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Abstract

2-trees are defined recursively, starting from a single edge, by
repeatedly erecting new triangles onto existing edges. These have
been widely studied in connection with chordal graphs, series-parallel
graphs, and isolated failure immune (‘IFI’) networks.

A similar family, based on recursively erecting new K3, sub-
graphs onto existing edges, is shown to have analogous connections
to chordal bipartite graphs, series-parallel graphs, and a notion mo-
tivated by IFI networks.
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1 Introduction

Define 2-trees inductively as follows:

e K, is a 2-tree.

o If G is any 2-tree with e € F(G) and if H = Kj3 is vertex disjoint
from G with ¢/ € E(H), then the graph formed from G and H by
identifying edges e and e’ (along with their endpoints) is also a 2-tree.

Such 2-trees have been widely studied; see [2]. A nontrivial 2-treeis a 2-tree
with > 3 vertices. In the language of [5], the nontrivial 2-trees are precisely
the graphs that have ‘simplicial tree decompositions into triangles.’

The purpose of the present paper is to present and advocate a bipartite
analog of 2-trees, which can be roughly described as being based on quadri-
laterals (induced cycles of length four), instead of triangles. But this is not
done by simply replacing the role of triangles with quadrilaterals, as might
be expected from [4, 11]. A somewhat different approach is needed to pre-
serve connections with chordal graphs, series-parallel graphs, and isolated
failure immune networks, using the chordal graph connection as a guide.
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Section 2 will first survey 2-trees as chordal graphs, then Section 3 will
propose the (chordal) bipartite analog of 2-trees. Section 4 will look at
connections with isolated failure immune networks.

2 The chordal approach to 2-trees

A graph is chordal if every cycle of length at least four has a chord, that
is, every cycle long enough to have a chord, has a chord; see [2, §1.2] or [9,
Chapter 2] for details. A vertex v is a simplicial vertez in a graph G if its
open neighborhood N (v) induces a complete subgraph of G. A graph G has
a perfect vertex elimination ordering vy, ...,y if, foreach i < n = [V(G)],
v; is a simplicial vertex in the subgraph of G induced by {vi,...,v.}. A
graph is chordal if and only if it has a perfect vertex elimination ordering,
and the nontrivial 2-trees are precisely the chordal graphs in which the
simplicial vertex v; has degree two whenever i < n — 1.

Patil [10] seems to have been the first to mention what corresponds to
the following result.

Proposition 1 ([10]) A graph G is a nontrivial 2-tree if and only ifitis an
edge-minimal 2-connected chordal graph (in other words, G is 2-connected
and chordal, but deleting any edge would produce a graph that is not).

Another approach to 2-trees involves series-parallel graphs (2, §11.2), a
well-studied class that is traditionally studied in the context of multigraphs.
For our purposes, define 2-connected series-parallel graphs inductively as
follows:

® K3 is a 2-connected series-parallel graph.

¢ If G is 2-connected series-parallel with e € E(G) and if H & K is
vertex disjoint from G with ¢’ € E(H), then the graph formed from
G and H by identifying edges e and ¢’ (along with their endpoints)
is also a 2-connected series-parallel graph.

e If G is 2-connected series-parallel with vw € E(G) and z ¢ V(G),
then the graph formed by replacing vw with the path vz, zw is also a
2-connected series-parallel graph (i.e., closure under edge bisection).

This is also equivalent to G being 2-connected with no subgraph homeo-

morphic to K4 [2].

The following connection between 2-trees and series-parallel graphs cor-
responds to the result of Wald and Colbourn [12] that series-parallel graphs
are precisely the ‘partial 2-trees.’

Proposition 2 ([12]) A graph is a nontrivial 2-tree if and only if it is
an edge-mazimal 2-connected series-parallel graph (in other words, G is 2-
connected series-parallel, but inserting any new edge would produce a graph
that is not).
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Theorems 3 and 4 are simple consequences of these two Propositions
that will have bipartite analogs in Section 3.

Theorem 3 A graph is a nontrivial 2-tree if and only if it is a 2-connected
series-parallel chordal graph.

Proof. Every nontrivial 2-tree is easily seen to be a 2-connected series-
parallel chordal graph.

Conversely, suppose G is a 2-connected series-parallel chordal graph.
Delete edges from G in order to produce an edge-minimal 2-connected
chordal graph G~, which is a 2-tree by Proposition 1. Insert edges into
G in order to produce an edge-maximal 2-connected series-parallel graph
G*, which is a 2-tree by Proposition 2. A simple inductive argument shows
that every 2-tree must have exactly 2|V| — 3 edges, so G- =G+ =G is a
nontrivial 2-tree. o

Define the sum of cycles to be the symmetric difference of the cycles’
edge sets, as in the usual treatments of cycle spaces.

Theorem 4 A 2-connected graph is a 2-tree if and only if every k-cycle is
uniquely the sum of k — 2 triangles (in other words, is the sum of a unique
set of k — 2 triangles).

Proof. The ‘only if’ direction follows by a straightforward induction argu-
ment, paralleling the recursive definition of 2-trees.

For the ‘if’ direction, suppose that G is 2-connected with every k-cycle
uniquely the sum of k—2 triangles. Jamison’s characterization [7] of chordal
graphs as those graphs in which every k-cycle is the sum of k — 2 triangles
shows that G is chordal. Every edge of G is either in only one triangle
(in which case its removal would destroy being 2-connected) or is in at
least two triangles (in which case it would be the unique chord of a 4-cycle,
and so its removal would destroy being chordal). Thus, G is edge-minimal
2-connected chordal, and the theorem follows from Proposition 1. ]

3 The chordal bipartite approach to 2x-trees

A graph is chordal bipartite if it is a bipartite graph in which every cycle
of length at least six had a chord, that is, every cycle long enough to have
a chord, has a chord; see [2, §3.3, 5.9] or [9, §7.3] for details and other
characterizations.

An edge vw is a bisimplicial edge in a graph G if N(v) U N(w) induces
a complete bipartite subgraph of G. A bipartite graph G has a perfect
edge elimination orderinge,, ..., e, (called a ‘perfect edge-without-vertex
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elimination ordering’ in [2]) if, for each i < m = |E(G)], e; is a bisimplicial
edge in the subgraph of G consisting of {e;,...,em}. For convenience,
delete every degree-one vertex that is formed along the way. A graph is
chordal bipartite if and only if it has a perfect edge elimination ordering;
see [1, 2].
Define 2x-trees inductively as follows:
o K5 is a 2x-tree.
o If G is any 2x-tree with e € E(G) and if H = K35 (h > 2) is vertex
disjoint from G with ¢’ € E(H), then the graphs formed from G and
H by identifying edges e and ¢’ (along with their endpoints) are also
2x-trees.
As shown in Figure 1, two graphs can be produced in the recursive step
when h > 2, depending on which end of e is identified with which end of ¢'.
A nontrivial 2x-tree is a 2x-tree with > 3 vertices. In the language of [5],
the nontrivial 2x-trees are precisely the ‘simplicial tree decompositions into

Kaps.’

Figure 1: The two 2x-trees built from one K3 3 and one K3 .

Notice that a graph is a 2+-tree if and only if it has a perfect edge elim-
ination ordering ey, ..., ey such that each e; = viyw; has N(v;) U N (w;) =
Ko (h > 2) whenever i < m — 2. This is the bipartite analog of a graph
being a 2-tree if and only if it has a perfect vertex elimination ordering
v1,...,Vn such that each v; has N(v;) = K> in the subgraph of G induced
by {vi,...,vn} whenever i< n—1.

While every 2-tree satisfies |E| = 2|V|—3, Figure 2 shows that the num-
ber of vertices of a 2+-tree does not determine the number of edges. This

L[] <>

Figure 2: Two 2#-trees with the same number of vertices, but not of edges.

is one of several important differences between the studies of 2-trees and
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2x-trees. Another difference is that, although Corollary 6 will be the analog
of Proposition 1, Figure 3 shows there is no direct analog to Proposition 2:
The graph there is edge-maximal 2-connected series-parallel and bipartite,
yet is not a 2x-tree.

Figure 3: An edge-maximal 2-connected series-parallel bipartite graph that is
not a 2x-tree.

In spite of the failure of a Proposition 2 analog, Theorem 5 is the bi-
partite analog of Theorem 3; Corollary 6 and Theorem 7 are the bipartite
analogs of Proposition 1 and Theorem 4, respectively.

Theorem 5 A graph is a nontrivial 2x-tree if and only if it is a 2-connected
series-parallel chordal bipartite graph.

Proof. The ‘only if’ direction follows by a straightforward inductive argu-
ment, paralleling the recursive definition of 2«-trees.

Conversely, suppose G is 2-connected series-parallel and chordal bipar-
tite. Suppose vw is a bisimplicial edge of G and H is the complete bipartite
subgraph of G induced by N(v)U N(w). Since G is 2-connected and series-
parallel, G cannot contain a K3,3 subgraph, and so either |[N(v)| = 2
or |[N(w)| = 2. Without loss of generality, suppose H = K, (h > 2)
where N(w) = {v,w'} and h = |[N(v)|. If H = G, then G is a 2#-tree.
Otherwise, assume (inductively) that every chordal bipartite, 2-connected
series-parallel proper subgraph of G is 2#-tree. Because G is 2-connected
and series-parallel, G cannot contain a subgraph homeomorphic to K, and
so no two of vertices in N(v) — {w} can have degree greater than 2. If
every vertex in N(v) — {w} has degree 2, then (since w’' cannot be a cut
vertex) G = H = K, 4, and so G is a 2x-tree. So suppose v € N(v)
such that N(v') > 3 and every vertex in N(v) — {v'} has degree 2. Then
H = K j, shares only the edge v'w’ in common with the graph G~ induced
by (V(G) — N[v]) U {v'}, where the inductive hypothesis implies that G~
is a 2#-tree. Therefore, G is a nontrivial 2%-tree. x|

Corollary 6 A graph is a nontrivial 2x-tree if and only if it is an edge-
minimal 2-connected chordal bipartite graph.

Proof. The ‘only if’ direction follows by a straightforward inductive argu-
ment, paralleling the recursive definition of 2x-trees.
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Conversely, suppose G is a graph with as few vertices as possible such
that G is an edge-minimal 2-connected chordal bipartite graph that is not
series-parallel (arguing toward a contradiction with Theorem 5). Then G
is not itself complete bipartite and contains a subgraph H that is home-
omorphic to Kj; assume H has the minimum number of vertices among
such subgraphs and (since induced subgraphs of chordal bipartite graphs
are chordal bipartite, and using the assumed minimality of |V (G)|) assume
H spans G. Let vw be any bisimplicial edge of G. Since G is 2-connected
but not complete bipartite, there must be vertices v € N(v) — {w} and
w’ € N(w)— {v} that have neighbors outside of H, and so such that v'w’ is
an edge in a cycle of G that contains no other vertex of N(v) U N(w). But
then the subgraph of G induced by V(G) - {v, w} would also contain a sub-
graph homeomorphic to K4 with two fewer vertices than H, contradicting
the assumed minimality of |V(H)|. o

Theorem 7 A 2-connected graph is a 2x-tree if and only if every k-cycle
1s uniquely the sum of % — 1 quadrilaterals.

Proof. The ‘only if’ direction follows by a straightforward induction argu-
ment, paralleling the recursive definition of 2#-trees.

For the ‘if’ direction, suppose that G is 2-connected with every k-cycle
uniquely the sum of k¥/2 — 1 quadrilaterals. The characterization in [8] of
chordal bipartite graphs as those graphs in which every k-cycle is the sum
of k/2 — 1 quadrilaterals (which implies that ¥ must be even and so that
the graph is bipartite) shows that G is chordal bipartite. Every edge of G is
either in only one quadrilateral (in which case its removal would destroy be-
ing 2-connected) or is in at least two quadrilaterals (in which case it would
be the unique chord of a 6-cycle, and so its removal would destroy being
chordal bipartite). Thus, G is edge-minimal 2-connected chordal bipartite,
and the theorem follows from Corollary 6. (]

Observe that each 2#-tree can be simply altered to become a 2-tree by
inserting one edge into each K3, factor (b > 2) so as to make it into a
K ,1,5. Since a simple inductive argument shows that a 2#-tree contains
exactly 2|V (G)| - |E(G)| — 3 many K factors, exactly that many edges
need to be inserted to form the 2-tree.

4 Chordal (bipartite) versions of IFI networks

A set S of elements—meaning S C V(G) U E(G)—is a separating set of a
connected graph G if the removal of all the elements in S leaves a subgraph
that is not connected. (Removing the elements of S includes deleting all
the edges incident with each vertex in S, but not deleting an endpoint of an



edge in S unless that vertex is also in S.) A set S of elements is isolated [6)
if:

e No two vertices in S are incident with a common edge of G.

¢ No two edges in S are incident with a common vertex of G.

¢ No vertex v and edge e in S are incident with, respectively, an edge

¢’ and vertex v’ of G such that v’ is incident with ¢’ (and so v is not
incident with e).

In [6], Farley introduced isolated failure immune—or IFI—networks as
graphs in which no isolated set of elements is a separating set. Recent
papers on IFI networks include [3, 13]. Observe that a straightforward in-
ductive argument shows that every chordal graph is an IFI network. The
intimate connection between IFI networks and 2-trees includes Proposi-
tion 8.

Proposition 8 ([6]) Every 2-connected graph that has a spanning 2-tree
is an IF] network.

Figure 4 shows that the converse to Proposition 8 fails (contrary to a
misstatement in [13]). The graph in Figure 4 is IFI by [6, Theorem 1], but
any spanning 2-tree would have to contain all four ‘corner’ triangles, and
so the other four triangles as well.

Figure 4: A graph that is an isolated failure immune network, but has no
spanning 2-tree; it is also edge-minimal IFI, but not edge-minimum.

An IFI network is edge-minimum if it has the minimum possible number
of edges, 2|V|—~3; it is edge-minimal if deleting each edge would leave a non-
IF1 network. Farley [6] also showed that every 2-tree is an edge-minimum
(and so edge-minimal) IFI network. Wald and Colbourn [12] then showed
that every edge-minimum IFI network is a 2-tree—but not every edge-
minimal IFI network is, as Figure 4 also shows (contrary to a misstatement
in [3]). These results combine to give Proposition 9.

Proposition 9 ([6, 12]) A graph is a 2-tree if and only if it is an edge-
minimum I[FI network,

Theorem 10 is similar to Proposition 9, but is stated in terms that will
have an analog for 2#-trees in Theorem 11 (using edge-minimal instead of
edge-minimum, as is necessary because the number of vertices does not
determine the number of edges in a 2*-tree).
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Theorem 10 A graph is a 2-tree if and only if it is chordal and edge-
minimal with respect to every separating set of elements containing two
elements from a common triangle.

Proof. The ‘only if’ direction follows by a straightforward inductive argu-
ment, paralleling the recursive definition of 2-tree.

Conversely, suppose G is chordal and is edge-minimal with respect to
every separating set of elements containing two elements from a common
triangle, yet G is not a 2-tree (arguing toward a contradiction); moreover,
among all such G, assume G has a minimum number of vertices. Then, since
G is chordal, there exists a simplicial vertex v of G (meaning that N(v)
induces a complete subgraph K, in G). By G’s assumed vertex-minimality
as a non 2-tree, a > 3. Let G~ = G — v. By G’s edge-minimality, there
exists a separating set S~ of elements of G, no two of whose elements lie
in a common triangle of G~ assume as well that S~ is element-minimal (in
other words, no proper subset of S~ has the property of being a separating
set of G~ with no two elements in a common triangle of G™).

CAsE 1: S~ is also a separating set for G. Then G being edge-minimal
ensures that some two elements z and y of S~ must lie in a common triangle
of G; since there can be no such triangle in G~, that common triangle must
also contain v. But then a > 3 would imply that N(v) already contained a
triangle in G~ that contained z and y (a contradiction).

CASE 2: S~ is not a separating set for G. Yet S~ U {v} is a separating
set for G. Since some two elements of S~ U {v}—but no two elements
of S~—are in a common triangle, v must be in a common triangle with
some element z of S~; indeed z will be the unique element of S~ inside the
subgraph induced by N (v). If z is an edge, then a > 3 would imply that the
endpoints of z are still connected inside N(v) in G~, and so S~ —{z} would
also be a separating set of G~ (contradicting S~ being element-minimal).
If = is a vertex, then S~ U {v} being a separating set for G would imply
the same for S~ (contradicting the premise of Case 2). o

Theorem 11 A graph is a 2+-tree if and only if it is chordal bipartite and
edge-minimal with respect to every separating set of elements containing
two elements from a common quadrilateral.

Proof. The ‘only if’ direction follows by a straightforward inductive argu-
ment, paralleling the recursive definition of 2x-trees.

Conversely, suppose G is chordal bipartite and is edge-minimal with
respect to every separating set of elements containing two elements from a
common quadrilateral, yet G is not a 2#-tree (arguing toward a contradic-
tion); moreover, among all such G, assume G has a minimum number of
vertices. Then, since G is chordal bipartite, there exists a bisimplicial edge
vw of G where N(v) U N(w) induces a K, in G. By G’s assumed assumed
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vertex-minimality as a non 2+-tree, both a,b > 3. Let G~ = G — vw. By
G’s edge-minimality, there exists a separating set S~ of elements of G—, no
two of whose elements lie in a common quadrilateral of G~ ; assume as well
that S~ is element-minimal.

CASE 1: S~ is also a separating set for G. Then G being edge-minimal
ensures that some two elements z and y of S~ must lie in a common quadri-
lateral of Gj since there can be no such quadrilateral in G~, that common
quadrilateral must also contain edge vw. But then a,b > 3 would imply
that N(v) U N(w) also contained a quadrilateral in G- that contained z
and y (a contradiction).

CASE 2: S is not a separating set for G. Yet S~ U{vw} is a separating
set for G. Since some two elements of S~ U {vw}—but no two elements of
S~ —are in a common quadrilateral, vw must be in a common quadrilateral
with some element z of 5~ ; indeed z will be the unique element of S~ inside
the subgraph induced by N(v) UN(w). If z is an edge, then a,b > 3 would
imply that the endpoints of z are still connected inside N (v) U N(w) in
G~, and so S~ — {vw} would also be a separating set of G~ (contradicting
that S~ is element-minimal). If = is a vertex, then S~ U {vw} being a
separating set for G would imply the same for S~ (contradicting the premise
of Case 2). u}
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