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ABSTRACT. We examine decompositions of complete graphs with an even
number of vertices into isomorphic spanning trees. We develop a cyclic
factorization of K2, into non-symmetric spanning trees. Our factorization
method are based on flexible g-labeling and blended labeling, introduced by
Froncek. In this paper we presente several infinite classes of non-symmetric
trees which have flexible g-labeling or blended labeling.

1. INTRODUCTION

Let G be a graph with at most n vertices. We say that the complete
graph K,, has a G-decomposition if there are subgraphs Gy, G, Ga, ..., G,
all isomorphic to G, such that each edge of K, belongs to exactly one G;.
Then we say that G divides Ky, and write G|K,,. The decomposition is
cyclic if there exists an ordering (z;, Z2, ..., 2,) of the vertices of K, and
isomorphisms ¢;,i = 1,2, ...,s from Go to G; such that ¢;(z;) = z;y; for
every j = 1,2,...,n, where the subscript are taken modulo n. If G has
exactly n vertices and none of them is isolated, then G is called a factor
and the decomposition is called G-factorization of K,,.

Decompositions and factorizations of K, into trees were studied by
several authors, but to our surprise, little is known about factorizations of
K>, into isomorphic spanning trees, other than Hamiltonian paths. No-
tice that K2,4; cannot be factorized into spanning trees T5,41, because
|E(T2n41)| = 2n does not divide |E(K2n41)| = n(2n + 1).

Many factorization methods are based on graph labelings, where a
labeling of G with at most 2n + 1 vertices is an injection A : V(G) = S,5 C
{0,1,...,2n} and labels of vertices u,v (denote A(u), A(v)) induce uniquely
the label ! of the edge e = uv. If a graph G has n vertices and labels of
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vertices are 0,1,...,n — 1 then we define the label (also called the length) of
an edge e = wv as l(e) = min{|A\(v) — A(v),n — |A(w) — A(v)|}.

Eldergill [1) introduced a necessary and sufficient condition for factor-
ization of Ky, into symmetric spanning trees. In [1] a symmetric spanning
tree is a tree T with an edge e = uv and an automorphism o : V(T') = V(T)
such that a(u) = v and a(v) = u. He used symmetric p-labeling, which is
a special case of p-labeling introduced by Rosa in [5).

We focus our research on factorizations of K, into non-symmetric
spanning trees. We use new types of vertex labelings, namely flezible
g-labeling (see Definition 2.1) and blended p-labeling (see Definition 2.3).
These labelings were introduced in [2]-[4].

In this article, we investigate the relationship between flexible g-
labeling and blended p-labeling. We also study an infinite class of the trees
called brooms and non-symmetric trees with diameter 4.

2. DEFINITIONS AND NOTATIONS

Fronéek in [3] proved that every tree on 2n vertices with a flexible
g-labeling admits 2-cyclic factorization of K, for n odd. For n even a
modification of flexible g-labeling has to be used (see [2]). In [4] Fronéek
proved that every tree with blended p-labeling admits bicyclic factorization
of Kap, again for n odd.

We present here the definitions of these notions.

Since a vertex labeling is an injection, we always identify a vertex
u € V(G) with its label A(u) € S in this paper.

Definition 2.1. Let G be a graph with 2n—1 edges and at most 2n vertices
and

A:V(G) = {0,1,2,...,2n — 1} be an injection. ) is called flezible q-labeling
if

(i) there is exactly one edge of length n,

(ii) for each m, 1 < m < n — 1, there are exactly two edges o length m,
and

(iii) if (r,7 +m) with 1 <m < n—1 is an edge of G, then the other edge
of length m in G is (r+2s+1,r+m+2s+1) for some 5,0 < s < n—1,
where the labels are taken modulo 2n.
If (r,r + m) is an edge of length m, then the vertex r is called the

origin and the vertex r + m is called the terminus.

Definition 2.2. Let G be a graph with at most n vertices. We say that the
complete graph K, has a 2-cyclic G-decomposition if there are subgraphs
Go, G1, ..., G, all isomorphic to G, such that each edge of K, belongs
to exactly one G; and there exists an ordering (z;, Z2, ..., z) of vertices
of K, and isomorphism ¢ from G; to Gi41, ¢ = 0,1,...,s — 1, such that



¢(z;) = x4 for every j = 1,2,...,n, where the subscripts are taken modulo
n.

Definition 2.3. Let G be a graph with 2n — 1 = 4¢ + 1 edges,V(G) =
VWwUW,oNW =0 and |Vo| = |Vi| = 2t + 1. Let A be an injection,
A: Vi = {05,1;,2;...,(2t)i},% = 0,1. We define the pure length of an edge
(23, ¥:) with z;,y; € V;,1 € {0,1} as Lis(zi, ;) = min{|A(z:) — Mws)|, 2t +
1—|A(=:) — A(w:)|} and the mized length of an edge (2o, 1) as lo1(%o,11) =
A1) — A(zo) modulo 2t + 1 for o € Vp,y; € V1. We say that G has a
blended p-labeling if

(i) {lii(xir yi)l(xis yc') € E(G)} = {1: 2, -"st} fori=0,1,

(ii) {IOI(an yl)l(mo:yl) € E(G)} = {Oa 1,.., 2t}'

The edges (z;,y;) are called pure edges or (00)-edges for i = 0 and

(11)-edges for i = 1. The edges (o, y1) are called mized edges or (01)-edges.

Definition 2.4. Let G be a graph with at most 4t+2 vertices. We say that
the complete graph Ky has a bicyclic G-decomposition if there are sub-
graphs Gy, Gy, ..., G, all isomorphic to G, such that each edge of Ky;42 be-
longs to exactly one G; and there exists an ordering (z;, z2, -.., Z2t41,¥1, Y2,
«ey Y2141 ) Of the vertices of Kq;42 and isomorphisms ¢;,i = 1, 2,..., s from Gy
to G; such that ¢;(z;) = zi4; and ¢:(y;) = yiyj forevery j =1,2,...,2t+1,
where the subscripts are taken modulo 2k + 1.

3. FLEXIBLE ¢-LABELING AND BLENDED p-LABELING

In this section we present and prove useful lemmas and theorems,
which we will need later.

Theorem 3.1. Let T be a tree on 2n vertices, n is odd, which allows
flexible q-labeling and V(T') = Vo U V1, where Vy = {0,2,..,2n -2}, 1 =
{1,3,...2n — 1}. Then 3=, y, deg(i) = X;cy, deg(j) = 2n - 1.

Proof. Let
@ D deg(j) =m, ) deg(i) = k,m # k.

JEWN i€Vo

We know that if T has a flexible g-labeling, then there exists a
2-cyclic T-factorization of K5,,. Denote the factors of this factorization
T4, T, ..., Tn-1, where T, = T for every s € {0,1,...,n — 1}.

If i is an arbitrary vertex from T, then the vertex i 42s is its copy in
T;, with the same degree and parity. Further it holds that 3”1 degr, (i) =
2n — 1 = degk,, (). It follows that n 3 ..y degr(i) = 3 e, deg,. (§)
and n 3 .y, degr(i) = X;cv, degrsa(7) and after substitution from (1)

we obtain nk = 3 ..y, degr,, (i), nm = ¥ ;c, deg,, (5), and therefore
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Yiev, 4e9162. () # X jcv, d€gK,. (§), which is not true, because the sums
of degrees of all even and odd vertices in K5, cannot be distinct integers. O

Lemma 3.2. Every vertez in a tree T on 2n vertices with a flexible q-
labeling must be incident to at most (n — 1)/2 edges of even lengths.

Proof. Let n =2t+1 and v € V(T) be incident to m edges of even lengths,
m > t, and let without loss of generality A(v) be even. Since G contains
exactly ¢ edges of different even lengths, v has to incident to at least one
pair of edges of the same even length but then two edges in E(T') with the
same length have origins of the same parity, which is impossible, because
T has a flexible g-labeling. O

Theorem 3.3. A tree T with 2n — 1 edges for an odd n has a flexible
g-labeling if and only if it has a blended p-labeling.

Proof. We have T with 2n —1 = 4t +1 edges and with a blended p-labeling.

Let V(T) = VoUV4, Vo = {00, Lo, -, (2t)o} and Vi = {0y, 11, .., (26):}
and ! be a length of an edge in E(T').

Now we define a bijection ¢ on V(T') such that ¢(ip) = 2i for ip € Vp
and ¢(41) = 2i + 1. It is obvious that ¢ is an automorphism. We denote
this automorphic tree T”. If we show that T" has a flexible g-labeling, the
proof is done.

Now we compare lengths of corresponding edges from E(T) and
E(T"). Let us note that !’ is a length of an edge in T".

(a) Let 29,70 € Vo,i=3j +m,m > 0.
Ifm < t, then l(i0,j0) =t —j =i—i+m =m and I'(¢(io), v(jo)) =
I'(2%,2( — m)) = 2m,
If m > t, then (%o, jo) = (%0, (i —m)o) = 2t+1—(i—(i—m)) = 2t +
1—-m and U'(p(%0), ©(jo)) = U'(i,i—m) = 4t+2—(2i—2(i—m)) = 4t+2—-2m.

(b) Let i1,j1 € V1,i=j+m,m >0.

Ifm <t,then l(iy, 51) = i-j =i—(i—m)=mand U'(p(i1), (7)) =
V(2+1,2j+1) =1(2+1,2 —2m+1) = 2i + 1 - (2 — 2m + 1) = 2m.

Ifm > t, then I(i1,51) = (81, —m)1) =2t + 1 — (f=(GE-m)) =
2t+1—-mand lI'(p(i1), (1)) =U'(21+1,2j+1) =1'(2i +1,2i - 2m+1) =
4+2-(2i+1-(2i-2m+1)) =4t+2-2m.

The images of the edges (u,v), where u,v € Vg (or u,v € V}), are all
edges with the lengths 2, 4,...,2t and their origins are even (or odd).

(c) Let z € Vo,y e}
We describe every edge (z,y) of length m,0 < m < 2t either

@) (io, (i + m)1),i < 2t -1
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or

(3) (G-m+2t+1)o,51), <m—1.

First we show that an image of an edge of length ¢ from T has length
2t+1in T,

(i) I (io, (i+1)1) € E(T), then I'(p(io), p((i+1t)1)) = 1'(2i,2i +2¢+1) =
204+ 2t+1-21=2t+1

If ((F +t+1)o,51) € E(T), then U(p((7 —t + 2t + 1)o), 0(51)) =

P(2 -2+ 4t +2,27+1) =1'(2 ~ 26,2 +1) = 2j + 1 - 2j + 2t = 26 + 1.

Then we show that images of two edges from T of lengths ¢ +m and
t —m, where 0 < m < t, have the same length in T".

(ii) Let the edges from T of lengths ¢ + m and ¢t — m be of type (2).
Then (ig, (i + t + m)1) € E(T) and (jo, (j +t — m)1) € E(T).
U(p(io), (i +t+m)y) = I'(21, 20+ 2t +2m + 1) = 4t +2 — (2 + 2t +

2m+1—-2i)=2t—-2m+ 1.
U(p(o),p((G +t—m)1)) =1'(25,25 + 2t —2m +1) = 2j + 2t - 2m +
1-27=2t-2m + 1.

Let the edges from T of lengths ¢ + m and ¢ — m be of type (3).
Then ((i—(t+m)+2t+1)o,%1) € E(T) and ((j—(t—m)+2t+1)o,51) €
E(T).
Uip(G—(E+m)+2t+1)0),0(31)) =V (21— 2t —2m+4t+2,2i+1) =
U'(2—(2t+2m),2i+1) = 4t +2— (2i + 1 — (2i — (2t +2m))) = 2t — 2m + 1.
U(o((G—(—m)+2t+1)0), (1)) = U'(25 —2t+2m+4t+2,25+1) =
(25— (2t -2m), 2 +1) =2j+1— (2 — (2t —2m)) =2t —2m + 1.

Notice that the images of the edges of length t+m in both cases have
an odd origin, because the absolute value of the difference of the labels of
the endvertices of an edge (2¢,2¢ + 2t + 2m + 1) for m > 0 is greater
than 2t + 1 and therefore its origin is the vertex with greater label, namely
2(i + t + m) + 1. For the other edge, (25 — (2t + 2m), 25 + 1), the origin is
2§ + 1. And the images of the edges of length ¢ — m in both cases have an
even origin, because the absolute value of the difference of the labels of the
endvertices of an edge (2, 2i + 2t +1 — 2m) for m > 0 is less than 2¢+1 and
therefore its origin is the vertex with less label, namely 2i. For the other
edge, (27 — (2t — 2m),2j + 1), the origin is 2j — (2t — 2m). Hence for each
length I’ € {1,3,...,2¢t — 1} there are exactly two edges in T", which have
the length equal to ! and moreover these two edges have the origins of the
different parities. For [ = 2¢ + 1 there is exactly one edge in T” of length !.
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It follows that a tree T' has flexible ¢-labeling, which is generated
by the blended p-labeling in T'. Since the mapping ¢ is an automorphism,
there exists ¢~! : V(T") = V(T') such that it induces a blended p-labeling
in T from a flexible g-labeling in 7" and the proof is done. O

4. BRoOMS

A caterpillar is a tree in which each edge has at least one end-vertex
in a single path (called spine).

The caterpillar with n vertices consisting of a star K and a path
P,_i (where one endvertex of F,_; is identified with the central vertex
of K, ) is called the broom and denoted B(n, k). In other words, to con-
struct B(n, k), take a path P,_; and join k isolated vertices to one of the
endvertices of Py _.

Theorem 4.1. A broom B(4t+ 2,s), where s > t+2,t > 2, does not allow
a flexible g-labeling.

Proof. Suppose that a broom B(4t + 2,t + 2) has a flexible g-labeling and
V(B) = VoUW, where 1V = {0,2,...,4t}, V1 = {1,3,...,4t+1}. Denote the
vertex of degree £ + 3 without loss of generality by 0. Every other vertex in
B has a degree either 2 or 1.

According to Theorem 3.1 it holds that 3=, deg(i) = 3¢y, deg(y)
= 4t + 1. Thus in B there is one even vertex, namely 0, of degree ¢ + 3,
t — 3 even vertices and 2t odd vertices of degree 2, ¢t + 3 even vertices and
exactly one odd vertex of degree 1.

Vertex 0 has ¢ + 2 neighbors of degree 1 and at most ¢ of them can
be even (see Lemma 3.2). Hence, at least two of them have to be odd, but
in B there is exactly one odd vertex of degree 1, which is a contradiction
and the proof is done.

For s > t + 2 the proof is essentialy the same. O

Theorem 4.2. Every broom B(4t + 2,t) admits a blended p-labeling for
t>2.

Proof.

(i) First suppose that ¢ is odd, V(B) = Vo UV; and Vj = {0p, 1o, ---,
(2t)o}, Vi = {01,11,...,(2t),}. We construct the path P = tp,0q,
(t —1)gs 10, (¢ — 2)g5 20, s (552 )0, (452 )0, Which contains ¢
(00)-edges of lengths 1,2,...,¢ and join it to the path P' = tg, (2t),,
(t + 1)0) (2t - l)b (t + 2)07 (2t - 2)1: ey (&T_I)U: ('3%‘-—1)11 (3_?2)0’
()1, ... (28 — 2)g, (£ + 2);, (28 — 1)y, (t + 1),,(2t)g, 81 which con-
tains 2¢ + 1 (01)-edges of lengths 0,1, ..., 2t - 1, 2¢.

Further we attach a star with the central vertex in ¢; and the edges
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(tlaol), (tla 11)7 eeey (th (t - 1)1)
to obtain the broom with a blended p-labeling.

(ii) For ¢ even the construction is essentialy similar and therefore we de-
scribe it very briefly. We construct the path P = ¢g, 0, (t — 1), 1o,
(t - 2)0v 20, -y (151)07 (%)0 and the Pa-th P = to, (2t)11 (t + 1)01
(2t = 1)y, (¢ +2)g, (26 = 2)1, -1 ()1, (R0, s (28— 2y, (£ +2),
(2t - l)m (t + 1)1: (2t)o: t.
Then we attach the star with the central vertex in ¢; and the edges
(t1,01), (t1, 11), -, (81, (¢ — 1)) O

Corollary 4.3. Every broom B(4t + 2,8), where 8 < t, allows a blended
p-labeling for t > 2.

Proof. We construct the paths P and P’ as in the previous proof. We
join to t; the edge (t1,0:) and we attach to 0, the star with the edges
(01, (¢ — 1),), (01, (—2)1), ..., (01,11). We obtain the broom B(4t+2,t—1)
with a blended p-labeling.

To construct B(4t + 2,¢ — 2) we join the edges (¢1,01), (01, (t — 1))
to P and P’ and we attach the star with edges ((t — 1),,11),..., (¢ — 1),
(t—2),)

For B(4t+2,t—3) we join to P and P’ the edges (¢1,01), (01, (¢ — 1),),
((t—-1);,1,) and we attach the star with edges (11,(¢ — 2)1),(11,(¢ —
31); - (11,21).

In general if we continue in this algorithm we obtain step by step all
brooms B(4t +2,8) for s=t-1,t-2,...,3,2. O

Open problem. Does the broom B(4t+2,t+1) admit a blended p-labeling
fort > 2?2

We have constructions of B(4t + 2,t + 1) for ¢ = 2,3,4,5, 6, but we
are so far unable to generalize them.

Constructions 4.4.
(i) A broom B(10, 3) contains a star with the edges
(0o, 10), (00, 30), (0o, 11) and path P = 0p, 0y, 21,40, 31,41, 20.
Remark: This construction was introduced already by Eldergill in [1].

(ii) A broom B(14,4) contains a star with the edges (0g, 30), (0o, 50), (0o,
60)1 (001 11) and the pa.ths P= 401 611 101 511 201 Pl = 001 017 41) 21’31x
which are joined by the edge (40, 31).

(iii) B(18,5) contains a star with the edges (0g, 50), (0o, 60), (0o, 7a), (0o,

80), (0o, 1;) and the paths P = 49,61,30,71,20,81,10 and P' =
09, 0y,51,21,41,31, which are joined by the edge (40,31).
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(iv) B(22,6) contains a star with the edges (0o, 6o), (0o, 70), ---, (0o, (10)o),
(00: 11) and the pa'ths P= 101 (10)1, 201911 30a 81:40) 717 S0 and P' =
0o, 01, 61,24, 51, 31,41, which are joined by the edge (5¢,41)-

(V) B (26, 7) contains a star with the edges (00, 1p), (Oo, 30), (0o, 50), (0o,
70) (00, 90), (0o, (11)o), (0o, 01), (0o, 11), the paths P, = (12)g,21,(10)0, 41,
80, 61, P2 = (12)1, 20, (10)1, 40, 81, 60, 51 P3 = (12)1, (11)1, 71, 91, 31, 61 and
extra edge (0,,5;). O

5. CATERPILLARS WITH DIAMETER 4.

In this section we present complete characterisation of caterpillars
with diameter 4 which allow a blended p-labeling.

Before we establish necessary and sufficient conditions for the exis-
tence of a blended p-labeling for caterpillars with diameter 4, we have to
present several lemmas.

Lemma 5.1. A tree T on 4t + 2 vertices has a blended p-labeling with
V(T) = VoUW, Vg = {00,10, ..., (2t)g} and Vi = {04,14,...,(2t),} if and
only if a tree T on 4t + 2 vertices has a blended p-labeling with V(T) =
Vo' u ‘,1’; %I = {(0 + k)O, (1 + k)Os ooy (2t + k)o}: I,2II =W for k <2t.

Proof. We denote T' a tree T, where V(T) = Vp' UV;'. It is easy to see
that the corresponding edges (i, jo) € E(T), ((i + ko, (j + k)o) € E(T")
and (3, 51) € E(T), (i1,51) € E(T") have the same lengths.

Let (i0,51) € E(T), (i + 1)0,51) € E(T*), where T* =T", for k = 1.
(i) i < j,thenl(ip,j1)=j—i=m>0and (i +1)o, /1) =j—i—1=
m-—12>0.
(i) Ifi > 7, then l(io,51) =2+ 1+ (j—i)=m > 0and I((i + 1)o, 1) =
2+14+(f—-)-1=m~-12>0.
(iii) If £ = j, then I(é0,51) = I(d0,%1) = i —¢ = 0 and I((i + 1)o,51) =

H{E+ 1)g,01)=i—i—1=2L.

We see that each image of an edge from T with length m > 0 has the
length m —1 > 0 in T* and an image of an edge with length 0 from T is
the longest edge in T*. Thus T* has a blended p-labeling and if we repeat
this procedure k-times we prove that T” has a blended p-labeling too.

Let us notice that every implication in this proof holds also in the
opposite direction and therefore the proof is complete. O

This result allows us to simplify considerations.

Corollary 5.2. Let T be a tree with a blended p-labeling A and z,y be
arbitrary vertices of T. Then there exists a blended p-labeling N' such that
N(z) =0 and N (y) = 0;.
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Lemma 5.3. Every caterpillar R on 4142 vertices with a blended p-labeling
and diameter 4 contains a vertez i such that deg(i) = 2t + 1.

Proof. Let u,v,w be internal vertices of spine of a caterpillar R. Suppose
that deg(u) = 2t — r + 1, deg(v) = r + 8 + 1, deg(w) = 2t — s + 1, where
0<r<2,0<s< 2 and V(R) =VWUW, Vh = {0,2,...,4t},; =
{1,8,...,4t +1}. f u,v,w € Vp then 3 .y, deg(z) is less than 4t + 1 and
it contradicts Theorem 3.1. For u,v,w € V; the consideration is the same.
Hence, precisely two of them have to belong to V5 and one to V; or vice
versa.

(@) Let u,v € Vo. 30 ey, deg(y) =2t —r+1)+(r+s+1)+2t—-1=
4t +s+1 and so s = 0. Thus the vertex w has the degree 2¢ + 1.
For v,w € Vj the proof is essentialy the same (in this case it holds
that » = 0 and deg(u) = 2t + 1) and therefore it can be omitted.
For u,v € V3 (or v,w € V;) the proof is the same.

(b) Let u,w € Vo. Y v, deg(y) (resp.3" ey, deg(z)) = (26 —r +1) +
(2t—s8+1)+2t—1=6t—r—8+1=4t+1 and therefore r +s = 2¢.
Hence, the vertex v has the degree 2¢ + 1.

For u,w € V; the proof is the same. O

It follows that for 1 < s < 2t we can further consider only the
caterpillars with the spine u, v, w, which satisfy exactly one of the following
necessary conditions:

(i) The vertices u,v belong to V; and w belongs to V; for ¢ # j, where

i,J € {0,1}, and deg(v) = 2t — s+ 1,deg(v) = s+ 1,deg(w) = 2t +1.

(i) The vertices u,w belong to V; and the vertex v belongs to Vj for

i # j, where i,5 € {0,1}, and deg(u) = s + 1, deg(v) = 2t + 1,

deg(w) =2t —s+1.

A caterpillar in which one endvertex of the spine is of degree 2t + 1
will be called (2t —s + 1,8+ 1,2t + 1)-type caterpillar or e-type caterpillar.
A caterpillar in which the central vertex is of degree 2t 4+ 1 will be called
(s+ 1,2t + 1,2t — s + 1)-type caterpillar or c-type caterpillar.

Lemma 5.4. An e-type caterpillar R, where s = 1, does not allow a blended
p-labeling.

Eldergill in [1] proved that such caterpillars do not factorize K>, for
every n > 3 and thus also do not allow a blended p-labeling.

Lemma 5.5. Every e-type caterpillar, where 1 < s < 2t, allows a blended
p-labeling.

Proof. By construction.
(a) Let s > t,w =0p,v=01,u= (¢ + 1);.
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(Step 0) Assume that s = ¢+ 1. Then our caterpillar, called R;, contains
(i) (00)-edges (0o, (¢t + 1)o), (0o, (t + 2)o), ---, (0o, (2t)o) with all lengths

t,t-1,..,1

(i) (01)- edg% (00,01), (00, 11), (00, 21), -, (0o, £1) and (1o,01), (20,01),

«ey (g, 01) with all lengths 1,2,...,¢ and 2t,2t—1,...,t+1,

(iii) (11)-edg°£ (01, (¢ +1)1) and ((t + 11, (8 +2)1), (¢ + 1), (€ + 3)1),
weey (( + 1)1, (2t)1) with all lengths ¢ and 1,2, ...,t —
We see that we have obtained a caterpillar with a blended p-labeling.

In the following steps, where we construct the caterpillars Ry, R3, ...,
R;_; with blended p-labelings, the edges from the cases (i) and (ii) will
remain the same and we call them fized edges.

(Step k) Let s = t+ k,1 < k < t. The caterpillar R; contains all fixed
edges from Step 0 and the edges (04, (t + 1)1), (01, (¢ + 2)1), ..., (01,
(t+k—1),) with lengths ¢, — 1,...,t — k + 2. Further R; has
the edges (01, (t + k)1) and ((¢ + k)1, (¢ + &k + L)1), ((t + k)1, E+k+
2)1), - (¢ + k)1, (2t),) with lengths t—k+1and 1,2, ..., —k. Thus
Ry has a blended p-labeling for every k, where s =t + k,0< k < t.

(b) Let s £ t,w = 0p,u = 0;,,0 <m <t—1/2fortodd, 0 < m <
(t —2)/2 for ¢t even, v = (¢t + 1); in Step 2m and v = t; in Step
2m +1.

(Step 2m) The caterpillar Ry, contains fixed (00)-edges and (01)-edges (these
edges are independent to m) (0g,%o), (0o, (¢ + 2)o), (0o, (t + 3)o), -.-,
(00, (2t)o) with lengths t,t — 1, veey 1, and (00, 11), (00, 21), ceey
(0o, 1), (0o, (¢ + 1)1), ((¢ + 1)o, (t + 1);, with lengths 1,2, ..., ¢,¢+1,0,
and (10, 01), (20,01), .-, ((t = 1)g,0;) with lengths 2¢,2¢ —1,...,¢t + 2,
and finally "moving” (11)-edges (these edges are dependent to m)
(1) (01,(t+1)1),(01,(t+2)1),..., (01, (£ + m + 1);) with lengths ¢,¢ —
1,..,t—-m,
(i) (01, (2t)1), (01, (2t — m + 1);) with lengths 1,2,...,m,
(111) ((t + 1)13 (t +m+ 2)1)a ((t + 1)1’ (t +m+ 3)1)a ] ((t + 1)1)
(2t — m),) with lengths m+ 1,m +2,..,t ~=m — 1.

Remark :
- the edges (ii) have to be omitted for m = 0.
- the edges (iii) have to be omitted for m > (¢ — 2)/2.

(Step 2m + 1) In this step there remain all fixed edges from the previous step, except

for the edges (0o, %o) and ((t + 1), (¢ + 1)1). They are replaced by
the edges (0g, (¢ + 1)o) and (¢o,21).
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Further the caterpillar Rym41 contains "moving” (11)-edges

(iv) (01,%1), (01, (t+2)1), (01, (t +3)1),--, (01, (¢ + m)1) and (Oy,
(t + m + 1)) with lengths t,t - 1,t - 2,...,t —m,

(v) (01, (2t)1), (04, (2t — 1)), ..., (01, (2t — m);) with lengths 1,2,...,m+
1, and

(vi) (1, +m+2)1), (1, (E+m+3)1),..., (81, (2t = m — 1)1) with
lengths m +2,m+3,...,t = m — 1.

Remark :
- an edge (04, (¢t + m + 1);) from (iv) has to be omitted for m = 0.
- the edges (vi) have to be omitted for m > (¢ - 3)/2.

Hence, every caterpillar Ra,,; and Ra;,41 has a blended p-labeling for
each m. Finally for ¢t odd the last step of our construction is 2m, where
t = 2m + 1 and for ¢ even the last step is 2m + 1, where ¢t = 2(m + 1).
Hence, the edges (iii) and (vi) are always omitted in the last step of our
construction. Now the proof is complete. O

Lemma 5.6. Every c-type caterpillar allows a blended p-labeling.

Proof. By construction.
We have a c-type caterpillar R with the spine P = wu,v,w and
deg(u) =8+ 1, deg(v) =2t + 1, deg(w) =2t — s+ 1.

Let u=8;,v=0p and w = 0;.
First we construct the edges of the star with the central vertex Qp.
(i) (00)-edg&e: (007 (2t)0)1 (001 (2t - 1)0): =0y (001 (t + 1)0)'

(ii) (01)'edg%: (00, Ol)v (001 11)’ bt} (00, (t - 1)1)1 (00’ t1)°
(00)-edges have all lengths 1,2,...,¢ and (01)-edges have all lengths
0,1,2,..1t.

Further we construct the edges of the star with the center 0,.

(iii) (01)-edges: (01, 1o), (01, 20), ---; (01, to),

(iv) (11)-edges: (01,(2t),),(01,(2t —1)),...,(01, (¢t + s+ 1),;). (01)-edges
have all lengths 2¢,2¢t — 1,...,£ + 1 and (11)-edges have all lengths
1,2,..,t—s.

At last we construct the remaining (11)-edges (s1,(t+ 8),), (51,
(t+s8~-1),),...,(81,(t +1),) which have all lengths t,t —1,...,t — s+ 1.

Remark :
- the edges (iv) must be omitted for s = .

Thus every c-type caterpillar with diameter 4 allows a blended p-
labeling. O
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The following theorem is a direct consequence of the previous lem-
mas.

Theorem 5.7. Let R be a caterpillar with 4t + 2 vertices and diameter
4. Let v be the central vertex of the spine and u,w the endvertices of the
spine. Then R allows a blended p-labeling if and only if either deg(u) =
2t + 1,deg(v) = 8+ 1,deg(w) = 2t ~ s+ 1 and 2 < 3 < 2t or deg(u) =
8+ 1,deg(v) =2t+ 1,deg(w) =2t —3+1and1 <5< 2t.

6. OTHER RESULTS

In the previous section we have completely characterized all cater-
pillars with diameter 4, which allow a blended p-labeling, but we know
nothing about the trees of diameter 4, which are not caterpillars. These
trees are called lobsters.

A lobster is a tree such that after deleting all vertices of degree 1 we
obtain a caterpillar, which is distinct from a path.

Therefore a lobster with diameter 4 is basically a star K m, where
m > 2, where to the vertices of degree 1 there are joined the stars K} ,,,
Ki,rpy .0y Ka,r,, and there exist at least three different subscripts i,5,k €
{1,2,...,m} such that r;,r;,rx > 0.

Hence, if we consider a lobsters with diameter 4 on 2n vertices and
n is odd, then n > 5.

Let us have lobsters on 4t + 2 vertices and with diameter 4, where
r<rm <. .<rm<r+landdt+2—-(m+1) =rm+gq and
thus 2n = 444+ 2 = (r + 1)m + ¢ + 1. We see that these lobsters have
"regular distribution” of vertices to the joining stars. These lobsters are
called m-balanced lobsters.

Hence, the terminal stars joined to the endvertices of the central star
K, m are either K , or K, r41, where number of the stars K 4, is ¢. Thus
an m-balanced lobster contains one vertex of degree m, ¢ vertices of degree
T + 2, m — q vertices of degree r 4+ 1 and rm + ¢ vertices of degree 1.

Now we investigate which of these lobsters satisfy the necessary con-
dition that was introduced in Theorem 3.1.

Let a vertex of degree m belong to the set Vp and let = be the number
of vertices of degree r + 2 and y be the number of vertices of degree r + 1
from set V3. Then

(r+l)m+q+1

z(r+2)+y(r+1)+ 5

z—y=(r+1)m+gq.
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2er+2x+4+2yr=(r+1)m+qg+1-2.

Since

(r+1lym+4+g+1=2n

we get
4) (r+)z+ry=n-1.

We have now proved the following theorem.

Theorem 6.1. Let a vertez of degree m belong to Vy. Then for every m-
balanced lobster with diameter 4 and with a blended p-labeling it holds that
(r+ 1)z +ry =n—1, where x is the number of vertices of degree r + 2 and
y is the number of vertices of degree r + 1 from V;.

Notice that the left hand side of the equation (4) determines the
number of the vertices with degree 1 that are adjacent to the vertices of
degree r + 1 and 7 + 2 from V;.

Now we introduce two easy lemmas.

Lemma 6.2. In every m-balanced lobster L on 2n vertices it holds that

E(n —_ m) S r S m__Lm_i}).'
m m
Proof. If r is maximal then in L there does not exist a vertex of degree
r + 2 and therefore rm = 2n — (m + 1). Thusr = k%"—i'—l)-
If r is minimal then in L there exists precisely one vertex of degree
r + 1 and therefore (r + 1)(m — 1) + r = 2n — (m + 1) which leads to
.. O

rm+m-—1=2n—m—1andr = 22220

Lemma 6.3. Let L be an m-balanced lobster on 2n vertices with a blended
p-labeling and let a vertex of degree m belong to Vy. Then the number of
vertices of degreer+1 andr+2 in V4 is at most m — 1.

Proof. If in V; there are m vertices of degree r+1 and »+2 then the number
of the vertices of degree 1, which are adjacent to them is 2n — (m + 1) and
2n— (m +1) > n—1 for every n > m, which contradicts Theorem 6.1. O

Let us show now that the necessary condition (4) from section 6 for
m-balanced lobsters is also sufficient for m = 3,4.
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Construction 6.4. Let L be a 3-balanced lobster on 2n vertices, where n
isodd, V(L) = VoUW,V = {00, 10, ..., (R —1)0}, Vi = {01, 14, ...,(n— 1)1 },
and the vertex of degree 3 belongs to V;.

First we show that our lobster satisfies necessary condition (4) only
for n=15,7.

From Lemma 6.2 it follows that r < 2(n — 2)/3 and thus r + 1 <
2(n—-2)+1= 2871 < n —1 for every n. Therefore in V; there have to be
at least two vertices of degree r + 1 or r + 2. Hence, the number of vertices
of degree one that are adjacent to the vertices of degree r+1 and r+2 is at
least 2r, but 2r > 4(n — 3) > n — 1 for every n > 9. Notice that forn =9
there has to be in V; at least one vertex of degree r + 2 = 6 and therefore
our 3-balanced lobster does not satisfy condition (4) also for n = 9.

Now we must show by construction that a 3-balanced lobster admits
a blended p-labeling for n = 5, 7.

(i) If n =5 then our balanced lobster contains the following edges:

(00, 10), (10, 40) of lengths 1,2, (0p,01), (0o, 11), (10,31), (30, 11), (20,

1,) of lengths 0,1, 2,3,4 and (01,41), (01,2;) of lengths 1,2 and
(ii) if n =7 then it contains the edges:

(00, 10)1 (101 60)) (10:40) of lengths 1,2,3, (00: Ol)v (OOs 11)3 (10’ 31))
(101 51) of lengt'hs 0,1,2,4, (50’ 11): (30: 11): (20, 11) of lengths 3,5,6 and
(011 61): (Ola 21)1 (Ola41) of lengths 112$3' (]

Construction 6.5. Let us have 4-balanced lobster L on 2n vertices, where
nis Odd: V(L) = %U‘,l) Vo= {00, 1o,y (n—l)O}) W= {Ola 1y, (n—l)l }’
and the vertex of degree 4 belongs to Vp.

Notice that each 4-balanced lobster has precisely one vertex of degree
r + 2 and three vertices of degree r + 1 for every n odd.

Hence, 2n = 2(2r + 3) and n = 2r + 3. When we substitute n in
condition (1) from section 6 by 2r + 3 we obtain (r + 1)z +ry = 2r +2 and
possible values of z are either 0 or 1. Therefore we look for the solutions of
two equations either

(3) Ty=2r+2

or

(6) ry=r+1.

The equation (5) leads to y = 2+ 2 and from Lemma 6.3. it follows
that only one of two integral solutions of (5) is admissible, namely r = 2
and y = 3. The equation (6) leads to y = 1+ % and therefore (6) has also
precisely one integral solution, » =1 and y = 2.
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Since necessary condition (4) has solution only for r = 1,2, our 4-
balanced lobster satisfies this condition only for n = 5, 7.
Finally we show that a 4-balanced lobster on 2n vertices allows a
blended p-labeling for n =5 and n=17.
() Let n = 5. Then the 4-balanced lobster contains the edges:
(0o, 10), (10, 40) of lengths 1,2, (0o,0,),(00,11),(00,3:) of lengths
0,1,3, (30,01), (20,11) of lengths 2,4 and (04,2;),(31,4;) of lengths 2, 1.
(ii) Let n = 7. Then our balanced lobster has the edges:
(0o, 10), (1o, 60), (10, 50) of lengths 1,2,3, (0o,01),(0g,11), (00,21),
(10,41) of lengths 0,1,2,3 (30,01),(40,21), (20,11) of lengths 4,5,6 and
(01, 61), (11,31), (21, 51) of lengths 1, 2,3. a

At last we introduce examples of two infinite classes of "totally im-
balanced” lobsters with diameter 4 on 4t + 2, t > 2, vertices, which admit
blended p-labelings.

Construction 6.6. Let us have a double star which contains the stars
Kj,2t and K 2;_5 joined by an extra edge, and the extra edge is incident to
the central vertices of these stars. Further exactly two vertices are joined
to two distinct endvertices of the star K 5.

Let such imbalanced lobster contain the following edges:

(001 (t - 1)0)7 (001 (t+ 1)0)1 (001 (t + 3)0)1 (00: (t+4)0)s sevy (001 (2t)0) of
lengths ¢t — 1,¢,¢ —2,¢ -3, ...,1,

(00, 01), (00, 11), - (00, tl), (10, (t + 3)1) of lengths 0,1,2,...,¢,t+ 2,
(201 Ol)a (301 Ol)’ ooy ((t - 2)0’ 01): (tO: 01): ((t +2)0: (t + 1)1) of lengths
2 —1,2t—2,....,t+3,¢+1,2t and

(01, (¢ + 1)1), (01, (¢ + 2)1), ..., (01, (2¢)1) of lengths ¢,¢ —1, ..., 1.
Then it has a blended p-labeling.

O

Construction 6.7.

(i) Let ¢ be odd. Now we consider an imbalanced lobster, which contains
two stars K g;—; and K, (3t+1)/2 joined by an extra edge and the
extra edge is incident to the central vertices of the stars. Further,
exactly (¢ — 1)/2 vertices are joined to (¢ — 1)/2 endvertices of the
star Ky, (3¢+1)/2-

Let us show now that our imbalanced lobster admits a blended P
labeling.

Let L have the edges: (0o, 1), (0o, 20), .., (0o, (£5*)o) of lengths 1,2,
s (t—1)/2,
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(0o, (¢ + 1)o), (0o, (¢ + 2)0), -y (0o, (352)0) of lengths ¢,t — 1,...,
(t+1)/2,

(001 01): (00’ 11)1 (00’ 21): seey (001 (t - 1)1): (to, (2t)1) of lengths Oa 1’ 2’
gt = 1,1,

((42)0,01), ((42)0,01), ..., (to, 01) of lengths (3t+1)/2, (3t—1)/2, ...,
t+1,

((2t)0, (2¢—1)1), ((2t—1)a, (2t—3)1), ((2t—2)0, (2t —5)1), --., (352 ),

(t+4)1), ((382)o, (£+2)1) of lengths 2¢,2t—1,2t—3, ..., (3t+5) /2, (3t+3) /2,
and

(01,81), (t1, (¢ +1)1), (01, (£ 4+2)1), (01, (¢ +3)1), ..., (01, (2t — 2)1), (01,
(2t - 1)1) of lengths ¢,1,t — 1,t — 2,.

Then L has a blended p-labeling.

3, 2.

(ii) For ¢ even the construction is very similar. We have again an im-
balanced lobster which contains two stars K 2,1 and K, J(3t4+1)/2
joined by an extra edge and the extra edge is incident to the central
vertices of the stars. Further, exactly (¢ — 2)/2 vertices are joined to
(¢t — 2)/2 endvertices of the star K; (3¢1)/2-

This lobster has the following edges:
(00, 10): (00’ 20): esey (00, (t;22)0) of lengths 1, 2) seey (t - 2)/21

(0o, (t + 1)a), (0o, (¢t + 2)o), -+, (0o, (§%|-_2_)0) of lengths ¢,¢ — 1,..., t/2,

(00) 01)1 (001 11)’ (001 21)’ ) (001 (t - 1)1)1 (tOJ (2t)1 of lengths 0’ 1" 21
et — 1,8,

((£)0,01), (52)0,01), ..., (to0,01) of lengths (3t + 2)/2,3t/2, ..., t + 1,

((2t)e, (2t —1)1), ((26—1)o, (2t—3)1), ((2t—2)o, (2t—5)1), --., ((252)o,

(¢+5)1), ((352)o, (t-+3)1) of lengths 2¢,2t—1,2t—3,..., (3t+6)/2, (3t+4) /2,
and

(01’ tl): (tli (t + 1)1)) (01) (t+2)1)$ (01) (t +3)1)1 eey (Ola (2t— 2)1)) (011
(2t — 1);) of lengths ¢,1,t - 1,t—2,...,3,2.

Then L has a blended p-labeling. O
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