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ABSTRACT

A graceful labeling of a graph G of size n is an assignment of labels from
{0,1,...,n} to the vertices of G such that when each edge has assigned a weight
defined by the absolute difference of its end-vertices, the resulting weights are
distinct. The gracefulness of a graph G is the smallest positive integer k for
which is possible to label the vertices of G with distinct elements from the set
{0,1,...,k} in such a way that distinct edges have distinct weights. In this pa-
per, we determine the gracefulness of the union of cycles and complete bipartite
graphs. We also give graceful labelings of unions of complete bipartite graphs.

1. Introduction

A graceful labeling of a graph G with m vertices and n edges, is a
one-to-one mapping f : V(G) — {0,1,...,n}, such that for every edge zy
of G, f induces a weight defined by |f(z) — f(y)| and the set of weights
is {1,2,...,n}. In this case, G is said to be a graceful graph. When the
graceful labeling f has the property that there exists an integer A such
that for each edge zy either f(z) < A < f(y) or f(¥) £ A < f(=), fis
called an a-labeling.

It is known that not every graph is graceful, for instance we can consider
the complete graph K, when n > 5 and the cycle C, when n = 1 or
2(mod 4). The smallest graph, in order and size, that is not graceful is
C3 U K1,1. These examples represent three reasons why a graph fails to
be graceful: The graph has too many edges (K,, n > 5), the graph has
not the right parity (C,, n = 1 or 2(mod4)), or the graph has too many
vertices and not enough edges (C3 U K1,1).

The gracefulness, grac(G), of a graph G without isolated vertices, is the
smallest positive integer k for which is possible to label the vertices of G
with distinct elements from the set {0,1,...,k} in such a way that distict
edges have distinct weights. This parameter is well defined; in fact, since
there exists a vertex labeling of G that assigns the integers 29,21, ...,2™~!
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to the m vertices of G. Thus, for every graph G of order m and size n
(without isolated vertices,) n < grac(G) < 2™~1, If G is a graph of size n
with grac(G) = n, then G is graceful. Thus, the gracefulness of a graph G
is a measure of how close G is to being graceful. For instance, grac(K,)
is n(n —1)/2 when n = 2,3,4, and 11 when n = 5. It is an open problem
determine grac(K,) for n > 6. Essentially, this concept was introduced
by Golomb [3]. He suggested that the main questions in this topic are
determine the relationship between grac(G) and n, identifying families of
graphs for which grac(G) = n and other for which grac(G) > n, and also
to find better bounds for grac(G) — n.

In his dynamic survey [2], Gallian observes that over 300 articles (related
with graceful labelings) have been written in the last three decades. Most of
them centered in the identification of classes of graphs for which grac(G) =
n. We study the gracefulness of a family of graphs in terms of determining
precisely the value of the value of this parameter for all menbers of this
family.

2. Cycles and Stars

Modifying the permissible vertex labels and/or the weights of a graceful
labeling, Rosa (5] introduced the following definition: Let G be a graph of
order m and size n and f : V{G) — {0,1,...,n+1} be an injective function,
such that the induced weights are {1,2,...,n—1,n+1} or {1,2,...,n}, Rosa
called it p-labeling; later, Frucht called it nearly graceful labeling. To avoid
confusions, we say that this labeling is of kind I if the set of weights
is {1,2,...,n — 1,n + 1} and of kind 2 otherwise. Note that if a graph
not satisfies the parity condition (Lemma 1 in [4]), then it cannot have a
labeling of kind 2.

Consider the family of disconnected graphs C,, UK1 n, , i-e., the union of
cycles and stars, we are intersted in determine its gracefulness. In his survey
[2], Gallian summarize the status of this problem. We have extracted from
Gallian’s work the following information. Choudum and Kishore proved
that Cr U K, is graceful for every m > 7 and » > 1. On the other hand,
Seoud and Youssef [6] proved that neither C3 U K3, nor C4U K1 5, (in this
case n # 2) are graceful. However, nothing is said when the cycle is Cs
or Cs. We know that the labels 0 and m +n (m = 5,6) must be assigned
to adjacent vertices; note then, that they cannot be in the star. In fact,
without loss of generality, we may assume that 0 was assigned to the central
vertex of the star and m + n in a leaf, then the labels m+n —1,...,m+1
must be in the other leaves; remaining the labels 1, ...,m to be assigned on
the cycle, but with these labels it is impossible to obtain a labeling of Cy,
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where all the weights are different. Then, 0 and m +n must be assigned on
the cycle. With this restriction, it can be checked that C5 U K n (n > 2)
is not graceful and that Cg U K is graceful if and only if n is odd or
n = 2,4. We present below a graceful labeling of Cs U K1 2n+1.

THEOREM 2.1. For every non-negative integer n, the graph CeUK1 2041
is graceful.

Proof. Let u,,...,ug be consecutive vertices of Cg and v, vy, ..., Von+1
the vertices of the star, where vy is its central vertex. Let f : V(Cs U
Ky 2n+1) — {0,1,...,n + 6) defined by

0, i=1
2n+6,1=2 1, ji=0
f(ul)= n+i, 1=3,4 andf(”])={.7+211.<_.7$n
2, =29 j+4,n+1<j3i<2n+1.
2n+7,i=6

The weights on the cycle are 2n 4+ 7,2n+6,2n + 5,n 4+ 3,n 4+ 2,1 and
on the star are 2,3,..,n+1,n+4,72+5,...,2n + 4. Thus, f is a graceful
labeling of Cg U K1 2n4+1. W

We will represent the labelings of Cy, U K5, in the following form:

(f(ul)a erey f(um)) U (f('UO); f(vl)s ooy f(vn)) .

So, the unique graceful labelings of Cg U K1 2 and Cs U K 4 are given
by (0,7,1,6,4,8)U(2;3,5) and (0,9,5,3,2,10) U(1;4,6, 7, 8), respectively.
A graceful labeling of C5 U K} ; is given by (0,6,2,3,5) U (1;4) and finally,
a graceful labeling of Cy U K 5 is given by (0,6,1,4) U (3;2,5).

Since the graphs C,, U K}, are not Eulerian, we may hope that they
admit nearly graceful labelings of at least one kind. In fact they admit
both kind of nearly graceful labelings, we present these results in the next
theorem.

THEOREM 2.2. The graph Cp, UK1 5 is nearly graceful for every positive
integer n and m=3,4,5,6.

Proof. It is enough to show a nearly graceful labeling Cr, U K5 in
every case. For this purpose, we will use the notation introduced above;
the first labeling is of kind 1 and the second of kind 2. Thus, when m = 3,
we have (1,2, n+3)U(n+4;0,4,5,..., n+2) and (0,1, n+3) U (n+4;
3,4,..,n+2).Whenm=4,(1,3,2,n+4) U (n+5;0,4,5, ..., n+2) and
(0O,n+4,n+5,2) U (1;4,5,..., n+3). Whenm =5, (0,n+6,n+3,n+2,n+4)
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U (n+5;2,3,...,n+1) and (0,2 +5,3,n+6,n+4) U (1;2,4,5,...,n+2). Finally,
when m = 6, we have (On+7,n+3n+4,n+2n+5) U (n+6;2,3,...n+1)
and (0,2 +6,5,n +4,2,n +5) U (3;1,4,6,7,...n+1,n+3,n+7) when n > 4
and (0,9,5,7,2,8)U(3;4,6,10) whenn=3. M

To conclude this section, we summarize these results in the next table.

G grac(G)
C3UK;, |n+d4forn>1
CiUKy, |n+S5forn#2andn+4forn=2
CsUK;, |n+6forn>1
n+46 forn odd or n =2,4
Co U K1 n+7fornevenn>6
CmUKijn [ n+mform>T7andn>1

3. Cycles and complete bipartite graphs

In this section we study the parameter grac(Cp, U Kp, »,), giving its
exact value when the cycle is graceful and also a sharper upper bound when
the cycle is nearly graceful. Seoud and Youssef (6] have considered some
small cases, they proved that C3 U Ky, n, is graceful if and only if n; and
ng are greater than 1, Cy U Ky, n, is graceful if and only if n; and n, are
greater than 1 or (n;,n2) = (1,2), and finaly they proved that C; or Cg
union K, n, is graceful for all n; and n,.

Let G be a graph of size n. Any one-to-one assignment f of nonnegative
integers to the vertices of G such that the weights induced are 1,2, ...,n is
called a complete labeling of G. Thus, any graceful labeling of G is also a
complete labeling of G. In the next theorem, we will construct complete
labelings of the cycle C,, where m = 0 or 3(mod 4), m > 11, such that the
labels used are are in the set {0,1,...,m —1,m + 1}.

THEOREM 3.1. Let C,, be a graceful cycle of size m greater than 8.
Then, there exists a complete labeling of Cp, with labels taken from {0,1,...,m—
1,m+1}.

Proof. 'We break the proof in two cases.

Case 1: If m = 3(mod 4). That is Cp, = Cyx—1 and k& > 3.

First at all, we decompose Cy—_ into four paths when k = 0 or 1(mod 3)
and five paths when & = 2(mod3). Let P, be any of these paths, its
consecutive vertices are vp, v1,...,v:—1. The labeling of the vertices of P,
will be denoted by f. Consider the path Poiyo, the labeling f is defined
by:
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flwo) =3k +1, f(vart1) = 4k,
flos) =3k —4, 1<i<k
f('()zi.'.])‘: k + 7:, 0 S ) S k—1.

The distribution of weights is 2k + 1,2k — 1,2k — 2,...,1,2k. The end-
vertices of this path are labeled 3k + 1 and 4k. Now, we distinguish three
subcases.

Subcase 1.1: When k& = 0(mod 3).

First, take the path P%g, the labeling f is defined on its vertices by:

flvo) = 4k
flua) =4k —1-3i,1<i< &3
f(v25+1)=1+3i, 0S2<-k—§—
The distribution of weights is 4k — 1,4k — 5,4k — 8,...,2k 4+ 4. The
end-vertices of this path are labeled 4k and & — 2.

Second, take the path Pgsg +1, the labeling f is defined on its vertices
by:

f(vO) =k- 2,
floz)=k-3i, 1<i<#¥
flvzip1) =3k + 34,0 < i < 552
The weight distribution is 2k + 2,2k + 3,2k + 6, ...,4k — 3. The end-

vertices of this path are labeled k& — 2 and 0.
Third, take the path Pg;, the labeling f is defined on its vertices by:

f('Uo) =0,
flva) =3i—1, 1<i< b8
flugig1) =4k —2-3i,0<i< k33
The weight distribution is 4k — 2,4k — 4,4k — 7,...,2k + 5. The end-

vertices of this path are labeled 0 and 3k + 1.
Subcase 1.2: When k = 1(mod 3).

First, take the path P§ (k—1)+1, the labeling f is defined on its vertices
by:

f(vo) = 4k
flvs) =4k-1-3i,1<i< ”—3—
flozig1) =1+43i, 0<ig kA
The distribution of weights is 4k — 1,4k — 5,4k - 8,..,2k +3. The
end-vertices of this path are labeled 4k and 3k.
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Second, take the path Pg(k_l) +1, the labeling f is defined on its vertices
by:

f(vo) = 3k,
floa) =3k +3i—1, 1<i<kd
f(v2i+1)=k—2—3i,051‘5%

The weight distribution is 2k + 2,2k + 4,2k + 7,...,4k — 4. The end-
vertices of this path are labeled 3k and 4k — 2.

Third, take the path Pg(,_,),,, the labeling f is defined on its vertices
by:

f ('Uo) =4k — 2’
flug) =4k —3i,1<i< &L
flvaip1) =38, 0<i< &4

The weight distribution is 4k — 2,4k — 3,4k — 6, ...,2k + 5. The end-
vertices of this path are labeled 4k — 2 and 3k + 1.

Subcase 1.3: When k = 2(mod 3).

First, take the path Py whose vertices are labeled 4k, 1,4k — 3,0,4k —
2,3,4k - 5,2, and 4k — 4 respectively. The weights induced by this labeling
are 4k — 8,4k — 7, ...,4k — 1. The end-vertices are labeled 4k and 4k — 4.

Note that the smallest cycle in this subcase is Cig, for k = 5, which has
been completely labeled. So, in the follow we assume that k& > 8.

Second, take the path Pg(k-—2)’ the labeling f is defined on its vertices
by:

fv) = 4k — 4, f(v§(k—5)+l)=k—2
flva) =4k —5-3i,1 <i< k8
f(uaig1) =543, 0<i<is8

The distribution of weights is 4k — 9,4k — 13,4k — 16, ...,2k + 3, and
2k + 2. The end-vertices of this path are labeled 4k — 4 and k — 2.

Third, take the path Pz, _s), the labeling f is defined on its vertices
by:

f(UO) =k- 2»
flog)=k—-2-3i, 1<i<&8
fv2i41) =3k —1+36,0<i < 558
The weight distribution is 2k + 4,2k + 7, ...,4k — 12. The end-vertices
of this path are labeled & — 2 and 4k — 6.
Fourth, take the path P§(k_5) +1, the labeling f is defined on its vertices
bv:

(o]
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f(vo) = 4k — 6,
fluz)=4k—-4-3i,1<i< b8
flvaip1) =143, 0<i<iz8

The weight distribution is 4k — 10,4k — 11,4k — 14,...,2k + 5. The
end-vertices of this path are labeled 4k — 6 and 3k + 1.

Now, for each subcase consider the corresponding paths together with
the path Pory2, and connect them identifying the end-vertices with the
same labels. Thus, we have constructed a complete labeling of the cycle
C4m_1 for m > 3.

Before we consider the last case, note that the following subsets of
V(Cy) form a partition of V(Cy,): Vi = {v € V(Cy) : 0 < f(v) < 2k -1},
Va={veV(Cn): f(v) =2k},and V3 = {v € V(Cp) : 2k +1 < f(v) £
4k}.

Case 2: If m =0(mod4). That is C;, = Cy and k > 3.

In order to construct the complete labeling of Cy; we need Cyx—1 labeled
as in Case 1. The weight 1 will be obtained on the edge with end-vertices
labeled 2k —1 and 2k. Replace this edge by the path P; labeled 2k—1,2k+
1,2k (weights 1 and 2), and also add 1 to the label of every vertex of V3. So
the weights of the edges connecting vertices of V; and V5 with vertices of
V3 are increased one unit. Hence, we have Cy, with the complete labeling
required. Wl

LEMMA 3.1. Let G be a graph of size n and let f be a complete labeling
of G, such that the labels assigned by f are taken from {0,1,...,n—1,n+1}.
Then, when n,, ny > 2 the graph H = GU K, », 15 graceful.

Proof. Let {A, B} be the partition of K, ,,, where |A| =n,, |B| =
n2. Without loss of generality, we may assume that n; < ny. Let g :
V(H) - {0,1,...,n+nny} be a one-to-one mapping such that g assigns the
integers 0, 1, ...,71 —1 on the vertices of A, the integers n+ny,n+2n,,...,n+
ning on the vertices of B (inducing the weights n + 1,2+ 2, ...,n + nins.)
And for every v € V(G), we have g(v) = f(v) + n; (inducing the weights
1,2,...,n.)

Hence, we just need to check that all the labels used are different. The
labels on G are in the set {n),n; +1,...,2+n; —1,n+n; + 1}, the labels
on A are0,1,...,n; —1 and the labels on B are n+n;,n+2n1,...n+nyns.
Using the fact that n; > 2 we have that g is a graceful labeling of H. H

Now, we are able to prove our main theorem.

THEOREM 3.2. For any m = 0 or 3(mod4), m > 11 and ny, ny > 2,
the graph Cp, U K, n, is graceful.
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Proof. From the previous theorem we know that under these condi-
tions, Cr, has a complete labeling f with labels taken from {0,1,...,m —
1,m + 1}. Hence, applying Lemma 1 with this labeling, we have that
Cm UKy, n, is graceful. @

A slightly different version of the Lemma 1 is presented now.

LEMMA 3.2. Let G be a graceful graph of size n and let f be a graceful
labeling of G, such that the labels assigned by f are taken from {0,1,...,n—
2,n}. Then, when ny, ny > 2 the graph H = GU Ky, n, is also graceful.

Proof.  Let g be defined on the vertices of Ky, n, asin Lemma 1, and
for every v € V(G), we have now g(v) = f(v) + 1 +n;. So, the labels used
on G are in the set {1+n;,2+n;,...,2—1+n1,n+1+n;}. Then, the
labeling g is a graceful labeling of 7. W

For example, the labeling of K3 with labels 0, 1,3 or the labeling of K
with labels 0,1, 4,6, may be used to construct graceful labelings of K3 or
K4 union Ky, ,, with ny, ng > 2.

Consider the complete bipartite graphs Ko, n, and K, n, where 2 <
m; < n; (i = 1,2), with partition {A;, B;} and |A;| = my, [B;| = n;. Let
f be the labeling of K, », that assigns on the vertices of A; the integers
0,1,..,m; — 1 and on the vertices of B, the integers m,,2m,,...,mn;.
Since n; > 2 we have that f satisfies the conditions of Lemma 2; therefore,
Koy ny UKy n, is graceful. Note that the greatest labels used are mn; +
mong — mg and min; + meng; so, using the fact that my > 2 it can be
proved that K, n, U Ky ny U Kimg ng, Where 2 < mg < ng, is graceful.
Then, by recurrence we may prove the following theorem.

t
THEOREM 3.3. Let2 < m; < n; for 1 < < ¢ then, the union | ) Kum, n,

i=1

is graceful.

Combining the results of Theorem 4 and Lemma 2, the next theorem
can be proved.

THEOREM 3.4. For any m =0 or 3(mod4), m > 11 and 2 < m; < ng,
t
the union of Cy, and U Ko, n; ts graceful.

i=1

REMARK 3.1. All the graceful labelings of bipartite graphs constructed
here satisfy the conditions to be a-labelings.

Suppose now that m = 1 or 2(mod4) and that n; and ny are even,
by the parity condition we know that C,, U K, , cannot be graceful,
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however we do not know what happens when n; or ng is odd. In the
following theorem we show a nearly graceful labeling of Cy, that is the
complementary labeling of Cy,, that the author gave in [1). We will use this
labeling in the next theorem.

THEOREM 3.5. When m = 1 or 2(mod4), the cycle Crn has a nearly
graceful labeling f of kind 1.

We omit the proof and just give the labeling f. Let Cy, be described
by a circuit v, v2, ..., Um, V1.
When m = 1(mod 4),

m+1, ifi=1
flo) = m+1-(i+1)/2,ifi=3,5,...,(m—3)/2
' m+1—(1+3)/2,ifi=(m+1)/2,(m+5)/2,..,m
i/2-1, if ¢ is even,

When m = 2(mod 4),

m+1, ifi=1

m+1—(i+1)/2,ifi=3,5,..,(m —4)/2 and m > 10
m+1—(i+3)/2,if i =m/2,(m +4)/2,...,m — 1 for every m
/2 -1, if 4 is even.

f('vi) =

This labeling never assigns the label m on the vertices of C,. Then,
we may apply the idea of Lemma 1 to find a labeling of Cp, U Ky, ,n, whose
greatest label is m + nyng + 1.

THEOREM 3.6. For every m =1 or 2(mod4) and ni,ng > 2, the graph
Cm U Ky, n, has a labeling with mazimum label m + nyng + 1 and whose
induced weights are all different.

Proof. Let {A, B} be the partition of Ky, n,. The vertices of A and
B are labeled as in the proof of Lemma 1, but now we increase one unit
every label of B. Thus, the weights induced on Ky, », are m + 2,m +
3,...,m+niny + 1. The labels on A are 0,1, ...,7; — 1 and the labels on B
arem+m +1,m+2n +1,...m+nng+ 1.

Suppose now that the vertices of Cy, have been labeled using the func-
tion f of Theorem 7. Then, adding the constant n; + 1 on every vertex
labeled, we have a labeling of C,,, with weights 1,2,....m — 1 and m + 1.
The labels on C,, are now in the set {n; +1,n; +2,...,m +n; +2}. Thus,
every induced weigh appears exactly once and there are not overlapping of
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labels. Since the greatest label assigned is m +ning + 1, this is the labeling
required. W

As consequence of this theorem we have that grac(Cp, U Kp, n,) is m+
ning + 1 when both n; and ns are even; and that is at most m +nyng +1
otherwise. However, the author believes that when n; or ny is odd, the
graph Cp, U Ky, n, is graceful. We have some examples that support this
idea; for instance, from Section 2 we know that C, U K ,, is graceful for
every m > 7 and n > 1; we also know that C,, U K3, is graceful for
m € {5,6,9,10} and n odd greater than 1. Thus, is an open problem to
determine grac(Cp, U Ky, n,) for the cases where m = 1 or 2(mod4) and
7 Or ng is odd greater than 1.

To conclude, we summarize the results in the next table.

G grac(G)

Cm UKy, n, | m+ning for m =0 or 3(mod4) and ng,np > 2

Cm UKy, np, | m+ning +1 for m =1 or 2(mod 4) and n;,n; even
Cm UKy, n, | £ m+ ning otherwise
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