2,..., vk of vertices, there exists a
sequence of guards uj,us,...,ux with u; € S;—; and u; equal to
or adjacent to v;, such that each set §; = Si_; — {ui} U {w} is
dominating. We investigate the minimum cardinality of an eternally
secure set. In particular, we refute a conjecture of Burger et al.
We also investigate eternal m-security, in which all guards can move
simultaneously.

1 Introduction

A dominating set in a graph can be thought of as a “secure set”: for
example, surveillance cameras that monitor every room in a museum, or
troops that guard every intersection. The cameras are fixed and perma-
nent, but the guards might be required to respond to an attack by moving
there. However, since this response could leave some location unmonitored,
one might need extra guards to respond to a further attack. This is the
idea behind several recent generalizations of domination, such as Roman
domination [4, 12, 13, 14, 15], weak Roman domination [5, 9], and secure
domination 5, 11].

A more general problem is to cope with an arbitrary sequence of attacks.
This idea was first considered by Burger et al. [2, 3]. We informally define
an eternally secure set of a graph as a placement of guards that can
respond to any sequence of attacks. In this paper we assume that each
attack is at a single vertex.

We focus on two versions of the eternal security problem. In the first
version, which we call 1-security, only one guard moves in response to
an attack; in the second, which we call m-security, all guards can move
in response to an attack. The first version was introduced by Burger et
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al. [2, 3], though being able to withstand two attacks with a single-guard
movement was explored in [5, 6, 10, 11, 12]. On the other hand, the idea
that all guards may move in response to an attack appears to have been
considered only in [12].

We define an eternal 1-secure set of a graph G = (V,E) as a set
So C V that can defend against any sequence of single-vertex attacks by
means of single-guard shifts along edges of G. That is, for any k and
any sequence vi,vs,...,Ux Of vertices, there exists a sequence of guards
uy,ug,...,ux With u; € S;_; and either u; = v; or u;v; € E, such that
each set S; = S;_; — {u;} U {v;} is dominating. It follows that each S;
can be chosen to be an eternal 1l-secure set. We define the eternal 1-
security number, denoted ¢,(G), as the minimum cardinality of an eternal
1-secure set. This parameter was introduced by Burger et al. [3] using the
notation Yeo.

In order to reduce the number of guards needed for eternal security,
we consider allowing more guards to move. Suppose that in responding to
each attack, every guard may shift along an incident edge. We define the
eternal m-security number 0,,(G) as the minimum number of guards to
handle an arbitrary sequence of single attacks using multiple-guard shifts.
A suitable placement of the guards is called an eternal m-secure set.

One simple example is the star K ,, with m leaves. Here 0,(G) = m
but ,,(G) = 2. Obviously,

o'm(c) < o1(G)

for all graphs G.

Several weaker variations of eternal security have been defined. Cock-
ayne et al. [6] define the secure domination number: this is like o,
except one only has to respond to every possible single attack and leave a
dominating set. (A similar goal was suggested earlier by Ochmanek [11].)
Burger et al. [2] extended this to smart k-secure domination number,
where one has to be able to respond to any sequence of k one-vertex attacks.
See also the paper by Pagourtzis et al. [12].

In this paper we examine bounds on and values of the two parameters
oy and o,,,. For the first parameter, we provide some examples that refute
a conjecture in an earlier version of {3]. For the second, we show that there
are several lower and upper bounds, and explore when these are attained.
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2 The Eternal 1-Security Number

2.1 Fundamental bounds

A fundamental lower bound for the eternal 1-security number is the in-
dependence number B(G), and a fundamental upper bound is the clique
cover number §(G) (or equivalently the chromatic number of the comple-
ment of G). This was first observed in [3]. For completeness we include a
proof.

Theorem 1 [Burger et al.] For any graph G,
B(G) < a1(G) < 6(G).

Proof. Lower bound: consider a sequence of attacks at the vertices of a
maximum independent set. Each attack requires a new guard.

Upper bound: partition the graph into a minimum number of cliques
and assign one guard to each clique. Each guard can always respond to an
attack on its clique. qed

The graphs for which 8(G) = ¢(G) include, by definition, the perfect
graphs. The following graphs are all perfect and thus their eternal 1-security
number is known:

Corollary 2 ¢,(G) = B(G) = 9(G) for bipartite graphs, complete graphs,
complete multipartite graphs, and the carlesian product of two complete
graphs.

Equality for trees was also observed by others. At one stage, Burger et
al. conjectured equality in the upper bound: that is, that o;(G) = §(G) for
all graphs G. We provide below a counterexample. Indeed, §(G) can be
arbitrarily larger than o1(G). Nevertheless, a much weaker implication of
their conjecture seems true: namely, if o1(G) = B(G) then 8(G) = 6(G).

2.2 Small eternal 1-security numbers
Burger et al. [3] gave two examples of graphs that have 8(G) < 6(G)

but where 0,(G) is known (and equal to 0(G)): the odd cycle and its
complement.

Theorem 3 [Burger et al.] For n odd,

(2) 31(Cp) = (n+1)/2.
(b) al(cn) = 3.
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Using Theorem 3b, Burger et al. (3] showed that if 9(G) < 3 then
o1(G) = ¢(G).

However, we show there exist many graphs G with 01(G) < 6(G) = 4.
Theorem 4 If B(G) = 2, then 0,(G) < 3.

Proof. Assume B(G) = 2. Define a set S of 3 vertices as good if the
subgraph induced by S is not complete. We claim that any good set is an
eternal 1-secure set.

Consider any good set S; say S = {z,y, z} with vertices z and y non-
adjacent. Suppose there is an attack at vertex a.

If z is adjacent to a, then one can move the guard at 2 to a and still
have a good set. Otherwise, since {z, y} is a maximum independent set, it
is dominating and so one can move a guard from z or y to a, and the set
remains good. qed

It is well-known that a triangle-free graph can have arbitrarily high
chromatic number. Thus, by considering complements, a graph with in-
dependence number 2 can have arbitrarily high clique cover number. The
Grotazsch graph M (shown in Figure 1) is the smallest triangle-free graph
with chromatic number four: thus o;(M) = 3 and ¢(M) = 4. It seems
likely that this is the smallest example of a graph with ¢,(G) < §(G). It is
unclear whether a similar result holds for graphs with larger independence
number. For example, does there exist a constant s3 such that 8(G) = 3
implies 01(G) < s37

Figure 1: The Grétzsch graph M: (M) # (M)
There are other graphs where ¢1(G) < 6(G). One example is the

(triangle-free) circulant Cig[1,3, 8], which has 8 =6, 0y = 8 and § = 9.
The graph with the biggest ratio 0y/8 that we know is the (triangle-free)
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circulant C2,[1, 3, 8], which has 8 = 6 and o, = 10. (All these calculations
were performed by computer.)

2.3 Other examples

Burger et al. [3] also consider the torus: the cartesian product of two cycles.
If one of the cycles is C3, then 8(C30C,) = ¢(C30C,) = n, so that
01(C30C,) = n. If both cycles are even, then the torus is bipartite and
hence perfect. They also provided general bounds for o1(C,» O0C,), but
these are no better than their fundamental bounds (Theorem 1).

Burger et al. [3] conjectured that the eternal 1-security number of a
torus is always its clique cover number. The evidence we have supports
this conjecture. We observe equality in the clique-cover bound for two
small examples.

Theorem 5 0,(C,, 0C,) = (CnOC,) = [mn/2] for {m,n} = {4,5}
and {5,5}.

Proof. The proof is by computer search. We sketch the idea of the search.

Fix a graph G and integer k. Determine the set of all (1%!) possible
placements of k guards on V. Start by marking a placement as good if and
only if it is dominating. Then repeat the following process:

Consider each good placement in turn. If there exists an attack
such that for every response the resulting placement is bad, then
mark the placement as bad.

So a placement gets marked bad if the adversary can force the guards
into a nondominating set. On the other hand, when this process stabilizes,
any placement that is still marked good is an eternal 1-secure set: for every
attack there exists a response such that the resulting placement is good.

Now, the computer program was run with G = C;,0C; and k = 9,
and with G = C50C5s and k = 12. In both cases, all placements were
eventually marked as bad. This shows that at least [mn/2] guards are
required. qed

A related graph is the ladder C, O K3. When n is even, the ladder is
bipartite and thus covered by Corollary 2. When n is odd, the ladder has
B=n—-—1and @ = n. It can be shown that the latter value is the eternal
1-security number. We omit the proof.

Theorem 6 For alln > 3, 0,(C, 0 K2) = 6(C, O K3) = n.
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3 The Eternal m-Security Number

3.1 Fundamental bounds

A fundamental lower bound for the eternal m-security number is the dom-
ination number Y(G). For an upper bound, we consider a variation of the
clique cover number. Define the clique-star cover number as follows.
Define a colonization as a partition of the vertex set into subgraphs each
with a dominator (a vertex adjacent to all other nodes in the subgraph).
The weight of a colonization counts 1 for each clique and 2 for each non-
clique. Then 65(G) is the minimum weight of a colonization. For exam-
ple, if the graph has maximum degree 2, then 05(G) = 6(G); in general,
05(C) < 6(G).

Theorem 7 For any graph G,

Y(G) < om(G) < 05(G).

Proof. Lower bound: An eternal m-secure set must be dominating.

Upper bound: Assign one guard to each clique in the colonization and
two guards to each non-clique. A single guard patrols its clique, while in a
non-clique one guard is always on the dominator. qed

The upper bound is related to Roman domination. Cockayne et al. [4]
defined the Roman domination number as the minimum total weight
of a function f:V — {0,1,2} such that every vertex u of weight 0 has
a neighbor of weight 2. It is denoted vr(G). Later, the third author
and Henning [9] defined weak Roman domination. The weak Roman
domination number -,.(G) is the minimum total weight of a [unction
f:V — {0,1,2} such that for any vertex u of weight 0 that has no neighbor
of weight 2, there exists a neighbor v of weight 1 such that (f~!'(1)uf~1(2)u
{u})\ {v} dominates. Essentially, one is allowed to station double guards
at some vertices, and must be able to respond to a single attack (and still
dominate).

It is clear that
Y <0s <vn.

Surprisingly perhaps, there is no relationship between the weak Roman
domination number and the eternal m-security number:

o, and v, are incomparable

See the results on cycles and odd paths below.
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3.2 Calculations and lower bounds

Theorem 8 a) on(K,) =1.
b) om(Krs) =2 forr,s>1, 74+ s2>3.
C) am(Pn) = QS(Pn) = [n/2]
d) om(Cn) = v(Cn) = [n/3].

Proof. a) Immediate.

b) Place guards, one on each side of the bipartition. Respond to an
attack by moving a guard to that vertex, and moving the other guard to
any vertex on the opposite side.

¢) Assume the vertices are numbered consecutively 0,1,2. ... Then con-
sider a sequence of attacks at vertices 0,2,4,.... Each time a new guard is
needed. Thus o (Pp) > [n/2].

d) Place guards on a minimum dominating set. Then by shifting all
guards either clockwise or counter-clockwise along one edge, one can eter-
nally respond to any attack. qed

The cycles provide examples where 6,, < .. The odd paths provide
examples where o, > ¥r.
Theorem 8c can be generalized to the following bound.

Corollary 9 For any graph G, o, (G) > (diam(G) + 1)/2.

Theorem 8d can be generalized to other symmetric graphs such as the
torus.

Theorem 10 For any Cayley graph G, om(G) = ¥(G).

Proof. Recall that a Cayley graph G is defined by a group I" and a subset D
of the elements of I": the vertex set of G is the group elements, and two
vertices u and v are adjacent if and only if u = hv for some h € D.

We claim that any dominating set S is an eternal m-secure set. For,
suppose there is an attack at vertex u. Then there is a vertex v € S adjacent
to u; that is, u = hv for some h € D. But then hS = {hs : s € S} is another
dominating set (and reachable by a guard shift). qed

The result is probably true for any vertex-transitive graph.

3.3 More upper bounds

Recall that the 2-domination number v(G) of a graph [7, 8] is the
minimum cardinality of a set S such that every vertex not in S is adjacent
to at least two members of S.
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Theorem 11 For any graph G, 0,(G) < %(G).

Proof. Start by placing guards on the vertices in a minimum 2-dominating
set S—call the vertex a guard starts on its home. For every attack on
a vertex in V — S, send any adjacent guard to that vertex, and recall
the guard used last time to its home. Since S is 2-dominating, S — {v}
dominates everything except possibly v, and so one can forever respond to
attacks. qed

For example, consider the subdivision S(G) of a graph G = (V, E): since
V is a 2-dominating set of S(G), it follows that v2(S(G)) < |V| (it can be
shown that actually v2(S(G)) = |V|). Thus o (S(G)) < |V].

Corollary 12 Forn > 4 aend Hp = S(Ky), y(Hp)=n -1, on(Hp) =n
and 0s(Hy,) =2n — 3.

Proof. The domination number of H, is given in [1]. We give only the
proof of the lower bound on the eternal m-security number.

It can readily be shown that every minimum dominating set of H, has
the following form: n — 2 original vertices and the one subdivision vertex
adjacent to the remaining two original vertices. So, suppose one tries n — 1
guards; then an attack on a subdivision vertex between two guards does
not allow a dominating set to be maintained. qed

Though it is probably a weak bound, we next observe that the inde-
pendence number is an upper bound on the eternal m-security number.
And thus there is a clean separation between the eternal 1- and m-security
numbers.

Theorem 13 For any graph G, o (G) < B(G).

Proof. By induction on the independence number. Clearly if 8(G) = 1
then 0, (G) = 1.

Consider a graph with independence number k > 2. If there is a vertex
v such that G’ = G — N[v] has independence number at most k — 2 (where
the null graph has independence number 0), then since o (G[N[v]]) <
0s(G[N[v]]) = 2, and by induction o,,(G’) < k—2, it follows that 0,,,(G) <
B(G).

So assume there is no such vertex. That is, every vertex is in a maximum
independent set. For each vertex v, pick a maximum independent set S,.
Place guards on a maximum independent set, and to respond to an attack
at a vertex w, we will move guards to S,,.
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This is possible since given two maximum independent sets S and T in
a graph, there is a matching between S — T and T — S. This follows from
Hall’s marriage theorem or the well-known result that a bipartite graph has
independence number n/2 if and only if it has a perfect matching.

Hence one can always respond to an attack using 8(G) guards. qed

Equality holds for example for graphs with ¥(G) = B8(G) (the coronas
HoK 1 )

Finally in this section, we note one can improve the fundamental up-
per bound. Recall that the connected domination number +.(G) of a
graph G is the minimum cardinality of a connected dominating set. Define
a neocolonization as a partition of the vertex set {\;,...,V;} such that
each V; induces a connected subgraph. The weight of V; is 1 if G[V}] is
a clique, and 1 + v.(G[V;]) otherwise. Then define the clique-connected
cover number 0c(G) as the minimum weight of a neocolonization.

Theorem 14 For any graph G, om(G) < 0c(G) < 7.(G) + 1.

Proof. For each subgraph G[V;] of the neocolonization, we place the ap-
propriate number of guards as follows. A clique receives one guard. For a
non-clique, we choose a minimum connected dominating set D;, and place
guards on all of D; and on any one other vertex (called the rover). We will
maintain the property that there are always guards on D;.

The guards on each subgraph are only responsible for attacks on that
subgraph. To respond to an attack in a non-clique, consider a path P from
the rover to the attack: this can be chosen such that all internal vertices
are in D;, since D; is connected and dominating. Then shift each guard
found on P one vertex along P. The net result is that the rover is now on
the attack. qed

For example, it follows that ¢,,(T") for a tree T is at most one more
than the number of non-leaf vertices. We do not know of a tree for which
om(T) < 0c(T).

4 Summary of Parameters

Figure 2 gives a Hasse diagram with all the relationships between the var-
ious parameters discussed.
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Figure 2: How the parameters compare

5 Open Questions

We conclude with some open questions, some of which have already been
mentioned.

1. Is there a constant upper bound on the eternal 1-security number of
graphs with independence number 37

2. Is 01(Crn OCy) = [mn/2] for all m,n > 47
3. Is 0 (G) = ¥(G) for every vertex-transitive graph?

4. What is the complexity of the associated recognition problems? For
example, how hard is it to tell whether a set is an eternal 1-secure
or m-secure set? We expect such questions to lie within the first
few levels of the polynomial hierarchy. And what is the complexity
of the associated decision problems testing whether o,(G) < k or

5. What about an algorithm for trees for 0, (T)? Is 0 (T) = 0c(T) for
every tree T7
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6. Burger et al. [3] observed that there is no point in allowing multiple
guards in the definition of eternal 1-security. For, if the double guards
always remain together, their double-ness is of no use; but if they
separate then the result must still be an eternal 1-secure set (since
the adversary can ensure guards never rejoin). Is it the same story
with eternal m-security? We conjecture so.
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