On the Cordiality of Elongated Plys
Samina Boxwala and N. B. Limaye!

Abstract:An elongated ply T'(n; ¢, ¢@ ... ™) s a snake of n number of
plys P,)(uwi,ui+1) where any two adjacent plys P,iyand P,i+1) have only the
vertex ui+1 in common. That means the block cut vertex graph of T4 is thus a
path of length n — 1. In this paper, the cordiality of the Elongated Ply T, is
investigated.

1: Preliminaries

Let V(G) and E(G) denote the vertex set and edge set of a finite simple
graph G. A labeling f : V(G) — {0, 1}, called a binary vertex labeling of
G, induces a labeling f : E(G) — {0,1} given by f(uv) =| f(u) — f(v) | .
By v¢(0),vs(1) we denote the number of vertices in G having labels 0 and 1
respectively under f. The numbers ez(0), e;(1) denote the number of edges
having labels 0 and 1 respectively under f.

Definition: For a graph G, by the index of cordiality i(G), we mean
min{| e;(0) —es(1) [} where the minimum is taken over all binary labelings
of G with | v, (0) —v(1) |[< 1.

A graph G is called a cordial graph if i(G) < 1, and a binary labeling f
of G is called a cordial labeling if | v;(0)—v;(1) |< 1and | ef(0)—ef(1) |<
1. In [1], Cahit proved the following:

Theorem 1: If G is an Eulerian graph with e edges, where e = 2( mod 4),
then G has no cordial labeling.

A t-ply P;(u,v) is a graph with ¢ paths, each of length at least two and
such that no two paths have a vertex in common except for the end vertices
u and v. In [3}, the cordiality of ¢-plys was investigated. An elongated
ply T(n;tM 1@ ... (™) often denoted by T}, is a snake of n number of
plys P, (ui,ui+1) where any two adjacent plys Py:yand Py:+1) have only
the vertex u;4; in common. Each t()-ply Pyis a block of T;,. The block
cut vertex graph of T}, is thus a path of length n — 1. In this sequel of [3],
we investigate cordiality of elongated plys.

Consider a t-ply Pi(u,v) and let P = {u,v;,-- - ,vn,v} be a typical path
with the end points u and v in P,(u, v). The length {(P)of this path is n+1.
We say that the path P is of type 7 if I(P) = ¢(mod4)),i = 1,2, 3,4. Denote
by ¢;, the number of paths of the type i,i = 1,2,3,4. Then

t=l +t+iz3+1g------ .
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It follows clearly that if e =| E(P;(u,v)) |, then
e=(t1 + 2t + 313)(mod4)------ (IT).

Further, let ty =4 81 + 21,83 =4 83+ 23,82 =253 + 29,84 = 2 84 + x4,
0<z1,23<3and 0< 29, 24 < 1. By (H), it follows that

e= (21 + 222 + 3 z3)(mod4) - - -- - - (III).

Following road map indicates the flow of the proof.

—> Single Non-Eulerian Plys are Cordial [3]

> Single Eulerian Plys with the number of e
4t+r, r=0, 1, 3 are cordial [3]

~> Alternate labelings for these (Section 2)

~> Elongated Eulerian Plys with the number
Edges 4t+2 have i(G)=2. (Section 3)

>Tm +118 Cordial when TIn is non—eule1

T DoO=EP>»PQZOrm

> Tm+1 is Cordial when Tm is eulerian
m+1 with the number of edges
4t+r.r=0.1. 3

~

We now list the classification and all the labelings and the corresponding
parameters found in the ¢ — ply paper [3], in a tabular form so that they
can be referred to as and when required. This will be useful later, when we
define some alternate labelings.

2: Classification:

The single ¢-ply graphs are classified into various types depending on
whether they are Eulerian or Non-Eulerian and on whether e = 0,1,2 or
3( mod 4). Accordingfy, we have the following 8 types.
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Type A;. These are Eulerian with e = 0 mod 4 and the quadruples

(21, 22,23, 24) corresponding to them are (0,0, 0,0), (0,1,2,1),(1,0,1,0),
(1,1,3,1),(2,0,2,0),(2,1,0,1),(3,0,3,0),(3,1,1,1).

Type A;. These are Non-Eulerian with e = 1 mod 4 and the quadruples
(21, 22,23,24) corresponding to them are (0,0, 3,0), (0,1, 1,1),(1,0,0,0),
(1,1,2,1),(2,0,1,0),(2,1,3,1),(3,0,2,0),(3,1,0,1).

Type As. These are Non-Eulerian with e = 3 mod 4 and the quadruples
(%1, ®2,%3,24) corresponding to them are (0,0, 1,0),(0,1,3,1),(1,0,2,0),
(1,1,0,1),(2,0,3,0),(2,1,1,1),(3,0,0,0),(3,1,2,1).

Type As. These are Non-Eulerian with e = 2 mod 4 and the quadruples
(21, 22,23, 74) corresponding to them are (0,0, 2,1), (0,1,0,0), (1,0, 3,0),
(1,1,1,0),(2,0,0,1),(2,1,2,0),(3,0,1,1), (3,1,3,0).

Type As. These are Eulerian with e = 2 mod 4 and the quadruples

(z1, %2, 3, 24) corresponding to them are (0,0,1,1),(0,1,3,0),(1,0,2,1),
(1,1,0,0),(2,0,3,1),(2,1,1,0),(3,0,0,1),(3,1,2,0).

Type Ag. These are Eulerian with e = 2 mod 4 and the quadruples
(21,%2,73,2z4) corresponding to them are (0,9, 3,1), (0,1,1,0), (1,0,0,1),
(17 1: 2a O)s (21 0: 1: 1)’ (2: 1’ 3: 0)1 (31 01 21 1)1 (31 11 01 0)-

Type B. These are Non-Eulerian with e = 2 mod 4 and the quadruples
(%1, %2, 73,24) corresponding to them are (0,0,0,1),(0,1,2,0),(1,0,1,1),
(1,1,3,0),(2,0,2,1),(2,1,0,0),(3,0,3,1),(3,1,1,0).

Type C. These are Eulerian with e = 2 mod 4 and the quadruples

(%1, 22,23,24) corresponding to them are (0,0,0,1),(0,1,2,0),(1,0,1,1),
(1,1,3,0),(2,0,2,1),(2,1,0,0),(3,0,3,1),(3,1,1,0).

For Type B labeling f of type B were used. for which vz(0) +1 =
v7(1),e7(0) = ey(1), f(u) = 0 = f(v). By Theorem 1, plys of type C are
not cordial. Hence, neither labelings of type A nor of type B were used for
these graphs. The cordial labelings in the remaining cases are done in two
stages. For a typical path u,v1,--- ,vn,v we writen = 4¢+ 1,1 < r < 4.
In the first stage for type A labels f(u), f(v) are 1,0 respectively. On each
path the middle vertices are labeled repeatedly 0,0,1,1, in all ¢ times. If
v}(i),e" (i), = 0,1, are the number of vertices and the number of edges
being labeled ¢ in the second stage, then | vy(0) — vg(1) [=| v"(0) - v} (1) |
and | es(0) — /(1) |=| €;(0) — (1) | . Similarly, in the first stage for
type B labels f(u), f(v) are both 0. On each path the middle vertices are
labeled repeatedly 1,1,0,0, in all q times. Clearly for these labelings |
vs(0) —vs(1) |= 2+ | v;(0) —vy(1) | and | e4(0) — s (1) |=| €7(0) —€}(1) | -

We now tabulate all the labelings according to the values of 2y, -+ , 4.

Compendium Of Labelings

The various labelings used in stage 2 earlier, are required to be supple-
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mented by additional labelings which will be used in the sequel. We present
the labelings of [2] together in the form of a compendium given below:

Labelings of type A
fW)=1;f(v) =0

1. (3} =1
S | f(on-3) | f(Wn-2) | f(Wn1) | f(va) | v;(0) | v, (1) | €/(0) | €;(2)
a 0 0 1 1 2 2 2 3
a2 1 1 0 0 2 2 4 1
ais 1 0 0 0 3 1 4 1
a4 1 1 1 0 1 3 4 1
as 0 0 0 1 3 1 2 3
aie 0 1 1 1 1 3 2 3
2. 2,=2
f | Path | f(vn-s) | f(va_2) | f(vn-1) | f(vn) | v;(0) | v, (1) | €;(0) | €,(1)
1 0 0 1 1
az 4 4 4 6
2 0 [ 1 1
1 0 0 1 1
agz 4 4 6 4
2 1 1 0 0
1 0 0 1 1
azs 5 3 6 4
2 1 0 0 0
1 0 1 0 1
az4 5 3 4 6
2 1 0 0 0
1 0 1 1 1
azs 3 1 4 6
2 0 0 1 1
1 0 1 1 1
a26 3 5 6 4
2 1 1 0 0
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3. Hn"w

f | Path | f(va_s) | f(un-2) | f(vaz1) | f(ua) | v7(0) | v, (1) | &7 (0) | €7(2)
1 0 0 1 1
as1 2 0 0 1 1 6 6 6 9
3 0 0 1 1
1 0 0 1 1
a3z 2 0 0 1 1 6 6 8 7
3 1 1 0 0
1 0 0 1 1
ass 2 0 0 1 1 5 7 8 7
3 1 1 1 0
4. zo=1
S [ f(vn) | v5(0) | vs (1) | e/(0) | ef(1)
b1y 0 1 0 1 1
b12 1 0 1 1 1
5. T3 = 1
f | flva1) | fva) [ v7(0) | v (1) | €/(0) | e,(1)
C11 1 0 1 1 2 1
c12 0 1 1 1 0 3
c13 1 1 0 2 2 1
C14 0 0 2 0 2 1
6. r3 =2
f | Path | f(va_1) | f(va) | v;(0) | v, (1) | €/(0) | €7(0)
1 1 0
c21 2 2 4 2
2 1 0
1 1 0
c22 2 2 2 4
2 0 1
1 1 1
€23 1 3 4 2
2 1 0
1 1 0
€24 3 1 4 2
2 0 0
1 0 1
c25 3 1 2 4
2 0 0
1 1 1
c26 1 3 2 4
2 0 1
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7. .Su"w

f | Path | f(va-1) | f(va) | v,(0) | v; (1) [ €5 (0) [ e/ (2)
1 1 0
c31 2 1 0 3 3 4 5
3 0 1
1 1 0
Ca2 2 1 0 3 3 6 3
3 1 0
1 1 1
€33 2 1 0 2 4 4 5
3 1 0
1 1 0
C34 2 1 0 2 4 6 3
3 1 1
8. &A“H
£ fn2) | fwn-1) | f(va) | vr(0) | v (1) [ €/ (0) [ 7(2)
di1 1 0 1 1 2 1 3
di2 1 1 0 1 2 3 1
di3 1 1 1 0 3 3 1
dy4 1 0 0 2 1 3 1
dis 0 1 0 2 1 1 3
Labelings of type B
f(u)=0, f(v)=0
1. =1
f | f(ons) | f(vn-2) | f(va—1) | f(va) | v;(0) [ w7 (1) [ €7(0) [ €70)
Jju 1 1 0 0 2 2 3 2
Jrz 1 1 1 0 1 3 3 2
13 1 0 0 0 3 1 3 2
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Path | f(¥n—3) | /(va—2) | J(va-1) | £(va) | v, (0) [ v;(1) | €,(0) | e;(1)
1 1 1 0 0
Ja 4 4 6 4
2 1 1 0 0
1 1 1 1 1
Ja2 3 5 6 4
i 2 0 0 0 1
7 1 1 1 1 1
7 .ﬂ.»u 2 6 6 4
, 2 1 i 0 0
; 1 1 [1]) 0 1
Ja4a 4 6 2 6
2 1 1 1 1
1 1 1 0 0
Jas 4 4 4 6
2 1 (1] 0 1
3. ﬂw"w
£ | Path | f(vn—s) | flvn—3) | flva-1) | f(va) | v7(0) [ v; (1) [ef(0) [ (1)
! 1 1 1 0 0
! ja| 2 1 1 0 0 6 6 9 6
7 3 1 1 0 0
, 1 1 1 1 0
7 jaa| 2 1 1 0 0 5 7 7 8
| 3 1 0 0 1
1 1 1 1 1
| jaa| 2 1 1 0 0 4 8 9 6
3 1 1 0 0
1 1 1 1 1
ju | 2 1 1 0 0 4 8 7 8
3 1 0 0 1
1 1 1 0 ]
jaw] 2 1 1 0 0 6 6 7 8
3 1 0 0 1
1 1 0 0 0
Jse 2 1 1 0 0 7 5 9 6
| 3 1 0 0 0
|
M 4. z2=1
S | fun) | v;(0) [ ve(1) | €;(0) | e;(2)
k11 1 0 1 0 2
k12 0 1 0 2 0
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5. 1:3=1

A
l2 1 0 1 1 1 2
U3 0 0 2 0 3 0
6. $3=2
f | Path | f(va_y) | f(un) [ vr(0) [ v;(1) | e/(0) [ e, (1)
1 1 1
l21 1 3 2 4
2 1 0
1 1 1
l22 0 4 2 4
2 1 1
1 1 1
{23 2 2 4 2
2 0 0
1 1 0
log 2 2 2 4
2 1 0
7 1}3=3
f | Path | f(vao1) | flwa) [ 97 (0) [ v @) [ €7 (0) [ €1 (1)
1 0 0
Iay 2 1 1 3 3 5 4
3 1 0
1 1 1
laz 2 1 0 2 4 3 6
3 1 0
1 1 1
las 2 1 1 1 5 3 6
3 1 0
1 1 1
lag 2 1 1 2 4 5 4
3 0 0
8. z4=1
f | floaza) | foa1) | flon) | vr(0) [ v, (1) [ €7 (0) | €7(D)
m 1 1 0 1 2 2 2
my2 1 1 1 0 3 2 2
m13 1 0 0 2 1 2 2

Let f bea binhary labeling of a graph G. A labeling f such that f(v) =1,
if f(v) =0and f(v) =0, if f(v) =1 for each v € V(G), is called the dual
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labeling of f. Note that v;(0) = v(1),v3(1) = vs(0),e4(0) = €4(0) and
e 1(1) =eyz(1). Let f bea cord1a.l labeling of a single t-ply graph F;(u,v,).
Let f be a binary labeling of P,(u,v) such that f(u) = - f(v), fw) = f(u).
Also, on_any path, u,v1,v2,-*- ,n,v in Po(u,v) let f(v;) = fon—in1),
that is, f(v1) = f(vn)f(v2) = f(va—1) and so on. We call f the inversion
labeling of f. Then, v7(0) = v£(0),v(1) = vs(1) ; €7(0) = e£(0),e(1) =

es(1). Literally speaking, f is a lateral inversion of f. This inversion
labeling f will be used in those cases where we need to interchange the labels
of the vertices u,v without disturbing the vertex and edge label conditions.

Using the dual labeling and inversion labeling as defined above, we
obtain some more labelings for the t-ply graphs classified in the earlier
paper(3].

Recall the labelings used in [3] for various types of t—ply graphs. For
ease of reference, let a;,f8:1,7,01,01, 01,1, denote the binary labelings
given for t—ply graphs of type A, Az, As, A4, As, Ag, B respectively in [3].
We use these notations consistently for them, throughout this paper.

The labelings mentioned above prove inadequate for the task ahead. It
is therefore necessary to introduce some alternate labelings for each type
of graph which we now set out to do. These labelings are not necessarily
cordial. In most cases, unless otherwise mentioned, the labeling in Stage 1
remains as in the previous paper[3]. As before, we mention only the choice
of the labelings used in Stage 2 in the following tables. Also the type of
labeling used is mentioned alongside.

Alternate labeling for t—ply graph of Type A;:
Here we use the labeling of type A.

2! T2 3 zs | v (0) | w7 (1) | €;(0) | €7(0)
0 0 0 0 0 0 0 0
0 1(b11) | 2(c23) | 1(d11) 3 5 6 6
1(a16) 0 1(en) 0 2 4 4 4
1(a1e) | 1(b11) | 3(ca1) | 1(d12) 6 8 10 10
2(azs) 0 2(c21) 0 5 7 8 8
2(azs) | b)) | O |[ldiz)| 5 7 8 8
3(asz) [ O |3(caa)| O 8 10 12 12
3(as2) | 1(bn1) | 1(c12) | 1(d12) 8 10 12 12

In all cas&s, except the ﬁrst the labehngs are described in the bracket and
In the first case, since z; = 2 = x3 = 24 = 0, hence ¢; = 451, = 285,
t3 = 4s3,t4 = 234 and at least one of s;, 83, 83, 54 is non-zero. In this case,
we disturb the labeling in Stage 1 to a small extent.
If s; # 0, then there is at least one path of type 1 on which the last 4
intermediate vertices are labeled 1,1,0,0 in that order. On precisely one
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such path, we relabel these vertices as 1,1, 1,0.

If s; = 0, then one of s9, 83, 84 is non-zero. Suppose s; # 0. Then there is
at least one path of type 2 on which the last intermediate vertex has the
label 0. On exactly one such path, we replace this 0 by a 1.

If 55 = 0,82 = 0, then one of s3,s4 is non-zero. Suppose s3 # 0, then
there is at least one path of type 3 on which the last 2 intermediate vertices
are labeled 1,0 in that order. On precisely one such path, we relabel these
vertices as 1, 1.

If s; = 0,32 = 0,33 = 0, then 84 # 0 and hence there is at least one
path of type 4 on which the last 3 intermediate vertices are labeled 1,1,0 in
that order. On precisely one such path, we relabel these vertices as 1,1, 1.

Thus, we have obtained a labeling f of A; such that vy(0) + 2 =
vy(1),es(0) = ef(1), f(v) = 1, f(v) = 0. We denote this labeling hence-
forth by as.

Alternate labeling 1 for plys of Type A; : Here we use labeling of
type A.

e

z3 Zo z3 Z4 v, (0) | v (1) | €,(0) | e,(1)

0 0 | 3(cs3) 0 2 4 4 5

0 | 1(bn) | Uers) | 1(dn) | 2 4 4 5
1(a6) 0 0 0 1 3 2 3
I(ae) | 1(bn1) | 2(c21) | Ldu1) | & 7 8 9
2as) | 0 |1(en)| 0 4 6 6 7
2(azs) | 1(bn) | 3(ca1) | Udr2) | 8 10 12 13
3(as1) 0 2(c23) 0 7 9 10 1
3(0.31) l(bn) 0 1(d13) 7 9 10 11

In each of these cases, vy (0)+2 = vp(1),es(0)+1 =es(1), f(u) =1, f(v) =
0.
We denote this labeling henceforth by 2

Alternate labeling 2 for plys of Type Az: In this case we use the
labeling of type B.

T T2 z3 gy | v;00) | v, (1) | €,(0) | €7(1)

0 0 3(la1) 0 3 3 5 4

0 (k11) | 1(la3) | Lmna) | 3 3 5 4
1(711) 0 0 0 2 2 3 2
1(j11) | (k1) | 2(l23) | 1(ma3) 6 6 9 8
2(j21) 0 1(42) 0 5 b 7 6
2(j21) l(ku) 3(131) 1(m13) 9 9 13 12
3(j3s) 0 2(l23) 0 8 8 11 10
3(j3s) | 1(k12) | O [1(mn)| 8 8 11 10
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We observe that in all these cases v; (0) = v; (1) and e’} 0) = e'f'(l) + 1.
Since f(u) = f(v) = 0; and v (0) = vs(1) +2,e7(0) = ef(1) + 1.
We denote this labeling by fs.

Alternate labeling 3 for plys of Type A, : In this case we use the
labeling of type B.

T T2 T3 T4 v,(0) | ve(1) | €;(0) | €;(2)

0 0 [ 30s) | O 2 2 | 5 | 4

0 | 1(k12) | 10u) | Umar) | 2 4 5 4
1Giz) | 0 0 0 1 3 3 | 2
1(u) | Uka2) | 2(lz1) | 1(m11) 5 7 9 8
2Ga) | 0 |1t) | o a4 | 6 | 7| s
2021) l(ku) 3(131) l(mu) 8 10 13 12
3Ga) | 0 | 20a)| o 7 o | 11 | 10
3(4a1) | 1(kn1) 0 1(m11) 7 9 11 10

We observe that in all cases 'u; 0+2= v; (1) and e'} (0) = e'}(l) + 1. Since
f(u) = f(v) = 0; hence v;(0) = vs(1),e7(0) = es(1) + 1.

We denote this labeling by £4.

Alternate labeling 1 for plys of Type Aj; : Here we use the labeling of
type A.

e
b~

x4 Zq z3 z4 v,(0) | v, (1) | €;(0) [ e,(2)
0 0 |1(cis)| O 0 ) ) 1

0 | 1(bu) | 3(css) | Udr2) | 4 6 8 7
1(013) 0 2(621) 0 3 5 6 5
1(a16) { 1(br1) | O [1(d12) | 3 5 6 5
2az) | 0 |3(ca)| © 6 8 | 10| 9
2(as) | 1(bn1) | Uen) | Udir2) 6 8 10 9
3(as3) | O 0 0 5 7 8 7
3(as1) | 1(bu1) | 2(ce3) | 1(d12) | 9 11 14 13

In each of these cases, vy (0)+2 = vs(1),e5(0) = e (1)+1, f(u) =1, f(v) =
0.
We denote this labeling by ~s.

Alternate labeling 2 for plys of Type A3: Here we use the labeling of
type B.
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! ) T3 za [ v,00) | v,(1) | €,(0) [ €7(2)

0 0 [1(a) | 0 1 1 1 2

0 1(k11) | 3(la1) | Umaz) | 5 5 7 8
Igu) [ 0 | 2(l) 0 4 4 5 6
1(j11) | 1(kn) 0 | 1(ms)| 4 4 5 6
205) | 0 | 3(lm) 0 7 7 9 10
2(jas) | 1(ka2) | 1(li2) | 1(ma1) 7 7 9 10
3(j35) 0 0 0 6 6 7 8
3(jas) | U(k12). | 2(lz1) | 1(my3) | 10 10 13 14

We observe that in all cases v'f'(O) = v;(l) and e'}(O) +1= e'f'(l). Since

f(u) = f(v) = 0; hence v;(0) = vy(1) +2,e7(0) +1 = es(2).
This labeling will be denoted by 7.

Alternate labeling 3 for plys of Type Ajs:

Here we use the labeling of type B.

T T2 T3 T4 v; (0) ”; 1) e'f" (0) e'} (1)

0 0 1(l11) 0 0 2 1 2

0 l(kn) 3(!31) l(mn) 4 6 7 8
1Gu) | 0 | 2(a) 0 3 5 5 6
1(j11) | 1(kn) 0 1(my1) 3 5 5 6
2(ja1) 0 3(l32) 0 6 8 9 10
2(ja1) | 1(k11) | 1(ln1) | 1(mas) 6 8 9 10
3(J32) 0 0 0 5 7 7 8
3(a1) | 1(ku1) | 2(021) [ 1(mus) | 9 1 13 14

We observe that in all cases v; ®+2= v; (1) and e; 0)+1= e;(l). Since
f(u) = f(v) = 0; hence v;(0) = vy(1),es(0) + 1 = ey(1). This labeling will

be denoted by 4.

Alternate labeling for plys of Type A4:

Here we use the labeling of type B.

2! ) 3 24 | v,(0) | v, (1) | €,(0) [ €, (1)

0 0 2(l24) | LY(mn) 3 4 4 6

0 1(ky3) 0 0 0 1 0 2
1(j11) 0 3(l32) | 1(ma3) 6 7 8 10
1(n) | (k1) | 1(h2) 0 3 4 4 6
2(j2s) 0 , o 5 6 6 8
2(jas) | 1(k11) | 2(l23) 0 6 7 8 10
3(Jss) | 0 | L(h2) | L(mu) | 8 9 10 12
3(jss) | 1(kn1) | 3(la1) 0 9 10 12 14
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We observe that in all cases v (0) +1 = v, (1) and e,(0) +2 = e/(1). Since
f(u) = f(v) = 0; hence v;(0§ = vy(1) + 1,e4(0) + 2 = ef(1). We denote
this labeling by 4,.

Alternate labeling for plys of Type As:

Here we use labeling of type A.

21 | 72 | @ | =z |v(0) | v,(1) | €(0) | (1)
0 0 1(611) 1(d12) 2 3 5 2
0 1(b12) 3(032) 0 3 4 7 4
l(au) 0 2(621) 1(d12) 5 6 9 6
L(a12) | 1(b2) | O 0 2 3 5 2
2(022) 0 3((:31) l(dlz) 8 9 13 10
2(azz) | 1(b12) | Llewr) 0 5 6 9 6
3(032) 0 0 1(d12) 7 8 11 8
3(asz) | 1(b12) | 2(er) | O 8 9 13 10

With the above labeling for A;, we have v7(0) +1 = vy (1),e7(0) = ep(1) +
3; f(u) =1, f(v) = 0. We denote this labeling by 65.

Alternate labeling for plys of Type Ag:

Here we use labeling of type A.

1 T T3 T4 'v; (0) v}' 1) e’,’ (0)) e';- 1)

0 0 | 3(ca) | 1(dn) | 4 5 5 )

0 1(b12) 1(012) 0 1 2 1 4
1(a11) 0 0 1(dy1) 3 4 3 6
1(a11) | 1(b12) | 2(c22) 0 4 5 5 8
2(021) 0 1(612) 1(d12) 6 7 7 10
2(az1) | 1(b12) | 3(ca1) | © 7 8 9 12
3(as1) 0 | 2ca)|1dn)| 9 10 11 14
3(as1) | 1(b1z) | O 0 6 7 7 10

With the above labeling for Ag, we have vf(0) + 1 = vp(1),es(0) + 3 =
es(1), f(v) =1, f(v) = 0. We denote this labeling by ¢-.

Alternate labeling 1 for plys of Type B:

Here we use labeling of type B.

) Zo z3 T4 'v; (0) v'; 1) e'} (0) e'}(l)

0 0 0 1(mi1) 1 2 2 2

0 1(k11) | 2(l23) 0 2 3 4 4
1) | 0 | 1(ln) [ L(ms) | 4 5 6 6
1(511) | 1(k12) | 3(I32) 0 5 6 8 8
2Ga) | 0 | 20a1) | 10ma3):| 7 8 | 10 | 10
2(ja1) | (k1) | O 0 4 5 6 6
3(ja1) 0 3(lsz) | 1(mas) | 10 11 14 14
3(j31) | 1(k1a) | 1(hi2) 0 7 8 10 10
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For each of these graphs we observe that v; 0+1= v;(l) and e'}(O) =
e'f'(l). But f(u) = f(v) = 0, hence vy(0) = vs(1) + 1,e5(0) = es(1). We
denote this labeling by u..

Alternate labeling 2 for graphs of Type B :

Here we use the labeling of type A.

22 | 23 | @3 | =z |v00) | v;(1) [ 7(0) [ e7()
0 0 0 [1diz) | 1 2 3 1 :
0 | 1(b2) | 2(can) | O 2 3 5 3 |
La2) | O | L(cu) | 1(du) | 4 5 7 5
1(a12) | 1(b12) | 3(ca1) 0 5 6 9 7
2(az2) 0 2(ca1) | 1(du1) 7 8 11 9
2(az2) | 1(b12) 0 0 4 5 7 5
3(azz) | 0 | 3(es2) | 1dn) | 10 11 15 13
3(asz) | 1(b12) | 1(en) 0 7 8 11 9

In each of these cases, v7(0) +1 = vs(1),e4(0) = es(1)+2, f(u) =1, f(v) =
0. We denote this labeling by 3.

Recall that in (3], no labeling was given for graphs of Type C. This was
specifically because graphs of Type C are not cordial. However, now it
becomes necessary to give certain binary labelings for graphs of Type C.
Labeling 1 for plys of Type C :

Here we use the labeling of type A.

Zv | 2 | 23 | 24 [9(0) | ()] e(0) [ er )
0 0 2(c21) 0 2 2 4 2
0 1(b11) 0 1(d12) 2 2 4 2
1(an) 0 3(c32) 0 5 5 8 6
1(a11) | 1(b11) | 1(enr) | 1(dr2) 5 5 8 6
2(az2) 0 0 0 4 4 6 4
2(az1) | 1(b11) | 2(c21) | 1(dr2) 8 8 12 10
3(a32) 0 1(e11) 0 7 7 10 8
3(asz) | 1(bu1) | 3(cs1) | Udr2) | 11 11 16 14

In each of these cases, vs(0) = vs(1),e5(0) = ef(1) +2, f(u) = 1, f(v) = 0.
We denote this labeling by &;.

Labeling 2 for plys of Type C:

Here we use the labeling of type A.
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x Zo z3 Z4 v; (0) v; (1) e'fr(O) er(1)

0 0 2(c22) 0 2 2 2 4

0 1(b11) 0 1(d11) 2 2 2 4
1 (au) 0 3(031) 0 5 5 6 8
1(a11) | 1(bu) | L(ewn) | 1dn) | 5 5 6 8
2(an1) 0 0 0 4 4 4 6
2(az1) | Uba1) | 2(ca1) | Udu1) | 8 8 10 12
3(031) 0 1(611) 0 7 7 8 10
3(az1) | 1(bna) | 3(ear) | 1(di2) | 11 11 14 16

! With the above labeling for graphs of Type C, we have vy (0) = vy(1), e£(0)+
2 =¢y(1), f(u) =1, f(v) = 0. We denote this labeling by &.
Labeling 3 for plys of Type C':
Here we use labeling of type A.

z Zo z3 x4 v, (0) | v, (1) | €;(0) | €7(1)

0 0 | 2(c23) 0 1 3 4 2

0 1(b12) 0 1(d12) 1 3 4 2
l(am) 0 3(632) 0 4 6 8 6
1(a11) | 1(bs2) | 1(e1r) | 1(d12) 4 6 8 6
2(azs) 0 0 0 3 5 6 4
2(a22) | 1(b12) | 2(co2) | 1(da2) | 7 9 12 10
3(&32) 0 1(013) 0 6 8 10 8
3(as2) | 1(b12) | 3(ca1) | 1(da2) { 10 12 16 14

~—

In each of these cases, vf(0) +2 = vy(1),e4(0) = ef (1) +2, f(uv) =1, f(v) =
0. We denote this labeling by &s.
Labeling 4 for graphs of Type C:

Here we use the labeling of type A.

o1 2 | @3 | =z |v00) [ v, (1) [ ,0) | e,(1)

0 0 | 2(cw) | 0 1 ] 3 | 2 | 4

0 1(b12) 0 1(d11) 1 3 2 4
1(016) 0 3(631) 0 4 6 6 8
1(a16) | 1(b12) | 1(en) | Udis) | 4 6 6 8
2(azs) 0 0 0 3 ] 4 6
2(a21) | 1(b12) | 2(ca) | 1(dna) | 7 9 10 12
3as) | 0 |1les)| © 6 | 8 | 8 | 10
3(a31) | 1(b1z) | 3(ca2) | 1(dw1) | 10 12 14 16

As we see, in each case above, v7(0) + 2 = vy(1),e(0) + 2 = e4(1), f(u) =
1, f(v) = 0. We denote this labeling by &;.

We summarize the classification of the single ¢—ply graphs below. Along-
side, we also list the labelings that are available for each type. In the table
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below, let ’E’ and 'NE’ denote an Eulerian, non-Eulerian graph respectively.
Further let ’e’ be the number of edges in the corresponding ¢t—ply graph
and let e = r(mod4),0 < r < 3.

Type | E/NE f | Label | Label Relation of Relation of
foru | forv vertex labels edge labels
A E a| 1 0 vs(0) = vs(1) es(0) =e,(1)
a| 0 1 vs(0) = vs(1) es(0) = es(1)
az 1 0 v7(0) + 2 =vy(1) er(0) = ey(1)
a2| 0 1 |y@=v(1)+2| er(0)=¢es(1)
Ay | NE Al 1 0 vr(0) =vs(1) | es(0)+1=1¢e(1)
B O 1 vr(0) =vp(1) | es(0) +1=e(1)
ﬂ;z 1 0 vp(0) +2=1vy(1) | €s(0) +1 = es(1)
Ba 0 1 v7(0) =vp(1)+2 | ef(0) +1=ep(1)
Bs 0 0 v7(0) = vy (1) + 2 | €,(0) =ey(1) +1
Bs 1 1 v(0) +2=1vy(1) | ey(0) =€y(1) +1
Bl 0 | 0 | w@=v) |er0)=e;D)+1
Ba| 1 1 vr(0)=vs(1) | es(0) =ey(1)+1
As | NE n| 1 0 v7(0) =vs(1) | es(0) =es(1) +1
7| O 1 vr(0)=vs(1) | er(0) =ep(1)+1
7| 1 0 | v(0)+2=1v,(1) | e/(0) =es(1) +1
Ya 0 1 v7(0) =vy(1)+2 | es(0) = ey(1) +1
73 0 0 v7(0) =vy(1)+2 | ep(0) + 1 =ey(1)
¥s 1 1 Jo(@+2=v,(1) | es(0)+1=ey(1)
7| 0 0 v7(0) =vp(1) | es(0) +1=¢ep(1)
Ja | 1 1 v(0)=v;(1) | es(0)+1=¢ey(1)
Ay NE & 1 0 v7(0) + 1 =1v;(1) ey(0) = ey (1)
Y 0 1 vp(0) =vy;(1)+1 er(0) = ef(1)
) 0 0 vp(0) =vp (1) +1 | ef(0) +2 = ey(1)
o2 1 1 v7(0) +1=vy(1) | e7(0) +2 =ey(1)
Ag E 0} 1 0 vf(O) +1= U!(l) e!(O) +1= e;(l)
6, 0 1 v7(0) =vy(1)+1 | e(0) +1=ey(1)
9} 1 0 v7(0)+1=1v7(1) | e,(0) = €4(1) +3
62 0 1 v7(0) =vp(1)+1 | es(0) = (1) +3
Ag E & 1 0 v(0)+1=vy(1) | es(0) = ey(1) +1
& 0 1 v7(0) =vp(1)+1 | es(0) =ey(1) +1
éa 1 0 v7(0) +1=v7(1) | es(0)+ 3 =ey(1)
¢2 0 1 v7(0) =v7(1)+1 | e7(0) + 3 = ey(1)
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NE pr [ 00| ve(0)+1=1uv4(1) er(0) = ez(1)
fr | 1|1 o0 =vp(1)+1 [ ef(0)=es(1)
p2 | 010 vs(Q) =vp()+1 [ er(0)=es(1)
B2 | 1|1 ]v(0)+1=uvp(1) | €7(0) =es(1)
p3 | 110 vs(0)+1=wp(1) | e(0) =ef(1) +2
pi3 1 0] 1] vp(0)=vp(1)+1 [ ef(0) =es(1)+2

E & (10 v7(0) = vs(1) es(0) =ep(1)+2
Elo|1] v@=v1) |es@=es0)+2
&1|0] vw®=v1) |ef®+2=¢,1)
& 101 v(0)=vs(1) | es(0)+2=es(1)
&1 1[0]v(0)+2=vs(1) | €s(0) = es(1) +2
& 101 vs0)=vs(1)+2 | es(0) = es(1) +2
€ (1|0 v7(0) +2=1v5(1) | ef(0) +2=e;(1)
€ 10 [ 1 [v(0)+2=2,(1) | s(0) +2=¢4(1)

Consider the elongated ply T, which is a snake of n number of ¢(*) plys
P,y (ui,ui41),1 < i < n. These are blocks of the graph T),. Clearly the
number of edges incident on u; in Pyi-1 is t6~1) and the number of edges
incident on u; in P is @, Thus d(u;) = t6-1 +¢0),

3: Non-cordial Elongated Plys.

Before we deal with the problem of cordiality of T}, in general, we digress
a little to consider the index of cordiality of T},, when T, is Eulerian with
the number of edges e = 2(mod4). Clearly, by Theorem 1, T, is not cordial.
However, we can prove that ¢(T,,;) = 2. The result obtained in this Section
will be used later in proving the main result.

Theorem 2: If an elongated ply T}, is Bulerian with |E(T},)| = 2(mod4),
then i(T,) = 2.

Proof: As T, is Eulerian, each block P{" is Eulerian for all i = 1,2, - - ,n.
Hence, each block P?) is of the type A1, As, Ag or C.

Let the number of blocks of Type C be 2p; + r1;71 = 0 or 1. Let the
number of blocks of type As be 4ps + r2;0 < r, < 3 and the number of
blocks of type Ag be 4p3 + r3;0 < r3 < 3. We do not need to know the
number of blocks of Type A; as in each such block, the number of edges is
congruent to 0( mod 4).

The labeling g, for T, is done in two steps as follows: We first label the
end vertices 3, U2, * ,Um, Um+1, a8

a(uw)=1,---iodd g1(u;) =0,---i even.

Secondly, to label the intermediate vertices, we label each block by a
different labeling as described below. The restriction of the labeling g,
then, to each of these blocks is precisely the labeling so chosen. Due to the
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labelings chosen for the end vertices, we use the labelings mentioned below
for the odd numbered blocks and their inversions for the even numbered
blocks.

In each of the blocks of Type A;, use the corresponding labeling a;.
Out of the 2p; + 7, blocks of Type C, for the first p; blocks use &1 and
for the next p1 use &. In 2p; blocks of Type As, use the labeling 61, in P2
blocks of Type As, use #; and in the next D2, use the alternate labeling 6,.
In 2ps blocks of Type Ag, use the labeling ¢y, in ps blocks of Type Ag, use
¢1 and in the next p3, use the alternate labeling ¢-.

Let vy(0), vy(1), €5 (0), €, (1) be the number of vertices a.nd edges whlch

have received the labels 0 a.nd 1 respectively so far. Let v '(0), 'u (1), e '(0),e, (1
be the number of vertices and edges which are to recelve the la.bels 0 and
1 respectively at the next stage. There now remain r; blocks of Type
C,r; blocks of Type As and r3 blocks of Type Ag to be labeled. As
e = 2( mod 4), only the following cases will arise.

In each case, we give two types of labelings as follows:

Case 1: r; = 0,75 = 0,73 = 2.

In this case, two blocks of Type Ag remain to be labeled.

(a) In one of the blocks, use the labeling ¢, and in the other use é1. This
glvesv '(0) —v '(1) and e (0)=e, (1) +2.

(b) In one of the blocks, use the labelmg ¢1 and in the other use ¢o. This
glvesv (0)—1) ‘(1) a.nde (0)+2—e (D).

Case2 = 01'2.-1 1'3—3.

There now remain one block of Type As and three of Type Ag to be labeled.
(a)For the block of Type As, use the labeling 6;. In one of the blocks of
Type As, use ¢ and in each of the remaining two blocks of Type Ag use
$1. Then vg '(0) = v '(1) and eg '(0) = eg(l) +2.

(b)For the block of Type As, use the labeling ;. In one of the blocks of
Type As, use the labelmg ¢2, and in the other two use the labeling é1.
Then, v (0) = v '(1) and ey(O) +2=ce¢, (1)

Case 3. 1 =0, r2_2 r3 =0.

There now remain two blocks of Type As to be labeled.

(a)For one of the blocks of Type Ag, use the labehng 6, and for the other
block use 8. We get: v '(0) = v '(1) and €, (0) = e (1) + 2.

(b)For one of the block of Type As, use the labehng 01 and for the other
block use 6;. We get: v '(0) =, (1) and e, (O)+2—e 1).

Case 4: r; = 0,75 = 3, r3_.1.

There now remain three blocks of Type A and one block of Type Ag to be
labeled.

(a)For each of two blocks of Type As, use the labeling §; and for the third
block of Type As we use 92 For the block of type Ag use ¢,. We get:
v (0)—v (1) and ¢, (0)_e (1) + 2.
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(b)For each of two blocks of Type As, use the labeling 6, and for the other

block of Type As we use 8s. For the block of type Ag use ¢2. We get:

-u '(0) —'u '(1) and e, (0)+2—e (1)

Cases. 1'1—1 r2-0 rs =0.

There is one block of Type C remaining to be la.beled

(a)For this block, use the labeling &;. Then, v '(0) = v ‘(1) and e (0) =
[ T(1) + 2.

(b)For this block, use the labeling &;. Then, v:q' (0) = v; (1) and e; 0)+2=

e, (1).

Case 6: Ty = 1,1’2 = 1,1‘3 =1

In this case, there is one block of Type C, one of Type As and one of Type

Ag remaining to be labeled.

(a)For the block of Type C, use the labeling &;. For the block of Type As,

use either the labelmg by; and for the block of Type Ag, use the labeling

#1. Then, v '(0) —v '(1) and e '(0) = e (1) +2.

(b)For the block of Type C, use the labelmg &s. For the block of Type As,

use the labeling 6, and for the block of Type As use the labeling ¢, . Then,

'v;' 0) = 'v; (1) and e; 0)+2= e;(l).

Case T: 1y =1, =2,73=2.

There now remain one block of Type C, two of Type As and two of Type

Ag to be labeled.

(a)For the block of Type C, use &. For each of the blocks of Type As

use the labelmg 6, a.nd for each of the blocks of Type Ag, use ¢;. We get:

v (0) = 9(1) and eg(O) =e, (1) +2.

(b)For the block of Type C, use either the labeling &. For each of the blocks

of Type A5, use the labelmg 61 and in each of the blocks of Type Ag use

¢1. Then, ‘vg '(0) = v '(1) and e, (0) +2= g(l)

Case 8: 1, =1, 1'2_3 1'3-—3

There now remain one block of Type C, three of Type As and three of

Type Ag to be labeled.

(a)For the block of Type C, use & . For each of the blocks of Type Ag

use the labeling 6, and for each of the blocks of Type Ag, use ¢;. We get:

'v (O)—v (1) ande (0)—e (1) +2.

(b)For the block of Type C, use the labeling &. For each of the blocks of

Type A5, use the labeling 01 and in each of the blocks of Type Ag use ¢;.

Then, v (0 -—v '(1) and e, (0) +2=c¢, (1)

F\'om the a.bove, it is clear that we have obtained two types of labelings
for Ty, one in which e,(0) = e4(1) + 2 (as given in (a)), and the other in
which e4(0) + 2 = e4(1)(as given in (b)). Further, we have v;(O) = ;(1)
and v;' 0) = v'g' (1). The relation between v4(0) and vy(1) now entirely
depends upon the labels of the shared vertices. Clearly, v4(0) = ;(0) +
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v (0) = [(n - 1)/2]

vy(1) = 'v; 1+ 'v; (1) = [(n — 1)/2]. From this, it is clear that, if n is odd,
then vy (0) = vy(1) and if n is even then v,(0) + 1 = v,(1). Hence i(T},) = 2.
This completes the proof. ®

4: Cordiality of T,:

Theorem 3: T, is cordial if and only if it is not Euler with | E(T},) |=

2(mod4).
Proof: Suppose T, is Eulerian and it does not satisfy Cahit’s condition
of Theorem 1. In this case we prove that T, is cordial. The proof is by
induction on n. For n = 1, the graph T, is simply a single ¢t—ply, for which
cordiality has already been established in [3].

Now, assume that each elongated ply T, which is not Eulerian
with | E(T},) |= 2(modd) is cordial. We now establish the result for
m+1. Firstly, note that Ti,4, is a one point union of T}, with a single t—ply
graph Pyen+1) (Um+1, Um+2)- The graph T;, can be of one of the following
types:

(I) Trm is non-Eulerian. (II) Ty, is Eulerian and | E(T,,) |# 2(mod4).
(ITI) T}, is Eulerian and | E(Ty,) |= 2(mod4).

We give the proof in four parts, three parts for the three cases listed
here and the fourth part to deal with certain problematic cases which arise
in the first part, Part I. In each of these parts, in certain cases, the labelings
used are inadequate to give a cordial labeling f of Trn41. Each such case
will be indicated by a ’o’ if the condition | e4(0) —ez(1) |< 1 is not satisfied
and by a ’®’ if both the vertex as well as the edge label conditions are not
satisfied. These problematic cases will be dealt with separately in part IV.
Part I: T, is non-Eulerian ~ We give a binary labeling g for T}, as
follows:

Since T}, is not Euler, Ty, is cordial, hence there exists a cordial labeling
g1 of Tn. Let g2 be a binary labeling of Pym+1)(tm41,%m42). The choice
of g5 will be indicated in the tables that follow.
Let 9v) = g1(v) for v € V(T',)

= gg('v) forve V(.Pt(m-n)).
While choosing gz, we ensure that g2(um+1) = g1 (Umt1).
Since g; is a cordial labeling of Trm, | vy, (0) — vy, (1) |< 1 and
| €4:(0) = e5,(1) |< 1. Moreover, eg(s) = e, (i) + egy(i),i = 0,1. On the
other hand,

g(0) =5, (0) + 95, (0) =1,  v4(1) = v, (0) + v, (1)
when g; (¥m+1) = 0, whereas

g(0) = vy, (0) + v4,(0), vg(1) = vg, (1) + vg, (1) - 1
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when g1 (um41) = 1.

Since Ty +1 is a one point union of Ty, with a t—ply Pyim+1) (¥m+1, Um+2),
in this case Ty, 4 is also not Eulerian. We therefore have to show that T,,1
is cordial for all plys Py(m+1).

Depending on the existing vertex and edge label conditions for g;, we
consider the following choices, in which g2(um+1) = g1 (um+1)-
Case 1: vy, (0) = vy,(1),e4,(0) = ey, (1). Case Pym+1) = C has problem

{0)-

g1(Um+1) =0 91(tms1) =1
_P‘Swvﬂ) g2 — 9 g2 g
Ay a vp(0) +1 =1v,(1),e,(0) =e5(1) | a1 vg(0) = vy(1) +1,¢5(0) = ¢5(1)
Az B | ue(0) +1=vs(1),60(0) +1 =e5(1) | A1 | v5(0) = v5(1) +1,€5(0) +1 = e5(1)
As Ti | v(0) +1=1v,(1),e0(0) =€(1) +1 | m | v(0) = vg(2) +1,€5(0) = g(1) +1
Ac & wu@=v)e@ =€) | & | 6(0) =vs(1),e(0) = e5(2)
As A vg(0) = v5(2),e(0) +1 =e,(1) 6 v5(0) = vg(1),e5(0) +1 =e4(2)
A | b w@=vo(1)e0) =€) +1 | d1 | 0(0) = vg(1),e5(0) = (1) +1
B B2 v5(0) = vp(1), €,(0) = e5(1) Ha v(0) = v,(1), 5(0) =e(1)
Case 2: v, (0) = vy, (1), e, (0)+1 = €5, (1). Case pym+1) = As has problem
(0)-
91(tm+1) =0 G (Ums1) =1
Pym+1y | g2 g g2 g

A dr | ve(0) +1 =vy(1),e5(0) +1=¢5(1) | a1 | v5(0) = vg(1) + 1,e5(0) + 1 = eo(1)
Ar | Bi| (0 +1=v(),e5(0) =eg(1) | Ba | v,(0) =v5(1) +1,e5(0) = e5(1)
A | A | w@+1=v(1),e(0) =es(1) |1 | v(0) =vy(1) +1,e,(0) = e5(1)
Ac | & | v(0)=vp(1)eg(0) +1=eo(1) | & | v5(0) = vy(1),e5(0) +1 = eo(1)
é 15(0) = v,(1),65(0) = 5(1) | & v5(0) = v5(1), €5(0) = e(1)

95(0) = vy(1),¢5(0) +1 =¢4(1) 2 v5(0) = vg(1), €9(0) + 1 = e4(1)

w
5

& | v@+1=v,(1)e(0) =) +1 ] & | v(0) =vy(1) +1,65(0) =eg(1) +1

201



Case 3: v, (0) = vy, (1), €,,(0) = e, (1) + 1. Case Py(m+1)) = As has problem (o).

91(ttm41) = 0 91 {tm1) =1
Pinery | g2 g 92 g

AL | a1 | 50 +1=0s(1),65(0) = eg(D) + 1 | @1 | v5(0) = v5(1) + 1,€,(0) = eg(1) + 1
A | B | w@+1=v(1),e5(0) =e5(1) | B | v(0) = ug(1) +1,e(0) = e,(1)
As | m| w0 +1=v5(1)e5(0) =e5(1) | Fa | v5(0) =vg(1) +1,64(0) = ey(2)
Ao & | w0 =v(1),e0(0) =) +1 | 8 | v5(0) = ve(1), €5(0) = e5(1) +1
4 | 6 5(0) = vg(1),€4(0) = e5(1) 6 5(0) = vg(1), €5(0) = e4(1)

B B2 | w(0)=v,(1),e5(0) =ep(1) +1 | giz |  v,(0) = vy(1),€5(0) = 5(1) +1
c & | v5(0) +1=1vy(1),65(0) +1 =e5(1) | & | v5(0) = vy(2) +1,,(0) +1 = ¢,(2)

Case 4: v, (0) + 1 = v;, (1), €, (0) = e,,(1). Case

Pym+1 = C has problem o or ®.

g1(um+1) =0 gi(umsr) =1
Pym+) | g2 9 g2 g

A | & v9(0) = vg(1), €5 (0) = e, (1) a vg(0) = vy(1),e,(0) = e,(1)
A A | w®=ve0+1=e0) |8 | v5(0) =v,(1)e0(0) +1=e51)
A | w@=ve@ =M +1 | n | 05(0) = vy(1),5(0) = eg(1) +1
A & w%@+1=000e0 =e,0) | & | v5(0) = vy(1) +1,,(0) = &5(1)
As | 6 | 90 +1=vp(1),e(0) +1=e,(1) | Gy | v5(0) = v,(1) +1,e5(0) +1 = ,(2)

b1 | v(0)+1=1v5(1),e5(0) = (1) +1 | G1 | v(0) = v,(1) + 1, €,(0) = (1) +1
B luw| wO+1=00)e0=e) || vy(0)=vy(1)+1,e(0) =e,1)
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Case 5: vy, (0) + 1 = v, (1), &g, (0) + 1 = €, (1). Case Pym+1) = As has problem (o).

gi(um41) =0 1(tms1) =1
Pym+n) | g2 9 92 g

A G2 | %@ =v()e(0)+1=e() [o1 | v5(0) =v,(1),e,(0) +1=eg(T)
Az | Bs vg(0) = v;(1),65(0) = €4(1) B4 vg(0) = vg(1),e5(0) = e5(1)

A | T ¥9(0) = vy(1),€5(0) = e4(1) n v,(0) = vy(1), e5(0) = ey(1)

A | 6 | 60 +1=vy(1),65(0) +1=e5(1) | & | vg(0) = vg(1) +1,5(0) +1 = e5(1)
A | d] w@+1=00)e@=c1) |G| 5(0) =v5(1) +1,65(0) = 5(1)
B | ua | vp(0)+1=1v,(1),e5(0) +1=ep(1) | fir | v5(0) = vs(2) +1,60(0) +1 = eg(1)
C_ 16| v@=vy))eg(0)=esM+1 | & | 5(0) =v5(1),es(0) = eg(1) +1

Case 6: v,,(0) + 1 = vy, (1), €5, {0) = €5, (1) + 1. Case Pym+1y = Ag has problem

(o).
g1 (8m41) =0 g1(¥m+1) =1
Pymsv | 22 9 92 9

At | az] %0 =v(0).e,(0) =) +1 | a1 | v(0) = vg(1),e5(0) = ¢;(1) + 1
A | B v5(0) = (1), €5(0) = €,(1) - v5(0) = 1,(1), () = €5(2)
A In v(0) = vy (1), €5 (0) = €,(1) " (0) = vy (1), €(0) = e5(1)
A | 6| ve0) +1=v5(1),e0(0) = eg(1) +1 | & | v5(0) = ve(1) +1,€5(0) = e5(1) + 1
4 | 6| v@+1=v0)e0) =€) |G| v00)=1v,01) +1,6,(0) = e, (1)
B | 2| val0) +1=v5(1),e5(0) = eg(1) +1 | fir | v5(0) = (1) +1,€,(0) = e(1) +1

L] v(O)=v0)e(O+1=¢(1) |& | v(0)=v5(1).eo(0)+1=¢,5(1)
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Case T: v,,(0) = v, (1) + 1,5, (0) = €,,(1). Case Pymsn = C has problem (o) or
®.

g1(tm41) =0 91 (Uma1) = 1
Pymsny | 92 9 92 g

A | vg(1) = v5(1),¢5(0) = e5(1) a3 v5(0) = vy(1),€,(0) = e,5(1)

A A w@®=vD)e0+1=e) || ve(0)=ru(1),e5(0) +1=ey(1)
As || v(0)=vp(1),e(0) =e5(1)+1 | T | p(0) = vy(1),5(0) =e5(1) +1
Ar & ] w0 +1=u(1),e5(0) =eo(1) | 61 |  up(0) = vy(1) + 1, e,(0) = e5(1)
As | 61 | v(0) +1=1vy(1),e5(0) +1=e(1) | 61 | ¥,(0) = vy(1) +1,6,(0) + 1 = e5(1)
As | 61 | v5(0) +1=105(1),€0(0) = €g(1) +1 | b1 | up(0) = vp(1) +1,€,(0) = ey(1) + 1
B lmi vO+1=v(1)es(0)=€p(1) | siz| v(0)=uv,(1)+1 e5(0)=e,s(1)

Case 8: v, (0) = v, (1) +1,€,,(0) + 1 = e;, (1). Case Pym+1) = As has problem (o).

g1(Um+1) =0 91(tm41) =1
Pymin | 92 g g2 g
A |G| w®=vM 0 FT=¢() [z | v00) =v,(1),6,(0) +1=e501)
Az | Be v5(0) = (1), &5(0) = 5(1) bs v9(0) = vg(1), £5(0) = ey(1)
As | W v3(0) = 5(1), £5(0) = e5(1) T v5(0) = v5(1), €5(0) = e5(1)
Ac | & | v(0)+1=vg(1),e5(0) +1=eg(1) | & | v5(0) = vy(1) +1,€4(0) +1 = eg(1)
As 1| w0 +1=0v,02),6(0)=€,(1) |d1 | v(0) =v(1) +1,e,(0) = e (1)
B | 1 (0)+1=1v,(1),65(0) +1 = (1) | iz | v9(0) = vy(1) +1,e,(0) +1 = ey (1)
bl v(@®=vy(1).es0)=eg)+1 | & [ v(0) =vp(1),5(0) =, (1) +1
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Case 9: v, (0) = v,,(1) + 1,€5,(0) = €5,(1) + 1. Case Pym+1) = Ag has

problem (o).

Im+1) =0 9 {Umy1) =1
Pymsry | 92 9 92 9

A [a | w0 =v{D)e0) =M +1 [az | v(0)=u,(1),6(0) = (1) +1
a4 | A %(0) =up(1),e5(0) = &6(1) | B2 v5(0) = v5(1), €5(0) = e5(1)
As | v5(0) = v5(1),£5(0) = £5(1) g v5(0) = v5(1), €5(0) = 4(1)
A | 81 | up(0) +1=up(1),65(0) = e5(1) +1 | 81 | v4(0) = v(1) +1,,(0) = e,(2) +1
A | 6| () +1=1v()e0(0) =es(1) | 61 | v5(0) = (1) +1,e,(0) = e5(1)
B # | v(0) +1=1v,(1),65(0) = (1) + 1 | siz | vg(0) = v5(1) +1,€4(0) = eg(1) +1

S 1 vw@=v(1)eO)+1=ep(1) | & | 6(0)=0p(1),e(0)+1=e,(2)

Part II: T, is Eulerian and | E(T};) |# 2( mod 4)

In this case, | E(Ty;) |= 0,1, 3(mod4) and hence Ty, is cordial. Let g; be a
cordial labeling of T},,. Let g be a binary labeling for T,,+1 as described in
Part I. Let e denote | E(Ty;) |- We consider three cases.

Case (a):- e = 0(mod4)

Here, | vg,(0) — vy, (1) |[< 1 and e,,(0) = ey, (1). Now if Pym+1) is of
Type C, then T, is Eulerian and | E(Tjn+1) |= 2(mod4); hence Thnyy is
not cordial. We make the following sub-cases depending on the vertex label
condition in T;,.
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Case 1: v,,(0) = v,,(1).

91(tm+1) =0 g1(um41) =1
Pyms1y | 92 g 92 g
A [ai | s FT=v(De(0 =€) [e1 | v(0) = v5(D) +1,6,(0) = eg(1)
Ar | B | v +1=1v,(1),65(0)+ 1 =e5(1) | A1 | v6(0) = vy(1) + 1,€5(0) + 1 = e, (1)
As | 9| (@) +1=v,(1),5(0) = e5(1) +1 | m [ v5(0) = 0p(1) +1,€5(0) = es(1) +1
4 | & v5(0) = v5(1), €5(0) = e5(1) & v5(0) = v5(1), £5(0) = ¢5(2)
As | | v(0)=v,(1),e,(0) +1=eg(1) | 6 | vy(0) =vy(1),e0(0) + 1= e,(1)
A | b | vw®=v,(1)e0) =) +1 | g1 | v,(0) =(1),e5(0) = ep1) +1
B ] vg(0) = vy(1),€5(0) = €5(1) b2 vg(0) = v5(2), 65(0) = e5(1)
Case 2: vy, (0) + 1 = v, (1).
91(¥m+1) =0 g1(tm+1) =1
Pymsn | &2 9 92 g
At | v9(0) = v5(1), €5(0) = e,(1) a %9(0) = v5(1), 5 (0) = €5(1)
A (B w@=v0)e@+1=e(1) | B | v5(0) =1y(1),e5(0) +1=e5(1)
As | T | v =vy(1).e;(0)=eo(1)+1 | m | v5(0) = vy(1),e5(0) = e5(1) +1
A [ 6] v@+1=00)e0) =€) | & | vs(0) = vp(1) +1,e5(0) = e, (1)
As | 61 | ve(0) +1=15(1),e0(0) + 1 =5(1) | 61 | v5(0) = vs(1) +1,5(0) + 1 = ey(1)
b1 | 15(0) +1 = 0(1),e5(0) = eg(1) +1 | b1 | vp(0) = vy(1) + 1, €5(0) = e5(1) + 1
B | pa]| v(0)+1=v(1),6(0) =eg(1) | sin | vp(0) =vy(1) +1,e,(0) = e,(1)
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Case 3: vy, (0) = v, (1) +1.

g1(tms1) =0 91 (tm+1) =1
Pym+1y | 92 9 92 g
A [d 95(0) = v, (1), €,(0) = e, (1) az % 0) = 5,(1),5,0) = &, ()

Az [ Bi]| ve(0)=v(1)es(0)+1=e5(1) | B2 | vp(0) = uy(1),e5(0) + 1 =ey(1)
As | ve(0)=v(1)eg(0) =es(1)+1 | 72 | 1v5(0) = vy(1), ,(0) = e5(1) +1
Ac | & v(0)+1=1,(1),e000) = (1) | 8 | v(0) = vy(1) +1,€5(0) = e (1)
As | 61 | vp(0) +1 = v,(1),65(0) + 1 = 5(1) | 81 | v5(0) = vy(1) +1,,(0) +1 = e,(1)

As $1 | ve(0) +1=15(1),65(0) = eg(1) +1 | b1 | v5(0) = vg(1) +1,e5(0) = (1) +1

B B v9(0) + 1 = vy(1), e5(0) = eg(1) 3 v5(0) = vg(1) + 1, €5(0) = e4(2)

Case (b): e =1( mod 4).

If Pym+1) is of Type Ag, then T4y is Eulerian and | E(Tn41) |=
2(mod4); hence T,,41 is not cordial. In the remaining cases, we prove that
Tm+1 is cordial. Since Ty, is cordial, there exists a labeling ¢; of T}, such
that | vy, (0) — vy, (1) I< 1 and | €4, (0) — ey, (1) [= 1. Thus, ey, (0) — ey, (1) is
either —1 or 1. In fact we prove that it is always possible to have a labeling
g1 such that ey, (0) — e,, (1) = 1. Firstly observe that as T, is Eulerian,
each block P, of Ty, is Eulerian and hence is of one of the types namely
Type A;,As,Ag or C.

Let the number of blocks of Type C be 2¢g; + 81,1 = 0, 1; the number
of blocks of Type Ag be 4¢gs + s2,0 < 82 < 3; and the number of blocks of
Type A¢ be 4qg3 + 33,0 < s3 < 3. We do not need to know the number of
blocks of Type A; as in each such block, the number of edges is congruent
to 0( mod 4). The labeling g; for Ty, is done in two steps. We first label
the end vertices uy,uz2,- - , Um, Um1, 88 g(u;) = 1, if ¢ is odd and g(u;) =
0, if ¢ is even . Secondly, to label the intermediate vertices, we label each
block by a different labeling as described below. The restriction of the
labeling g, then, to each of these blocks, is precisely the labeling so chosen.
Due to the condition already imposed on the end vertices by g, for the
odd blocks, we choose the labeling as mentioned, but for the even blocks,
we take the inversion of the labeling mentioned therein.

For each of the blocks of Type A;, use the labeling o listed in the
summary. For ¢; blocks of Type C, use & and for the next ¢; use &. In
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2¢2 blocks of Type As, use the labeling 0}, in g2 blocks of Type As, use
61 and in the next ¢, use the alternate labeling ;. In 2q, blocks of Type
Ag, use the labeling ¢, in ¢ blocks of Type Ag, use ¢; and in the next
g2, use the alternate labeling ¢2. There now remain s; blocks of Type C,
82 blocks of Type As and s3 blocks of Type Ag. As e = 1(mod4), only the
following cases will arise. The choice of the labeling made in each case is
indicated alongside. Where there is more than one block of the same type
to be labeled, the various labelings used are mentioned in the same cell.

s1 89 83 Edge label condition
0 0 1(¢1) €5, (0) = €4, (1) +1
0 1(61) 2(¢1,01) | en(0)=e5(1)+1
0 2(61,01) | 3(d1,01,61) | €5,(0) = e, (1) +1
0 | 3(61,61,062) 0 | ea(0)=eu(1)+1
1(&) 0 3(¢1,01,61) | €5,(0) =eg (1) +1
&) | 16y 0 e (0) = (1) +1
(&) | 2(61,61) 1(¢1) €5 (0) = €5, (1) +1

l(fl) 3(01 ) 91) 01) 2(4;1 3 ‘i;l) €91 (O) =€y (1) +1

From the above table, it is evident that for the labeling g;,e,,(0) =
eg, (1) + 1. However, | vy, (0) — vy, (1) |< 1. We thus have the following three
cases:-

Case 1:- v,,(0) = Vg, (1), 4, (0) = €4, (1) + 1.

N g1(tm41) =0 N (um+1) =1
| Pim+1) (] g2 g
A dy ”n(a) +1=vy(1),65(0) =e5(1) +1 | a1 | v,(0) = v, (1) +1, e(0) =ey(1) +1

Az || w0 +1=v1),e(0)=eg(1) [ B ] ve(0) =us(1) +1,e5(0) = ep(1)
As 1| vw(O0)+1=v(1),e(0) =ep(1) | Fa | v(0) =vy(1) +1,¢,(0) = e5(1)
A | 6| v®=u()e(0) =€) +1 | 81 | vy(0) = vy(1), e5(0) = e, (1) + 1
As | 6 v5(0) = v5(1), £5(0) = ¢,(1) 6 v5(0) = v5(1),€,(0) = €,(1)

Ha vg(0) = v,(1),€5(0) = e4(1) +1 Ha v5(0) = v5(1), €5(0) = ey (1) + 1

§2 | v(O)+1=v,(1),es(0) +1=e,(1) | & | v5(0) =v(1) +1,6,(0) +1=e,(1)
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Case 2:- vy, (0) + 1 = v,,(1),e,,(0) = e, (1) +1.

[ 91(tm+1) =0 _ n(umi) =1
B K} B U oA CErn  Ea e o B O e DR
A2 | B 5(0) = v,(2),€5(0) = e,(1) B p(0) = v,(1), €5(1) = €,(1)
As |m v5(0) = v,(1), £5(0) = €,(1) T 5(0) = v5(1), £5(0) = (1)
A | 6 | %0 +1=v5(1),0(0) = eg(1) +1 | & | v5(0) = up(1) +1,e5(0) = e,(1) +1
A | 6| w(@+1=v,(1).00) =eg(1) | 6 | vs(0) = vy(1) +1,e5(0) = (1)
B3 | %(0) +1=v,(1),e5(0) = eg(1) +1 | gir | ve(0) = vp(1) +1,€0(0) = eo(1) + 1
gl wO=ve@+1=cp) | & ] u(0)=v,()e(0)+1=e,(1)
Case 3:- vy, (0) = v,, (1) + 1,e,,(0) = ¢, (1) + 1.
g1(ums1) =0 i(Bms1) =1
Pymsny | 92 g 9 g
At a1 | v%(0)=v,(0),6,0) =,(1) +1 [ az | v5(0) = tg(1),€4(0) = €g(1) + 1
A4 | A vg(0) = vy(1),€,(0) = ey(1) b 49(0) = v5(1), €5(0) = 5(1)
As ™ v9(0) = vy(1),€,(0) = e,5(1) ;! 9(0) = v(1), €5(0) = e4(1)
A4 51 | 95(0) +1 = vy(1),€,(0) = eg(1) +1 | &1 | v5(0) = vp(1) +1,€4(0) = €5(1) + 1
as |G| v +1=v,(1),e0(0) =€s(1) | 6 | vs(0) = vp(1) +1,65(0) = e5(1)
i | vg(0) + 1= vy(1),65(0) = e5(1) +1 | sis | vs(0) = v5(1) +1, 5(0) = eg(1) +1
& ] v(0)=1v,(2),,00) +1=e5(1) | & | v5(0) = v, (1) +1,,(0) + 1 = ey(1)

Case (c):- e = 3(mod4).

If Pj(m+1) is of the Type As, then Ty is Eulerian with | E(Tph41) |=
2(mod4); hence Ty 41 is not cordial. In all the remaining cases we prove
that T),41 is cordial. Now, there exists a labeling g, of T, such that
| vg,(0) — vy, (1) |< 1 and | ey, (0) — €4,(1) |= 1. In this case we can prove
similarly as in Case (b) above that we can always give a cordial labeling g,
of Ty, such that e, (0) + 1 = ey, (1). However, | vy, (0) — v, (1) [< 1. We
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thus have the following three cases:-
Case 1: vy, (0) = vy, (1), 5, (0) + 1 = e, (1).

91{8m41) =0 91 (trmt1) = 1
Pym+n) | 92 g 93 g
A |Gt | w0 +T=1v,(1),e5(0) +1=¢5(1) | a1 [ v5(0) = v5(1) +1,5(0) + T =¢,(1)
A | Be| w0 +1=u(1),e0) =ep(1) | B | v5(0) = vp(1) +1,e5(0) = 5(1)
As || w@+1=v(1),e0) =€) [ m | (0) =vy(1) +1,e4(0) = e5(1)
Av | 8| v =v1)eg(0) +1=e5(1) | 81 | vp(0) = (1), €5(0) + 1= eg(1)
As | v9(0) = v,(1),€,(0) = €,(1) & v5(0) = v5(1),€(0) = €5 (1)
B | pa| v(0)=v(1)e,(0)+1=e0(1) | s | vs(0) =vs(2).e0(0) + 1= e,(2)
& | v +1=v,(1).e(0) = (1) +1 | & | v5(0) = vg(1) +1,€5(0) = eg(1) +1
Case 2: v, (0) +1 = v;,(1),e,,(0) + 1 = e, (1).
91 (um+1) =0 S1{vm+1) =1
Pym+ry | 92 [ g2 g
Av [ da | v(0)=vy(1),e0(0)+1=1¢5(1) || v5(0) =0p(1),5(0) +1=ey(l)
Ay | B vg(0) = vy (1), €5(0) = €5(1) A v (0) = vy (1), €5(0) = e,(1)
As | B v5(0) = v5(1), €5(0) = e5(1) n vy(0) = v(1},€5(0) = 5(1)
A | & | ve(0) +1=1v,(1),e0(0) + 1 =eg(1) | &1 | v5(0) = vy(1) +1,4(0) + 1 =, (1)
A [ d ] w@+1=v0)e0) =€) || uo(0) =rvy(1) +1,e5(0) = e5(1)
#a | 9o(0) +1 = vy(1),60(0) + 1= y(1) | it | v5(0) = vy(1) +1,,(0) + 1 = e,(1)
61 vO=v0)e@=e,)+1 | & | v(0) =v5(1),e,(0) = e5(1) +1
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Case 3:- v;,(0) = v, (1) + 1,64, (0) + 1 =5 (1).

_91(tms1) =0 91{ume1) =1
Pymeny | 92 9 92 g
Al a1 | v(0=v(),e(0)+1=¢(1) [az| 9,(0) = v,(1),€5(0) + 1 =e,(1)
Az | B vg(0) = v(1), €5(0) = e5(2) P> 5(0) = vy (1), €4(0) = e,(1)
As | T vg(0) = vy (1), €9(0) = 5 (1) ) 45(0) = v(1),¢5(0) = €,(1)
Ad | 81 | v5(0) +1 = vy(1),e5(0) + 1 = (1) | & | v(0) = (1) +1,e5(0) + 1 = eg(1)
A || v +1=v(1)e0) =eg(1) |1 | v(0)=vy(1) +1,e(0) = e5(1)
p | vg(0) +1 = vy(1),e0(0) +1 = (1) | iz | ¥5(0) = vy(1) +1,€,(0) + 1 = ¢,(2)
G0 ve(0)=v(1)ieg(0) = e +1 | & | vp(0) = vy(1),e5(0) = ey(1) +1

If Py(m+1) is of the Type A;, then Ty will be Eulerian with | E(Tpn41) |=
2(mod4). Hence, in this case, Ty,+1 is not cordial. We prove that in all the
remaining cases, Tyn41 is cordial. Since T, is not cordial,i(T5,) = 2. In fact,
we have obtained two labelings for Ty, one in which €,(0) + 2 = e,4(1) and
the other in which e,(0) = e4(1) + 2. Denote the first labeling by h; and
the latter by h,. Further depending on | V(T},) | either vy(0) = vy(1) or
vg(0) + 1 = vy(1). We make the following cases, depending on the existing
vertex condition in T,,. Let g; be the labeling for T),, g2 the labeling for
Pym+1y and g the resulting labeling for Ty, ;. The choice of g; and g2 in

Part III: T,, is Eulerian and e = 2(mod4).

each case is indicated in the table below.
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[A¥4

(0% = (0)%1)% = (0)% 13 (1)%2 = (0)%2"(1)% = (0)% ST o [w
(M%P=(0)%1+(1)%=(0)% |5} (D)% =(0)%"(N%=1+(0)% |- g |w
Mo =1+ T+ (M) =(0)% | ¥ | (W2 =1+(0)%" (1) =1+(0)% | 'y
T+(D%=(0)%T+(D%=(0)% | 9 | 1+ (D% =(0)%' M =1+0)% | 9| ¥ |[°%
(D% =()% 1+ ()% =(0)% |[% ]| (M%=()%(D%=1+(0)% |%| v |y
(Do=1+(0)%"(1)%=(0)% || ()o=1+(0)%"(1)%=(0)2% [&| sy |Ww
I+ (D)% =(0)% ()% =(0)% || 1+(M%=(0)%‘M)%=(0)% |%| v |°%y
5 % 6 5 | araig | 15
1= (Hen)16 0= (T+un)15

(1) =1+ (0)"a -z es8D
(D% =(0)%'1+ ()% =(0)% | 13 )% =(0)%(1)°a=1+(0)° | W3 0 Ty
(1)% = (0)°3'(x)% = (0)°n &l (1)%2 = (0)°2*(1)° = (0)%a | g |w
(%P =1+(0)2" ()% =(0)% || (Do=1+()% ()% =(0)% ['¢] v |
1+(1)%2=(0)%"(1)%=(0)% | 9| 1+(D%=(0)%"(1)%=(0)% || v |%g
(1)% = (0)2'(1)° = (0)%» 4 (% = (0)%(1)% = (0)*» 2 A
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Part IV: Problematic Cases:
In this part, we deal with the problematic cases that arose in Part I.
Problems of Type (o).
For these cases vertex balance is maintained but | ef(0) — ef(1) |£ 1.
All such cases are the following:

T, is non-Eulerian
€g, (O) +1= €9 (1) n (um+1) =0 Type As
91(¥my1) =1 | Type 4s
€9 (0) = é€g (1) +1 gl(um+1) =0 | Type As
91(um,) =1 | Type Ag
g, (0) =€y, (1) 91(¥m41) =0 | Type C
91(Umy1)=1| Type C

Since Ty, is non-Eulerian, it is cordial, hence there exists a cordial label-
ing f of Tr,. Let the restriction of f to each block P, in T}, be denoted by
fi. Let k be the maximum positive integer such that Py is non-Eulerian,
that is Py is of one of the types Az, A3, A4 or B. For each r > k, Py
will be Eulerian. Throughout this paper, since we have used only labelings
of type A for Eulerian single ¢—ply graphs, therefore in each such block,
either f(u,) =1, f(ur41) =0, or f(u,) =0, f(tr41) = 1. In fact, if m — k
is even,
f(uk-i-l) = 1) f(uk+2) = 01 f(uk+3) = 11' " rf(um) = 07 f(um'H.) =1lor
f(ur41) =0, f(ur2) = 1, f(ur4s) = 0,7+, f(um) = 1, f(tm41) = 0.

If m — k is odd, then
flursr) =1, f(urs2) = 0, f(ursa) = 1,-++, f(um) = 1, f(¥ms1) =0 or
f(ur+) =0, f(uk+2')n= 1, f(uk43) = 0y- -+, f(um) = 0, f(um41) = 1.

Thus ‘U!(O) = Z vy0) — %1 — 22 + vy, (0)’ ............ (%)
i=1,i%k
where z; = number of vertices in {uz,--- ,ux} which receive the label 0 and
z2 = the number of vertices in {tg41, - ,um} which receive the label 0.
Observe that z;, 2, together give us the number of "shared” zeroes. Clearly,

22 = (m-—k)/2; when m — kis even
= (m-—k—-1)/2; when m—kis odd and f(ug41) =1
= (m-k+1)/2; when m—kisodd andf(ug4+1) =0.

m
Further, we have vy(1) = Z V) — Y — Y2+ (1), (%)
i=1,i#k
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where yy =k —1—x; and y» = (m — k) — z2. Also,

m

er(0) = 2 es:(0) + ey, (0),
i=1,ik

er(l) = > en(l)+ep (1)
i=1,ik

We now give an alternate labeling F for T, as follows: For each block
Py, define a new labeling F; as

F; = fi,1<i<k,
= fu(k+D)<i<m

For i = k, if f; is a labeling of type A(respectively B), then we choose Fj
to be an appropriate labeling of type B(respectively A) as described later.
m

Then vr(0) = ) vp ) — 21— Xa+ V5 (0),-+------- (444)
i=1,ik
where vz, (0) depends on F; and
X2 = (m—k)/2; m~keven
= (m—-k-1)/2; m -k odd, f(urs1) =0
= (m-k+1)/2 m—kodd, furs)=1.

m

vr(l)= Y vy —n—Ya+vp (), (iv)
i=1,ik
where Y3 = (m — k) — X,. Also,

m

eF(O) = z efi(0)+eFk(0)’
i=1,ik

erd) = 3 en(l)+enl).
i1, itk

From the above it follows that

vr(0) — v£(0)

vF, (0) — vy, (0) + (z2 — X2),
vp(1) — vp(1) UR, (1) — v5 (1) + (32 — Y2),
er(0) — ez (0) er,(0) — ez, (0),

er(l) —es(1) = er(l) —epn ().
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Suppose P, is a graph of Type A,. If fi is a labeling of type A, then
en(0) +1 = ey, (1). In that case, we have to take Fj to be a labeling of
type B, but in any labeling of type B for graphs of Type A; (see summary),
the number of edges with the label 0 is one more than the number of edges
with the label 1. Hence ef, (0) = eF, (1) + 1. Then:

er(0) — es(0) = [er, (1) + 1] — e£,(0),er(1) — /(1) = er, (1) — €5 (0) — 1
Hence er(0) —ep(1) = es(0) —es(1) +2--------- (09

Suppose fi is a labeling of type B, then ey, (0) = ey, (1) + 1. In that
case, ef, (0) + 1 = ef, (1). Then:
er(0) —es(0) = e, (0) — [ef, (1) + 1], er(1) — (1) = [er, (0) + 1] — €5, (1)
Hence [er(0) — ex(1)] +2 = [e/(0) — s (1)] --------- (1)

Suppose Py is a graph of Type Ag. If fi is a labeling of type A, then
es.(0) = ey, (1) + 1. In that case, er, (0) + 1 = eg, (1). Then:
er(0) — es(0) = ep, (0) — [es, (1) + 1), er(1) — es(1) = [eR, (0) + 1] —ef, (1)
Hence [er(0) —er(1)] +2=€7(0) —es(1)-------- (I1I)

Suppose fi is a labeling of type B, then e, (0) + 1 = ey, (1). In that
case, e, (0) = eg, (1) + 1. Then:
er(0) — e7(0) = [en, (1) + 1] — €, (0), er(1) — es(1) = ep, (1) — [e5,(0) + 1]
Hence er(0) — er(1) = [ef(0) —ep(1)] +2------ - {v)

Suppose Py is a graph of Type A4. If fi is a labeling of type A, then
es, (0) = ey, (1). In that case, ep, (0) + 2 = er, (1). Then:
er(0) — es(0) = er, (0) — €4,(0), er(1) — es(1) = [er, (0) + 2] — 4, (0)
Hence [er(0) —er(1)] +2=1e;(0) —es(1)--------- V)

Suppose fi is a labeling of type B, then
er(0) —ep(l) =[er(0) —ef ()] +2--------- (VI

Suppose P, ,, is a graph of Type B. If f is a labeling of type B for it,
then ey, (0) = ey, (1). In that case, eF, (0) = eF, (1) + 2. Then:
er(0) —es(0) = [er, (1) + 2] — 4,(0), er(1) —es(1) = er, (1) — e, (0)
Hence er(0) —er(1) = [ef(0) — ey (1)} +2--------- (VII)

Suppose fi is a labeling of type A for it, then ef, (0) = ey, (1) + 2. In
that case, e, (0) = e, (1). Then:
er(0) — e7(0) = er, (1) — €7, (1) — 2, er(1) — e(1) = ex, (1) — e (1)
Hence [er(0) —er(1)] +2=¢e4(0) —es(1)------- (VIII)

In the problematic case when Pym+1y is of Type As, in Ty, the existing
edge label condition is ef(0) + 1 = ey(1). Then er(1) = er(0) + 3 or
er(0) = er(1) + 1. In the first case, choose the labeling g for As in which
€4(0) = e4(1) + 3, while in the latter choose g such that e,(0) + 1 = e, (1).

In the case when Pym+1) is of Type Ag, we have ef(0) = es(1)+1. Then
er(1)+3 =er(0) or er(0)+1 = er(1). In the first case, choose the labeling
g for Ag in which e,(0) + 3 = e,4(1), while in the latter choose g such that
€g(0) = ey(1) + 1.

In the case when Pym+1 is of Type C, we have e;(0) = es(1). Then
er(l)+2=-er(0) or er(0) + 2 =er(1).
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In the first case, choose the labeling g for C in which e,(0) + 2 = e,4(1),
while in the latter choose g such that ey(0) = e4(1) + 2.

In defining the alternate labeling F for T,,, we may in all likelihood,
have disturbed the original vertex label balance so that | vp(0)—vp(1) |[< 1
may NOT be satisfied. We now determine vr(0) —vr(1) in order to restore
the vertex label balance.

From equations (3), (ii), (#ii) and (iv) we have

vr(0) = vp(1) = [v7(0) — vy ()] + (22 — X2) + (Y2 — 2) + [vR,, (0) — vR, (1))
— s 0) = v ()] e (A)

We now use this equation in what follows.

Case I : P, is of Type A, There are following possibilities:

Case 1: f(ur41) =1
Case 1(a) If m —k is even, then it is immediate that zo = X5 and y; = Y3,
so that from equation (A) it follows that
vF(0) - vp(1) = [v(0) —vs(1)] + [vr, (0) — vr, ()] = [v£,(0) — v, (1)] - - - (B)
Case 1(a)(i): f(ux) =0
Case 1(a)(i)(@): v4,(0) = vy, (1).

In Py we choose Fi such that vg (0) = vr, (1), Fr(ux) = 0 = Fr(uppr)-
Then from (B), we have vr(0) — vr(1) = vy (0) — vs(1). Hence the original
vertex label balance is maintained.

Case 1(a)(i)(8): v1,(0) = vy, (1) + 2.

In Py we choose Fy such that vg, (0) = vr, (1), Fe(ug) = 0 = Fi(ug41)-
Then from (B), we have vp(0) — vr(1) = v7(0) — vs(1). Hence the original
vertex label balance is maintained.

Case 1(a)(1)(7): v4,(0) +2 = vy (1).

In Pyx) we choose Fj such that vg, (0) = vk, (1)+2, Fi(ux) = 0 = Fi.(ug41)-
Then from (B), we have vr(0) — vr(1) = vy (0) — vy (1) + 2. Here the origi-
nal vertex label balance is not maintained. We come back to this case later.

Case 1(a)(ii): f(ux) =1

Case 1(a)(i)(@): v (0) = vy (1).

In Pyx) we choose Fi such that vg, (0) = vg, (1), Fr(uk) = 1, Fr(ug41) = 0.
Then from (B), we have vr(0) — vr(1) = v7(0) — vs(1). Hence the original
vertex label balance is maintained.

Case 1(a)(ii)(B): vz, (0) +2 = vy, (1).

In Py we choose F such that vg, (0)+2 = vp, (1), Fi(ux) = 1, Fx(ug41) =
0. Then from (B), we have vr (0) —vr(1) = vy(0) —~vy(1). Hence the original
vertex label balance is maintained.

Case 1(b): m — k is odd.

If m — k is odd, then z; = Y3 and y, = X>, so that from equation (A) it
follows that

vp(0)-vr (1) = [v7(0)~v; (W [vm, (0)—vm, (V]—[vy, (0)—vp, (V-2 - (O).
Case 1(b)(i): f(ux) =0
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Case 1(b)(i)(): vy, (0) = vy, (1)-
In P,y we choose Fj. such that vp, (0) = vg, (1)+2, Fi(ur) = 0 = Fi (ui41)-
Then from (C), we have vp(0) — vr(1) = v7(0) — vy (1). Hence the original
vertex label balance is maintained.

Case 1(b)(i)(8): vy, (0) = vy, (1) + 2.

In Py we choose Fy, such that v, (0) = v, (1)+2, Fi(ux) = 0 = Fi(ur+1)-
Then from (C), we have vr(0) —vF(1) = v7(0) — vy (1) — 2. Here the original
vertex label balance is not maintained. We come back to this case later.
Gase 1(b)(i)(): v, (0) +2 = vy, ().

In Py we choose Fi such that vg, (0) = vF, (1), Fr(ux) = 0 = Fi(ur41)-
Then from (C), we have vg(0) — vr(1) = v£(0) — v¢(1). Hence the original
vertex label balance is maintained.

Case 1(b)(ii): f(ux) =1

Case 1(b)(ii)(): vy, (0) = vy, (1).

In Py we choose Fy, such that v, (0) = vr, (1), Fi(ux) = 1, Fr(urs1) = 0.
Then from (C), we have vF(0) — vr(1) = vf(0) — vs(1) — 2. Hence the
original vertex label balance is not maintained. As before we come back to
this case later.

Case 1(b)(ii)(8): v£,(0) +2 = vz (1).

In P,s) we choose Fi such that vg, (0) = vp, (1), Fr(ug) = 1, Fi(ugs1) = 0.
Then from (C), we have vp(0) — vr(1) = v£(0) — v4(1). Hence the original
vertex label balance is maintained.

Case 2: f(u;.;+1) =0

Case 2(a): If m — k is even, we use equation (B) as before.

Case 2(a)(i): f(ug)=0

Case 2(a)()(a): 7, (0) = vy, (1)-

In P,y we choose F}, such that vg, (0) = vR, (1), Fr(u) = 0, Fr(uk1) = 1.
Then from (B), we have vr(0) — vp(1) = vy (0) — vs(1). Hence the original
vertex label balance is maintained.

Case 2(a)(i)(8): vs,(0) = vy, (1) + 2.

In Py we choose Fy, such that VE, (0) = vg, (1)+2, Fy ('u.k) =0, F}, (uk.,.l) =
1. Then from (B), we have vr(0) —vr(1) = v5(0) —vy(1). Hence the original
vertex label balance is maintained.

Case 2(a)(ii): f(ux) =1

Case 2(a)(ii)(): vy, (0) = vy, (1).

In Py we choose Fi such that vg, (0) = vg, (1), Fr(ux) = 1, Fr(ug41) = 1.
Then from (B), we have vr(0) — vr(1) = v4(0) — vy(1). Hence the original
vertex label balance is maintained.

Case 2(a)(i)(8): v1.(0) = v5,, (1) + 2.

In Py« we choose Fy such that vp, (0) = vp, (1), Fi(uzx) = 1 = Fi(ugs1)-
Then from (B), we have vr(0) —vr(1) = vy(0) — vy (1) — 2. Here the original
vertex label balance is not maintained. We come back to this case later.
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Case 2(a)(ii)(7): v1,(0) +2 = vy, (1)-

In P,y we choose Fi such that vg, (0)42 = vF, (1), Fr(ukx) = 1 = F(ug4)-
Then from (B), we have vr(0) — vr(1) = vy (0) — v¢(1). Hence the original
vertex label balance is maintained.

Case 2(b): If m — k is odd, from equation (A), it follows that

vr(0) — vr(1) = [vr(0) — v (1)] + [k, (0) — vr, (1)] = [v5, (0) — vy, (1)] +
2---(D)

Case 2(b)(i): f(ux)=0

Case 2(b)(1)(a): vy, (0) = vy, (1).

In Py we choose F} such that vg, (0)+2 = vg, (1), Fr(ux) = 0, F(ur41) =
1. Then from (D), we have vr(0) —vF (1) = v,(0)—v;(1). Hence the original
vertex label balance is maintained.

Case 2(b)()(B): vy, (0) = vy, (1) +2.

In Py we choose F}. such that vg, (0) = vr, (1), Fi(ur) = 0, Fr(ug41) = 1.
Then from (D), we have vg(0) ~ vp(1) = v7(0) — vy(1). Here the original
vertex label balance is maintained.

Case 2(b)(ii): f(ux) =1

Case 2(b)(ii)(@): vy, (0) = vy, (1).

In Py we choose Fy; such that vp, (0)+2 = vr, (1), Fi(ur) = 1 = Fi(ugq1)-
Then from (D), we have vr(0) — vp(1) = v£(0) — vs(1). Hence the original
vertex label balance is maintained.

Case 2(a)(i)(B): v, (0) = vy, (1) + 2.

In P,uy we choose Fj such that vg, (0) = vr, (1), Fi(ux) = 1 = Fr(ugqq).
Then from (D), we have vr(0) — vr(1) = v5(0) — vs(1). Hence the original
vertex label balance is maintained.

Case 2(b)(ii)(7): v1. (0) +2 = vy, (1).

In Pyx) we choose Fy, such that vg, (0)+2 = vg, (1), Fi(ur) = 1 = Fe(ug41)-
Then from (D), we have vp(0)~vr(1) = vy(0)—vs(1)+2. Hence the original
vertex label balance is not maintained. We come back to this case later.
Case II: If Pym+1) is of Type As

The discussion is similar to that of Case I

Case III: P, is of Type Ay

Case 1: f(ug41) =1

Case 1(a): If m — k is even, we can use equation (B).

Case 1(a)(i): f(ux) =0.

Case 1(a)(i)(a): vy, (0) = vp, (1) + 1.

In Py we choose Fj such that vg, (0) = vg, (1)+1, Fi(ux) = 0 = Fe(upq1)-
Then from (B), we have vp(0) — vp(1) = vy (0) — vp(1).

Case 1(a)(1)(8): v1, (0) + 1 = vy, (1).

In P,y we choose F} such that vg, (0) = vp, (1)+1, Fi(ux) = 0 = Fi(ug41).
Then from (B), we have vp(0)—vr (1) = vs(0)—vy(1)+2. Hence the original
vertex label balance is not maintained. We come back to this case later.
Case 1(a)(ii): f(ux) =1
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Case 1(a)(ii)(a): v5,(0) + 1 = vy, (1).

In P,y we choose Fy, such that vp, (0)+1 = vp, (1), Fr(ux) = 1, Fi(uk41) =
0. Then from (B), we have vr(0) — vp(l) = v5(0) — vp(1).

Case 1(b): If m — k is odd, we can use equation C.

Case 1(b)(i): f(ux) =0

Case 1(b)(i)(a): vy, (0) = vp, (1) + 1.

In P, we choose Fj such that v, (0) = vE, (1)+1, Fi(ux) = 0 = Fi(ug41).
Then from (C), we have vr(0)—vr(1) = vs(0)—vs(1)—2. Hence the original
vertex label balance is not maintained. We come back to this case later.
Case 1(b)(1)(8): vy, (0) + 1 = vy, (1).

In Py we choose Fj, such that vg, (0) = v, (1)+1, Fx(ug) = 0 = Fy (ug41)-
Then from (C), we have vp(0) — vr(1) = v7(0) — vyp(1).

Case 1(b)(ii): f(ux) =1

Case 1(b)(ii)(a): vy, (0) + 1 = vy, (1).

In Py we choose F such that vg, (0) = vg, (1)+1, Fi(ux) = 1, Fi(ug41) =
0. Then from (C), we have vr(0) — vr(1) = v5(0) — v (1).

Case 2: f(ug+1) =0.

Case 2(a): If m — k is even, we use equation (B) as before.

Case 2(a)(i): f(ux) =0.

Case 2(a)(i)(a): v, (0) = vp (1) + 1.

In Py we choose Fj, such that vp, (0) = vp, (1)+1, Fi(ug) = 0, Fi(ug41) =
1. Then from (B), we have vr(0) ~vr(1) = v7(0) —vs(1). Hence the original
vertex label balance is maintained.

Case 2(a)(ii): f(ux) = 1.

Case 2(a)(ii)(a): vy, (0) = vp (1) + 1.

In Py we choose F} such that v, (0)+1 = vp, (1), Fr(ur) = 1, Fe(ug41) =
1. Then from (B), we have vr(0) — vr(1) = v;(0) — vp(1) — 2. Hence the
original vertex label balance is not maintained and we come back to this
case later.

Case 2(a)(il)(8): v7,(0) +1 = v, (1).

In P,y we choose F, such that vg, (0)+1 = vg, (1), Fi(ux) = 1 = Fi(ug+1)-
Then from (B), we have vr(0) — vr(1) = v7(0) — vs(1). Hence the original
vertex label balance is maintained.

Case 2(b): If m — k is odd, we use equation (D).

Case 2(b)(i): f(ux) =0

Case 2(b)(i)(a): vy, (0) = vy, (1) + 1.

In P, we choose Fy such that vg, (0)+1 = vg, (1), Fr(ux) = 0, Fi(uk41) =
1. Then from (D), we have vg(0) —vr (1) = vy (0)—vy(1). Hence the original
vertex label balance is maintained.

Case 2(b)(ii): f(ux) =1.

Case 2(b)(ii)(a): vy, (0) = vs (1) + 1.

In P,y we choose F;. such that vg, (0)+1 = vg, (1), Fi(ur) = 1 = Fi(ury1).
Then from (D), we have vp(0) — vp(1) = v5(0) — vy (1). Hence the original
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vertex label balance is maintained.

Case 2(b)(ii)(8): v£,(0) +1 = vy, (1).

In P,) we choose Fy. such that vr, (0)+1 = vg, (1), Fi(ux) = 1 = Fi(ug41)-
Then from (D), we have vr(0)—vF(1) = v7(0)—vs(1)+2. Hence the original
vertex label balance is not maintained. We come back to this case later.
Case IV: If Pym+1) is of Type B

The discussion is similar to that of Case III.

We now take a look at those problems where we were unable to restore
the original vertex label condition. The problematic cases can be classified
as: (1) vr(0) — vr(1) = v7(0) — vs(1) — 2, F(umy1) = 1.

(2) vr(0) — vr(1) = v4(0) — vs(1) + 2, F(um41) = 0.
In problem (1),

(i) If v;(0) = vs(1), then vp(0) + 2 = vp(1).

(ii) If vs(0) = vs(1) + 1, then vp(0) + 1 = vp(1).
(iii) If v4(0) + 1 = vy (1), then vp(0) + 3 = vp(1).
Likewise in problem (2),

(i) If v7(0) = vy (1), then vr(0) = vr(1) + 2.

(ii) If v£(0) = vy(1) + 1, then vp(0) = vp(1) + 3.
(iii) If v7(0) + 1 = vy (1), then vp(0) = vp(1) + 1.

Rather than trying to restore the vertex label balance for the above
cases in T, we choose an appropriate labeling for Pym«+1).

We will be in a position to do this if we have the following labelings for
graphs of Type As, Ag and C.

Labelings required for graphs of Type As.
(1) v7(0) = vp(1) + 1,€4(0) + 1 = e4(1), f(u) = 1
(i) v7(0) + 1 = vy(1),e7(0) + 1= er(1), f(u) =0.
(iif) v7(0) = vy (1) +1,€7(0) = €s(1) + 3, f(u) = 1
(iv) v£(0) + 1 = vy(1),e4(0) = ey (1) + 3, f(u) = 0.

Labelings required for graphs of Type Ag.
(1) vs(0) =vp(1) +1,e4(0) = ey (1) + 1, f(u) = 1
(i) v(0) +1=1vy(1),e(0) = es(1) +1, f(u) = 0.
(i) v (0) = v7(1) +1,e4(0) + 3 =e;(1), f(u) = 1
(iv) v7(0) + 1 = vp(1),e7(0) + 3 = e4(1), f(u) = 0.

Labelings required for graphs of Type C.
(i) v7(0) = v7(1) +2,e7(0) = e/(1) +2, f(w) = 1
(ii) vr(0) = vy (1) +2,e£(0) + 2 = ef(1), f(u) = 1
(iii) 07(0) +2 = vy(1),e7(0) = /(1) +2, f(u) = 0
(iv) v7(0) +2 = v7(1),e(0) + 2 = e/(1), f(u) = 0.

The required labelings for graphs of Types As, A¢ and C are already
available. Hence in these cases also, there is a cordial labeling of Pym+1).

Problems of Type ®.

We now deal with those cases in which | v7(0) —v(1) |> 1,
| e7(0) — ef(1) |> 1. We list these cases below:
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Condition on vertex and edge
labels in T (g1) 9(Um+1) | Pemtn
T.» is non-Eulerian
0 F 1= 15, (1) 0 C
€9 (O) =€q (1)
vy, (0) = v, (1) +1 1 (o]
€9 (0) =€g (1)
In the above case that is when T}, is non-Eulerian and Pym+1) is of Type
C, then use the alternate labeling F of Tr,. Then either
vp(0) = vr (1) = vy(0) —vy(1) or
vr(0) — vp(1) = v4(0) — vs(1) — 2, F(um41) = L5 0r
vr(0) — vr(1) = v4(0) — vr (1) + 2, F(um41) = 0.
To resolve these problems we need the following labelings for graphs of
Type C : (i) vs(0) = vs(1),€7(0) = es(1) +2
(ii) v7(0) = vs(1),e7(0) +2 = (1)
(iii) v7(0) = vs(1) + 2,e4(0) = er(1)+2
(iv) v£(0) = vs(1) +2,€7(0) +2 = es(1)
(v) v7(0) +2 = vyg(1),e7(0) = es(1) +2
(vi) vs(0) +2 = vy(1),€4(0) + 2 = es(1)
Since, we have these labelings for graphs of Type C, in this case t00, Pym+1)
is cordial. Hence the proof.
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