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Abstract

We enumerate the balanced tournament designs on 10 points
(BTD(5)) and find that there are exactly 30,220,557 nonisomorphic
designs. 'We also find that there are exactly two nonisomorphic par-
titioned BTD(5)'s and 8,081,114 factored BTD(5)’s on 10 points.
‘We enumerate other classes of balanced tournament designs on 10
points and give examples of some of the more interesting ones. In
1988 Corriveau [3] enumerated the nonisomorphic BTD(4)’s finding
that there are 47 of them. This paper enumerates the next case
and provides another good example of the combinatorial explosion
phenomenom.

1 Introduction

A balanced tournament design of order n, BTD(n), defined on a 2n-set V
is an arrangement of the (%) distinct unordered pairs of the elements of V
into an n x (2n — 1) array such that

1. every element of V is contained in precisely one cell of each column,
and

2. every element of V is contained in at most two cells of any row.

Notice that in each row there are precisely two symbols that occur ex-
actly once, termed the deficient symbols of the row. The deficient symbols
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of two different rows are necessarily disjoint. A brief survey of results on
BTD’s can be found in [7); an earlier more extensive survey is [9].

Example 1.1 A balanced tournament design of order 5.

01|46[03[78[29[59[35[27]18

23[(02]68(39[48]17]14[56[09

4579121537 [24]69(08[36

67|58[/49[04|16|38]07]19]25

89(13[57[26[05[06[28[34[47
#198271

invariant: 910101010100361757666 70

Intuitively, a BTD(n) is formed by finding a one-factorization of K,
(the columns) that is orthogonal to a “near two-factorization” of K, (the
rows). Gelling and Odeh introduced balanced tournament designs in 1973
in [4]. The spectrum was completed by Schellenberg, van Rees and Van-
stone [10] in 1977. They proved the following.

Theorem 1.2 [10] There exists a balanced tournament design of order n
if and only if n is a positive integer, n # 2.

Two BTD(n) are isomorphic if one can be obtained from the other by
permuting the rows, columns or elements of the array. It is easy to see
that there is a unique BTD(3) up to isomorphism. In 1987, Corriveau
enumerated the nonisomorphic BTD(4)’s in [2, 3]; there are precisely 47.
He also showed for each of the 386 nonisomorphic one-factorizations of Kig
that there is a BTD(5) having the given one-factorization as its columns.
In this paper we will enumerate the BTD(5)’s completely, and show that
not only does each one of the 396 nonisomorphic one-factorizations of Kjg
admit one BTD(5), but each admits on average about 90,000 nonisomorphic
BTD(5)’s.

Balanced tournament designs satisfying certain extra conditions have
been of considerable interest to researchers since 1977. In this paper we
enumerate some of these as well, including partitioned, hamiltonian and
factored balanced tournament designs. We also introduce the notions of
uniform and doubly uniform balanced tournament designs.

A BTD(n) is said to be partitioned (PBTD) if the 2n — 1 columns can
be partitioned into three sets A, B, and C of 1, n — 1 and n — 1 columns
respectively, in such a way that the n x n array formed by the columns
in AU B is a Howell design H(n,2n), as is the n x n array formed by the
columns in AUC. Hence each of the 2n symbols occur exactly once in each
row and in each column of AU B and of AU C. Example 3.7 gives two
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examples of partitioned BTD(5)’s. Note that the deficient symbols of each
row of a partitioned BTD are necessarily in the first column. There exists
a partitioned BTD(n) for n a positive integer, n > 5, except possibly for
n € {9,11,15 }[6]. There does not exist a PBTD(3) or PBTD(4).

A factored balanced tournament design of order n, FBTD(n), is a BTD(n)
with the property that in each row there exist n cells, a factor, which con-
tain all 2n elements of V. Note that any partitioned balanced tournament
design is also a factored balanced tournament design, but the converse is
false. We will in fact see that factored BTD’s are much more numerous
than partitioned BTD’s (of order 5). Factored BTD(n) exist for all positive
integers n # 2 [8]. The unique BTD(3) is factored, while 29 out of the 47
BTD(4) are factored BTD’s [3].

In any row of a BTD(n), every symbol occurs in two cells, except for
two symbols that each occur in only one cell. Hence, it is conceivable that
the graph formed by the pairs of symbols occuring in the cells of a given row
(the row graph) could be a path of length 2n (vertices), i.e. a Hamiltonian
path. A BTD(n) is said to be a hamiltonian BTD(n) (HBTD) if this is
true for every row of the array. It is known [5] that there exist HBTD(n)
for n = 1,4, 5; there do not exist HBTD(n) for n = 2,3; and there exist
HBTD(n) for all positive integers n not divisible by 2, 3 or 5. Out of a total
of 47 BTD(4)’s exactly 18 are hamiltonian [3]. A BTD(n) is said to be a
nonhamiltonian BTD(n) (NHBTD) if no row of the BTD is a hamiltonian
path. There are precisely 5§ NHBTD(4) [2].

A BTD is called uniform if all of the row graphs of the BTD are iso-
morphic; so hamiltonian is a special case of uniform. When the underlying
graphs of the union of any two columns are all isomorphic two-regular
graphs, the underlying (column) one-factorization of the BTD is called a
uniform one-factorization. If both the rows and columns are uniform, the
BTD is called doubly uniform.

In Section 2 we will discuss the algorithm that we employed to enumer-
ate the BTD(5). Section 3 we summarize our main results and give some
interesting examples of BTD’s that were found in our enumeration.

2 The Algorithm

In this section, we discuss the algorithm that we employed to enumerate
and construct the nonisomorphic BTD(5)’s. The algorithm consists of a
list processing algorithm to find all distinct BTD that can be constructed
from a particular one-factorization of Kjg9. We then used invariants to
greatly reduce the number of tests needed to check the distinct BTD for
isomorphism. Finally if two distinct BTD’s had the same invariant, we
attempted to construct an isomorphism between them.
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A BTD is generated from a one-factorization in the obvious way: place
the edges of each one-factor in a column and then order each column so
that in each row every symbol occurs at most twice. Hence for each ¢
with 1 < i < 9 the ith column of any two BTD’s generated from a given
one-factorization will contain the same set of pairs of symbols. Clearly
then, BTD’s generated from two nonisomorphic one-factorizations must be
nonisomorphic. We also see that two distinct BTD’s generated from a one-
factorization with automorphism group of order 1 must also be nonisomor-
phic. It is well known that there are 396 nonisomorphic one-factorizations
of the complete graph on 10 points Ko (see [1] for the complete list). Our
algorithm begins by inputting one of these one-factorizations and proceeds
to generate all possible BTD’s from this one-factorization. We use list
processing to generate the BTD’s.

First we use a procedure called legal. This procedure constructs all
potential rows for purported BTD. It searches for a set of nine edges, one
from each one-factor, that has the property that each symbol occurs at most
twice. (These are the legal rows for the BTD). Two legal rows are termed
compatible if they have no edges in common and if the deficient symbols
in these two rows are disjoint. Using a standard backtracking procedure,
the program then constructs all sets of 5 compatible rows for each given
one-factorization, these will all be distinct BTD’s generated from the one-
factorization. So if D is a BTD generated in this manner, then the ith
column of D will be precisely the ith one-factor in the one-factorization. In
general we found about 90,000 distinct BTD’s for each one-factorization of
K0 and this took roughly 30 seconds of CPU time (per one-factorization)
on a PC running at 1.3 GHz.

To distinguish nonisomorphic BTD(5)’s we used a concatenated string
of three invariants. These invariants are called the one-factorization in-
variant, the row invariant and the 4-cell invariant. The one-factorization
invariant of a BTD is n if it is generated from one-factorization #n, for
1 <n < 396.

Each row graph of a BTD consists of a path and a two-factor; the
endpoints of the path are the two deficient symbols in that row. We denote
by P, the path of length n (vertices) and C, the cycle of length n. In the
case of BTD(5) there are 11 possible row graphs. The row graph types are:
1: Pbo 2: PUCs 3: PsUCy; 4: PsUC; 5 P4UCg 6: BRUCy
7: P,UCs 8 P,UC3UCs3 9: RUCLUCy 10: P3UC UCs 11: PR,UCsUCs

The row invariant of a balanced tournament design D is a vector
(a1,82,-.-,a11) of length 11 where D has a; row graphs of type i. Thus
for any BTD(5), }_a; = 5.

Given any two rows and any two columns, the union of the four cells in
those two rows and columns forms a graph with four edges. There are six
possibilities for these 4-cell graphs. These 4-cell graph types are:
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1. RLUPRUPRUP 2: BUPRUP, 3: BRUP; 4: PLUP, 5: Py 6: C4

The 4-cell invariant of D is a vector (fi, f2,-.-, fe) of length 6 where
D has f; 4-cell graphs of type i. For any BTD(5), 3 f; = (3) x (3) = 360.

It is clear that any two BTD’s that have either different one-factorization
or row or 4-cell invariants cannot be isomorphic. We concatenate all three
of these invariants to obtain a vector of length 18 that we use as our BTD-
tnvariant or just snvariant for short.

If two BTD’s have the same BTD-invariant, they are then tested for iso-
morphism. Knowing the row graph structure greatly speeds up the search
for the isomorphism. If D; and D, are BTD’s with the same row invariant,
then clearly any isomorphism from D; to D, must take a row of D; to a
row of Dy with the same row graph type. Hence it must take the path
in that row of D; to the path in the row of D,. Also the cycle(s) must
map to the cycles. This greatly reduces the number of possible mappings
that need to be tested to see if they are indeed isomorphisms. In general, if
two BTD’s have the same BTD-invariant, they are probably isomorphic, so
we were looking to find the isomorphism as opposed to showing that none
existed.

When a new BTD is found to be nonisomorphic to all the BTD’s previ-
ously constructed, it is added to the list and is stored. Hence at any point
in the running of the algorithm, the list contains a set of nonisomorphic
BTD’s.

Constructed in this manner, the BTD’s have a natural order which we
now describe. Given a BTD D constructed from a one-factorization F of
Ko, each column ¢ gives a permutation p. of the set {1,2,3,4,5} where
the pair in row r of the D is the p.(r)th pair given in the ¢'th one factor
of F in the listing of F' presented in [1] (pages 655 — 660). Now from D
construct a new 5 x 9 array D', by putting p.(r) in cell (r,c) of D'. These
D’ arrays are ordered lexicographically by rows. Given two BTD’s D; and
D; constructed from one-factorizations F; and F}, respectively, then say
that Dy < D, if i < j or if i = § and D] < Dj. This gives an ordering of
all the BTD’s that we construct. For each of the BTD’s given as examples
in this paper, we first give the number of that BTD, then we give the BTD
invariant.

The program halts when all 396 nonisomorphic one-factorizations of
Ko have been inputted.

3 Results, Observations and Some Interest-
ing Examples

After running the program for roughly 5 hours on a PC running at 1.3
GHz, we arrived at our main result.
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Theorem 3.1 There are ezactly 30,220,557 nonisomorphic balanced tour-
nament designs of order 5.

Example 3.2 The following are balanced tournament designs #1 and #30,220,557
and their BTD invariant.

01]02]12[39{37{59|48]47[56
23146149|15(69(38|07j08j27
45}13|57{78]28(24]16]36|09
67]58|/68{04]05(17129]119]34
89179103{26[14]06]35]25|18
#1
1110100000024217083 52121

01[79[68]04[39[24[35[17[25
23|58[27[69]46[18]07({34[09
45|36(15|28]|78(06]19(29([47]
67|14|49|13|05(59[26(08([38
89]02]03|57|12(37|48[56[16
#30,220,557
30600000410000441688448160

It is interesting to look at the number of distinct and nonisomorphic
BTD’s that were generated from each of the 396 one-factorizations of Kjg.
Remember that each of the distinct BTD’s generated from a single one-
factorization has the pairs in one-factor i of the one-factorization in col-
umn . The greatest number of distinct BTD’s from any one-factorization
was 123,876 from one-factorization #1, the least was 63,504 from one-
factorization #290 (this is the one factorization GK)o, [1]) while the aver-
age was 89,998.8. The total number of distinct BTD’s that were generated
was 35,639,544

The greatest number of nonisomorphic BTD’s from any one factor-
ization was 103,912 from one-factorization #48; the least was 293 from
one-factorization #1.

Table 3.3 Number of distinct BTD’s generated per one-factorization (in
thousands)

number of distinct BTD’s|60-70 70-80 80-90 90-100 100-110 110-120 120-130
number of OFs 1 11 222 132 21 8 1
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Table 3.4 Number of nonisomorphic BTD’s generated per one-factorization
(in thousands)

number of nonisomorphic. | <1 1-2 2-5 5-10 10-20 20-30 30-40
number of OFs 1 1 1 5 10 9 8

number of nonisomorphic|40-50 50-60 60-70 70-80 80-90 90-100 100-110
number of OFs 55 7 1 3 185 100 10

We also computed the order of the automorphism group of each of the
30,220,557 BTD(5)’s. We found that there were 30,202,632 with automor-
phism group of order 1 and 26 with the largest automorphism group of
order 8. The following table describes our findings.

Table 3.5 The frequency distrubution of the automorphism groups of BTD(5)’s

group order 1 2 4 5 8
number of BTD’s | 30,202,632 17,681 213 5 26

Of course when generating all the BTD(5)’s we were concerned with
counting ones with special properties. We have

Theorem 3.6 There are exactly 2 nonisomorphic partitioned BTD(5)’s,
8,081,144 factored BTD(5)’s, 2,236,254 hamiltonian BTD(5)’s and 939,354
nonhamiltonian BTD(5)’s. Every one-factorization of Ko admits at least
one factored BTD and at least one nonhamiltonian BTD.

These values were all easy to compute using the row invariant of the
BTD’s. A BTD is factored if and only if every row graph consists of a
path of even length and all the cycles are also even. To find the partitioned
BTD’s we could narrow the search to those BTDs where every row graph
consists of a path of length 2, all the cycles are of even length and the defi-
cient pair of points in each row are all in the same column. We found exactly
54 BTD’s satisfying all these conditions, but only two of them were indeed
partitioned BTD’s and both of these come from one-factorization #378.
The fact that there are exactly two nonisomorphic partitioned BTD(5)’s
was first discovered by Seah in 1987 [11] (pages 89-90).

Hamiltonian BTD’s are particularly easy to spot as the row invariant of
a hamiltonian BTD must be (500000000 0 0), i.e. 5 rows all of type
1. Nonhamiltonian BTD’s are precisely those which have a¢; = 0 in their
row invariant.
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Example 3.7 The two nonisomorphic partitioned balanced tournament de-
signs.

01(79]69|78|68|24]25|34]35
23|58]47]56]49]06(19]08]|17
45|36128139(27]18{07|16]/09
67/02]15j04f13}59(38[29]|48
89/14|03|12[|05|37[{46|/57|26
#29,245,581
3780000002030068 13211224204

01)79[(69(78168]|24]|25(34([35
23158147]156[/49|18]07]16|09
45/36/28|39[{27]|06|19(08]|17
67|14]03[{12]05]59]38]|29|48
89(02])15/04|13]37[/46|57[26
#29,245,598
3780000002030086 9813020224

Both of these partitioned BTD’s have underlying one-factorization #378.
The second one is isomorphic to the PBTD(5) given in [7] (page 239, Ex-
ample 3.7). The isomorphism ¢ from the BTD in the Handbook to the one

above is
a=(a0001234567)
8 9 6 350417 2

Every partitioned balanced tournament designs and every hamiltonian
BTD is also a factored balanced tournament designs (FBTD), so Example
3.7 provides two examples of factored BTD(5)’s. Example 1.1 is a FBTD
that is not a partitioned or a hamiltonian BTD.

We also enumerated the uniform BTD(5)’s. A BTD(5) is called uniform
of type t if all five of the row graphs are of type t. So a uniform BTD of
type 1 is a hamiltonian BTD. Notice again that these are particularly easy

to identify as their row invariant will consist of a 5 in position £ and a 0 in
all others.

Theorem 3.8 There are 2,236,728 uniform BTD(5)’s. There are exactly

2,236,254 of type 1, 330 of type 2, 75 type 3, 20 type 4, 19 type 5, 3 type
6, 10 type 7, 0 type 8, 12 type 9, and none of type 10 or 11.
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Example 3.9 A uniform BTD of each possible type. The one of type 1
is & hamiltonian BTD, the ones of type 1, 8, 5, 7 and 9 are also factored
BTD’s.

Type 1
01[36[49[04[78]59[26[17[38
23/14/68|69[05[37[19[08[25
45[79f03[57[12]06[48|29[16
67|/58[15[28]39[24[07|34|09
89[02[27|13[46[18[35|56{47

#30,220,422
39650000000000 302057030250

Type 2
01102112|39]69|38|48|56|47
23[58{49[15{37[06[16[27]09
45(79|68|04[28[|17|35(19|36
67(46{03[78[14]59]29[08[25
89[13[57[26[05[|24{07|34[18

#439

20500000000034180746480

Type 3
01|79]03|68]47[|35|24|15|26
23({46|78|12|39]06119|08|57
45/02|69|37|/05]/17(38[49]18
67(58/14159|28|29|07]|36(34
89[(13125|/04]16|48]|56]27(09

#2,737,235
450050000000052148 93 56 101

Type 4
01{02]49|78]34|38]|25|16[56
23[58168|04]17]06]19]|29|37
45146/12]39169|27]|07|35]|18
67/13[{03]15|28|59|48(|47]|09
89(79]57]26]05|14[{36[08[24

#2,132,559
380005000000047 1618750150
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Type 5

01

79

78

68

13

29

46

24

33

23

58

03

59

47

06

19

17

48

45

14

26

37

28

18

07

56

09

67

02

49

12

05

57

38

39

16

89

36

15

04

69

34

25

08

27

#13,170,633
17300005000000 47 158 87 56 12 0

Type 6

01

58

47

26

37

48

25

36

09

23

02

68

15

49

17

69

08

34

45

13

03

78

28

29

07

19

56

67

79

59

04

16

35

38

24

18

89

46

12

39

05

06

14

57

27

#442,244
150000050000036 1867644180

Type 7

01

36

49

59

27

57

38

46

28

23

79

15

04

69

18

56

08

47

45

02

78

68

13

29

07

39

16

67

58

03

12

48

34

19

25

09

89

14

26

37

05

06

24

17

35

#893,192
220000005000020216 6048 16 0

Type 9

01

79

78

68

69

34

24

25

395

23

58

49

59

48

06

07

17

16

45

36

26

37

27

18

19

08

09

67

14

15

04

05

29

38

39

28

89

02

03

12

13

57

56

46

47

In (3] it was conjectured that the one-factorization GKa, never gener-
ates a hamiltonian BTD (except for n = 1). We find that this is indeed
the case for n = 5. In this case the one-factorization #290 is GK;p and it
does indeed generate no hamiltonian BTD’s. In fact it generates no uni-
form BTD’s at all. This is unusual as only two one-factorizations (out of
396) fail to generate any uniform BTD’s (the other is #1). We feel that
this adds significant evidence to the conjecture. The next table gives the

#893,360
220000000050084112132024 8
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number of one-factorizations of Ko that admit a uniform BTD(5) of each
of the 11 types.

Table 3.10 The number of one-factorizations admitting each type of uni-
form BTD(5).

Uniform of type | 1 2 3 4 5 6 7 8 9 10 11
number of OF’s {394 201 65 18 16 3 8 0 12 0 O

It is possible that all five row-graphs of a BTD could be nonisomorphic
(heterogeneous BTD’s), in fact this is quite common. We find that there are
exactly 833,525 nonisomorphic BTD(5)’s with this property. Since there
are exactly five row graph types that can underly a factored BTD (they
must be a path of even length in addition to cycle(s) of even length), it
is possible that there may be examples of heterogeneous FBTD. Indeed
there are exactly 1647 nonisomorphic heterogeneous factored BTD(5)’s.
One such example is given in Example 1.1. In general a typical BTD is
composed of 3 different row graphs. The exact breakdown is given in the
next table.

Table 3.11 The number of nonisomorphic row graphs in ¢ BTD(5).

# of nonisom. rows 1 2 3 4 5
# of BTD’s 2,236,723 9,561,055 12,034,066 5,555,188 833,525

A one-factorization is perfect if the union of any pair of one factors
is a hamiltonian cycle. One-factorization #396 is the only perfect one-
factorization of K. This one-factorization generates exactly 122 uniform
BTD’s, 120 of type 1 (hamiltonian) and two of type 5. These are examples
of doubly uniform BTD’s. A doubly uniform BTD of type 1 is given in
Example 3.9, both doubly uniform BTD’s of type 5 are given in Example
3.12. The only other uniform one-factorization is #1. It has the property
that the union of any pair of one-factor is Cy UCs. We found that this one-
factorization fails to generate a uniform BTD (out of 293 nonisomorphic
ones). Thus the only doubly uniform BTD’s are those 122 designs generated
from one-factorization #396.
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Example 3.12 The two doubly uniform balanced tournament designs of
type 5.

01]36]49]28]05]59]26]17[47
23|14|68|57|46(37|19|08|09
45(79|03|13|78|06|48|29]|25
67]|58|15/69|12]24]/07]|34|38
89(02{27]/04|39|18|35|56/16
730,220,424
3960000500000 030195 70 50 15 0

01]102]27[(57]46|59]19|34]38
23(79}149128]05|37[48|56(|16
45136115{13]78|24[/26|08|{09
67114/68/04139|18|07|29]|25
89158|03{69|12|06]35]|17|47
#30,218,751
39600005000000302007040200

We conclude with a discussion of the invariants. First, there were
14,129,867 different invariant vectors for the 30,220,557 nonisomorphic bal-
anced tournament designs. Thus the invariant had sensitivity of .467. The
sensitivity of each of the three invariants individually is 396/30,220,557 =
.0000131 for the one-factorization invariant; 2726/30,220,557 = .00600902
for the row invariant and 5467/30,220,557 = .000190 for the 4-cell invariant.
We found many examples of two nonisomorphic BTD’s that had exactly
one, two or all three identical invariants (one-factorization, row or 4-cell).
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