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A vertex labeling for a graph G is an assignment f of labels to the vertices
of G. In some cases, a vertex labeling induces a labeling on edges, with the
label associated with the edge zy determined only by the label values of the two
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Abstract

In this paper, we introduce, for the first time, the notion of self-dual
modular-graceful labeling of a cyclic digraph. A cyclic digraph G(V, E)
is a digraph whose connected components are directed cycles. The line
digraph G*(V*, E) of the cyclic digraph G is the digraph where V" = B,
E* =V, and if a, B are two edges of G which join vertex = to vertex y
and vertex y to vertex z respectively, then in the digraph G, y is the edge
joining vertex « to vertex 8. A labeling f for a cyclic digraph of order n
is a map from V to Zn+1. The labeling f induces a dual labeling f° for
G” by fMa) = f(x) — f(y), where « is an edge of G which joins vertex
z to vertex y. A self-dual modular-graceful cyclic digraph G is a cyclic
digraph together with a labeling f where the image f(V) = Z;,, and
(G*, f*) is an isomorphic digraph of (G, f). We prove the necessary and
sufficient conditions for the existence of self-dual modular-graceful cyclic
digraphs and connected self-dual modular-graceful cyclic digraphs. We
also give some explicit constructions of these digraphs in the case n+1is
prime and in the general case where n + 1 is not prime.

Introduction

vertices, that is f(z) and f(y).

Important labeling methods are graceful labelings and harmonious labelings,
where the vertex labels are determined by an injective function from the vertex
set V to the label set, which is normally N or Z,, and the label of an edge zy
is defined as | f(z) — f(y)| and f(z) + f(y) respectively. For detailed surveys on

graph labeling please refer to {1, 2].
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We introduce a new type of labeling for cyclic digraphs called a modular-graceful
labeling in which the vertices are labeled by elements of the set Z,, ;. A labeling
f for a cyclic digraph G induces a dual labeling f* for the line digraph G* of
G in a natural way: if in the digraph G, « is an edge that joins a vertex z
to a vertex y then, in the line digraph G*, the dual labeling f* assigns a to
the value f*(a) = f(x) — f(y). In this paper, we study the interesting special
case where the labeling is self-dual, i.e. the line digraph with the dual labeling
is isomorphic to the original digraph with the original labeling, and the label
values are all the numbers in the set Z,,, = {1,2,...,n}.

We prove that self-dual modular-graceful cyclic digraphs exist for even values
of n and give constructions for these digraphs when n + 1 is a prime. We also
give a construction for general values of n (n + 1 not prime).

The paper is organized as follows. In section 2, we give a formal definition of
self-dual modular-graceful cyclic digraphs. In section 3, we derive a necessary
and sufficient condition for the existence of a self-dual modular-graceful cyclic
digraph. Connected self-dual modular-graceful cyclic digraphs are considered
in section 4. We introduce the notion of label polynomial of a connected cyclic
digraph and give a necessary and sufficient condition on the label polynomial
for which a connected self-dual modular-graceful cyclic digraph exists. We also
give a construction of a connected self-dual modular-graceful cyclic digraph in
the case n + 1 is prime. Section 5 deals with self-dual modular-graceful cyclic
digraphs in general (n+1 is not prime) and gives a construction of these digraphs
of even orders. Finally, we conclude the paper with open questions. Included
in the Appendix is the list of all self-dual modular-graceful cyclic digraphs of
orders from 8 to 16 constructed by several methods. in sections 3, 4, and 5.

2 Definition

Let G(V, E) be a digraph (directed graph) with V' denotes the set of vertices
and E denotes the set of edges. For an edge a € E and two vertices z,y € V,
we write @ = 2y to denote that the edge a joins the vertex z to the vertex y.
The edge a is said to be incident from vertex z and incident to vertex y.

Definition 1 Let n be a positive integer. A directed cycle of order n is a
digraph with n vertices and n edges such that if x;, z2, ..., T, denote the n
vertices then the n edges are 124, 923, ..., TpT1.

Definition 2 A cyclic digraph is a digraph whose connected subgraphs are di-
rected cycles. In a cyclic digraph, the number of vertices is equal to the number
of edges and it is called the order of the digraph.

In this paper, we only consider cyclic digraphs. Figure 1 shows an example of
a cyclic digraph of order 11 which contains one directed cycle of order 1, one
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Figure 1: A cyclic digraph of order 11.

directed cycle of order 2 and two directed cycles of order 4.

Let G(V,E) be a cyclic digraph. The line digraph of G(V,E), denoted by
GMVA,EN), is the cyclic digraph whose set of vertices VA is equal to the
set of edges, E, of G, and whose set of edges E” is equal to the set of vertices,
V, of G, and if z is a vertex of the digraph G and a and B are two edges of
the digraph G such that « is incident to z and 8 is incident from z, then in the
digraph G*, z is the edge that joins the vertex a to the vertex 8. It is easy to
see that GM =G.

Note that if G is a general digraph then the number of edges of the line digraph
G” is not always equal to the number of vertices of G, so we cannot identify
E* with V. For more details on line digraphs we refer the reader to [3).

Figure 2 shows an example where G has V = {z,y,2,t}, E = {a = tz,8 =
zy,y = yz,6 = zt}, and its line digraph G has VA = E = {a,8,7,6}, E* =
V= {z=aB,y=Ppv,2=176,t=da}.

X B oy o X B
t 3 z 5 z Y

Figure 2: G and G/,

Let Zny = {0,1,2,...,n} be the complete set of residues modulo n + 1 and
Z; 1 = {1,2,...,n} be the set of non-zero residues. A labeling for a cyclic
digraph G is a function f which maps its vertex set V into the set Zny;. A
labeling f for G induces a labeling f* for G* as follows: label & = zy € E = VA
with fA(a) = f(z) — f(y). Note that f*" and f are generally two different
labelings for G. A cyclic digraph G with a labeling £ is denoted by (G, f).

Definition 3 Two labeled cyclic digraphs (G(V, E), f) and (G'(V',E'), ') are
called isomorphic, denoted by (G(V, E), f) ~ (G'(V', E'), '}, if and only if there
ezist two bijective functions, v:V = V' and e: E — E', satisfying

1. for any a € E and any z,y € V, a = zy if and only if e(a) = v(z)v(y),
2. foranyz €V, f(z) = f'(v(z)).
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Definition 4 A labeled cyclic digraph {G(V,E), f), of order n, is called self-
dual modular-graceful if and only if

1. the image f(V) =2},
2. (G(V, E), f) ~ (GMV™, EN), f7)

Figure 5: Another self-dual modular-graceful cyclic digraph of order 6.

It is easy to see that no self-dual modular-graceful cyclic digraph contains a
cycle component of order 1. Figure 3 shows the smallest self-dual modular-
graceful cyclic digraph. This digraph is a directed cycle of order 2. Two self-dual
modular-graceful cyclic digraphs of order 6 are shown in Figure 4 and Figure 5.
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3 Existence of self-dual modular-graceful cyclic
digraphs

We show that self-dual modular-graceful cyclic digraphs exist only for even
orders.

Theorem 1 For a positive integer n, there ezists a self-duval modular-graceful
cyclic digraph of order n if and only if n is even.

Proof. Firstly, if (G(V, E), f) is a self-dual modular-graceful cyclic digraph of
order n then

Y f@=1+2+..4n= 3 M= 3 (f=)-FG)

z€V a=zyeVA a=zyeVA
= Zf(-’c) - Zf(y) =0 (modn+1).
zeV yeV
And so 1
'n_(na-l—_) =0 (modn+1),

which implies that n is even.

Conversely, if n is even, for each i, 1 < i < n/2, let C; be the directed cycle of
order 2 with two vertices labeled by i and —i. Let U, be the union of all C;,
Ca, ..., C3. We show that Uy, is a self-dual modular-graceful cyclic digraph
of order n. Indeed, C, the line digraph of C;, has two vertices labeled by two
complement residues 2i and —2i. Since for any 1i;, i2 such that 1 < 1i; < iz <
n/2, we have 2i; =+ 2i; # 0 (mod n + 1), when i ranges from 1 to n/2, the n/2
sets of residues {2i,-2i} are pairwise disjoint. It follows that these n/2 sets
{2i, —2i} form a partition of Z},, and so, they form a permutation of the n/2
sets {i,—i}, 1 < i < n/2. This proves that U, and U2 are isomorphic, and Uy,
is a self-dual modular-graceful cyclic digraph. =

Figure 6: The self-dual modular-graceful cyclic digraph Us of order 6.

Theorem 1 shows that there exist only self-dual modular-graceful cyclic digraphs
of even orders. The second part of the proof gives a construction of the self-
dual modular-graceful cyclic digraph Uy,. Figure 6 shows the self-dual modular-
graceful cyclic digraph Us of order 6.
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Digraph U, contains n/2 directed cycles of order 2. Since a self-dual modular-
graceful cyclic digraph cannot contain cycles of order 1, Uy, is a self-dual modular-
graceful cyclic digraph with the most number of connected cycles. In contrast,
the digraph that has the least number of cycles is the connected digraph. In
the next section we derive a condition on connected self-dual modular-graceful
cyclic digraphs and give a construction of these digraphs in the case n + 1 is
prime.

4 Connected self-dual modular-graceful cyclic di-
graphs and their construction when n + 1 is
prime

In this section we will derive a necessary and sufficient condition for the existence
of a connected self-dual modular-graceful cyclic digraph of order n and present
a construction for the case when n + 1 is prime.

A connected self-dual modular-graceful cyclic digraph (G, f) contains exactly
one directed cycle. Let z;, 23, . . ., Zy be its vertices written in the edge-direction
order. Then f(z1), f(z2), - .-, f(2x) form a permutation of n elements of Z, ;.
In this section, the index i of z; is considered in modulo n. That is, zn43 and
x; are the same vertex.

The condition for (G, f) to be self-dual modular-graceful is that the values f(z),
f(z2), .., f(zs) must satisfy the following equations for some k, 1 < k < n,

flzn) = f(21) f(=),
f(@1) — f(z2) f(@ra1),

J(@n1) — f(zn) = f(za-1)-

We introduce the notion of label polynomial for a labeled connected cyclic di-
graph.

Definition 5 Let {G, f) be a labeled connected cyclic digraph of order n with
n vertices 1, T2, ..., Tn writlen in the edge-direction order. The following
polynomial in the ring Z,,,[t]/(t™ — 1)

G(t) = f(za) + f(Zn-1)t + f(Zn-2)t? + ... + flz)t" .
is called a label polynomial of (G, f}.

The label polynomial is not unique for a labeled connected cyclic digraph (G, f),
indeed it has n label polynomials depending on the way z; is chosen. Given a
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label polynomial, it uniquely determines the labeled connected cyclic digraph
(G, f) up to isomorphism.

Let
P(t) = an + an-1t +Gnat® +...+a;t" !

be an arbitrary polynomial in the ring Z,,[t]/(t® — 1). We have

tmP(t) = apt™+ap_1t™H +. ..t ami1tt I Fantt +amo1 7 4. L+ aptn ™oL
=apt™ + ap 1™ Lt ampat® e F Ayt + ..+ Gt
=am +am-1t + Gm-2t> + ...+ am+1tn_la

and so

(1-t- tk)P(t) = (an—0a1—ar)+(an-1 —Gn—8k—1)t+ (@n-2—Gn—-1— ak_z)tz-l-
ee.+ (a2 —az - apq2)t™2 + (ag —az — ak+1)t"‘1.
It follows that
(1-t-t5,)P@E)=0

is equivalent to
ap—a1 = G,
a—a = GQagy,
Gpn-1 —Qn = Q-1.

This proves the following theorem about a necessary and sufficient condition to
have a connected self-dual modular-graceful cyclic digraph of order n.

Theorem 2 If (G(V,E), f) is a connected self-dual modular-graceful cyclic di-
graph such that for some k,1 <k<n,

f(za) = flm) = flzx),
f(@) - f(x2) = f(xr41),

f(@n-1) — f(zn) = f(@E-1),
then in Zpy, [t)/ (1™ — 1) its label polynomial G(t) satisfies
1-t-tF)G@E) =o0.
Conversely, if there ezist a polynomial in the ring Z,,[t)/(t™ — 1),
G(t) = an+an_1t +an—at® +... + a;t™},
where (a1,...,a,) i @ permutation of elements of Z,,, such that
(1-t-tF)GE) =0

Jor some k, 1 < k < n, then we can form a connected self-dual modular-graceful
eyclic digraph (G(V, E), f) as f(z:) = a:.
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4.1 Construction of connected self-dual modular-graceful
cyclic digraphs when n + 1 is prime

Now suppose n + 1 = p is an odd prime. Let a be a primitive root modulo p.
Consider the following polynomial in Z[t]/(*~! — 1)

Pt)=a"2+aP 3 t+a" 2+ ... +at? P72

We have
(t—a)P@)=tr-l—aP =1 -1=0.

Since a is primitive, 1 ~ a is a non-zero element of Z,, and for some k,1 < k <
p— 1, we have

1-a=ad".
This means a is a root of the polynomial 1 — ¢ — ¢t*, and so ¢ — a is a factor of
1—t—t*. From (¢t — a)P(t) = 0, it follows that

(1-t-t5P@E)=0

Therefore, from Theorem 2, we have the following construction of connected
self-dual modular-graceful cyclic digraphs of order p — 1:

Theorem 3 Let p be an odd prime and a be a primitive element modulo p.
Let G be a directed cycle of order p — 1 with p — 1 vertices 21, z2, ..., Tp_1
written in the edge-direction order. The following labeling f(z,) = 1, f(z2) = a,
f(z3) =a?, ..., f(zp—1) = aP~2 makes G become a connected self-dual modular-
graceful cyclic digraph.

Since there are p(p — 1) primitive elements modulo p, using Theorem 3, we can
construct p(p— 1) different connected self-dual modular-graceful cyclic digraphs
of order p — 1. Figure 7 shows two such digraphs of order 6 which correspond
to thecase p=7and a = 3,5.

Figure 7: Two connected self-dual modular-graceful cyclic digraphs of order 6.

An open question is whether, in the case n + 1 is prime, there exist other
labelings than those given by Theorem 3. Also, in the case n + 1 is not prime,
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the question is whether there exists at all a labeling that results in a connected
self-dual modular-graceful cyclic digraph. We have written a computer program
to search for connected self-dual modular-graceful cyclic digraphs of orders up to
20. If n+1is not a prime number then our program finds no labelings, and if n+1
is prime then the outputs of our program are only those specified in Theorem 3.
This strongly suggests that there exist connected self-dual modular-graceful
cyclic digraphs of order n if and only if n 4+ 1 is prime, and there are exactly
p(n) non-isomorphic connected self-dual modular-graceful cyclic digraphs as
described in Theorem 3.

5 Construction of self~-dual modular-graceful cyclic

digraphs in the general case

Let n be an even positive integer. Let a be an integer such that
ged(a(a—1),n+1)=1.

Consider the multiplicative group {a) = {1, a,42,a%,...} generated by a modulo
n+ 1. Since ged(a,n+1) =1, for any 2 € Z7,, and any g = a* € (a), we have
9% € 23 . Therefore, the map (a) x Z,,, — Z;, sending (g,2) € (a) X Z},,,
to gz € Z},,, defines an action of the group (a) on the set Z;, ;.

The set Zy,,, is partitioned into orbits under this group action. Take an ar-
bitrary element z € Z},,,, if m is the least positive integer such that z(a™ —

1) = 0, then it is easy to see that the orbit of z under this action is {(a)z =
{2,2a,zd?,...,za™"1}.

Suppose Z;,,, is partitioned into s orbits

(@za = {1,a,a?...,a™ 1}, (here z; = 1),
(@)z2 = {22,220,228%,...,22a™ 1},
(0)2s = {%,28,20%...,26™ ).

For each i, 1 <1 < 8, let M; be the directed cycle with m; vertices labeled by
Zi, 2i@, . .., z;a™ 1 in the direction of edges. And let G be the union of all M;.
We will show that G is a self-dual modular-graceful cyclic digraph of order n.

Indeed, since ged(1—a,n+1) = 1, the following m; residues, (1—a)z;, (1-a)z:a,
(1 - a)z;a?, ..., (1 -a)z;a™ ! are distinct. Therefore, the orbit of (1 - a)z; is
(a)(1 - a)z; = {(1 — @)z, (1 — 6)zi, (1 — @)ia?, ..., (1 — a)zsa™ 1)

If z and 2’ are in different orbits then (1 —a)z and (1 —a)z’ are also in different
orbits. It follows that {(a)(1 —a)z1, (a)}(1 —a)z, ..., (a)(1 —a)z, are all distinct
orbits, and hence, they form a permutation of the orbits (a)z1, (@)z, ..., (@)z;.
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Since vertices of the line digraph M* are labeled with (1 — @)z, (1 — a)za,
(1 — @)z;a?, ..., (1 — a)z;a™~! in this order, it proves that G and G" are
isomorphic, and we have the following theorem:

Theorem 4 Let n be an even positive integer. Let a be an integer such that
ged(a(a—1),n+1) = 1. Under the group action (@) xZ%,, — Z?,,, (9,2) — gz,
let Z;,,, be partitioned into the following orbits

(a)zs = {1,@,a2,...,a™ "1}, (here z; = 1),
(a)zz = {2z2,22a,220%,...,20a™ 1},
(a)zs = {z,,2s0, 202, ...,2z,a™ 1},

Let G be the labeled cyclic digraph that formed by s directed cycles M;, where
in each directed cycle M;, vertices are labeled by z;, za, ..., z;a™™}! in the
direction of edges, then G i3 a self-dual modular-graceful cyclic digraph of order
n.

Theorem 4 is a generalization of Theorem 1 and Theorem 3. Indeed, in Theo-
rem 4, if we choose a = n then we have the digraph described in Theorem 1.
If n + 1 is prime, choose a to be a primitive element, then the group action in
Theorem 4 has only one orbit, and so the digraph it generates is connected as
in Theorem 3.

Example. Let n =8 and a = 5, ged(a(a - 1),n+ 1) =1,
(5) = {1,5,7,8,4,2}.
3 is partitioned into two orbits
Gy = {1,5,7,8,4,2},
(5)3 = {3,6}.

Figure 8 shows a self-dual modular-graceful cyclic digraph of order 8 which
contains two directed cycles whose vertices are labeled cyclically by elements of
the above two orbits.

Figure 8: A self-dual modular-graceful cyclic digraph of order 8.
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Included in the Appendix is the list of all self-dual modular-graceful cyclic di-
graphs of orders from 8 to 16 constructed by methods in sections 3, 4, and 5.
For instance, the first line n = 10 is the digraph that has five directed cycles of
order 2 labeled by (1,10), (2,9), (3,8), (4,7), (5,6) respectively. This digraph is
generated from Theorems 1 and Theorems 4 with a = 10. The asterisk next to
the order n = 10 indicates that n + 1 is a prime.

6 Open Problems

Below is a list of interesting open problems about self-dual modular-graceful
cyclic digraph:

1. Suppose n + 1 = p is prime. Does there exist any connected self-dual
modular-graceful cyclic digraph other than the p(p—1) digraphs generated
by Theorem 3?

2. Does there exist any connected self-dual modular-graceful cyclic digraph
of order n where nn + 1 is not prime?

3. Does there exist any self-dual modular-graceful cyclic digraph other than
the digraphs generated by Theorem 47
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Appendix

n | Digraph Thm#(a =#)

8 | (1,8)(2,7)(3,6)(4,5) 1, 4(8)
(1,2,4,8,7,5)(3,6) 4(2)
(1,5,7,8,4,2)(3,6) 4(5)

10* | (1,10)(2,9)(3,8)(4,7)(5,6) 1, 4(10)
(1,2,4,8,5,10,9,7,3,6) 3(2), 4(2)
(1,6,3,7,9,10,5,8 4,2) 3(6), 4(6)
(1,7,5,2,3,10,4,6,9,8) 3(7), 4(7)
(118,9’6)4’10’372’5’7) 3(8)1 4(8)
(1,3,9,5,4)(2,6,7,10,8) 4(3)
(1,4,5,9,3)(2,8,10,7,6) 4(4)
(1,5,3,4,9)(2,10,6,8,7) 4(5)
(1,9,4,3,5)(2,7,8,6,10) 4(9)

12% | (1,12)(2,11)(3,10)(4,9)(5,8)(6,7) 1, 4(12)
(1,2,4,8,3,6,12,11,9,5,10,7) 3(2), 4(2)
(1,6,10,8,9,2,12,7,3,5,4,11) 3(6), 4(6)
(1,7,10,5,9,11,12,6,3,8,4,2) 3(7), 4(7)

(1,11,4,5,3,7,12,2,9,8,10,6)

3(11), 4(11)

(1,3,9)(2,6,5)(4,12,10)(7,8,11)

4(3)

(1,4,3,12,9,10)(2,8,6,11,5,7) 4(3)
(1,5,12,8)(2,10,11,3)(4,7,9,6) 4(5)
(1,8,12,5)(2,3,11,10)(4,6,9,7) 4(8)
(1,9,3)(2,5,6)(4,10,12)(7,11,8) 4(9)
(1,10,9,12,3,4)(2,7,5,11,6,8) 4(10)

14 ] (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7.8) 1, 4(14)
(1,2,4,8)(3,6,12,9)(5,10)(7,14,13,11) 4(2)
(1,8,4,2)(3,9,12,6)(5,10)(7,11,13,14) 4(8)

16* | (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9) | 1, 4(16)
(1,3,9,10,13,5,15,11,16,14,8,7.4,12,2,6) 3(3), 4(3)
(1,5,8,6,13,14,2,10,16,12,9,11,4,3,15,7) 3(5), 4(5)
(1,6,.2,12,4,7,8,14,16,11,15,5,13,10,9,3) 3(6), 4(6)
(1,7,15,3,4,11,9,12,16,10,2,14,13,6,8,5) 3(7), 4(7)
(1,10,15,14,4,6,9,5,16,7,2,3,13,11,8,12) 3(10), 4(10)
(1,11,2,5,4,10,8,3,16,6,15,12,13,7,9,14) 3(11), 4(11)

(1,12,8,11,13,3,2,7,16,5,9,6,4,14,15,10)

3(12), 4(12)

(1,14,9,7,13,12,15,6,16,3,8,10,4,5,2,11)

3(14), 4(14)

(1,2,4,8,16,15,13,9)(3,6,12,7,14,11,5,10) 4(2)
(1,4,16,13)(2,8,15,9)(3,12,14,5)(6,7,11,10) 4(4)
(1,8,13,2,16,9,4,15)(3,7,5,6,14,10,12,11) 4(8)
(1,9,13,15,16,8,4,2)(3,10,5,11,14,7,12,6) 4(9)
(1,13,16,4)(2,9,15,8)(3,5,14,12)(6,10,11,7) 4(13)
(1,15,4,9,16,2,13,8)(3,11,12,10,14,6,5,7) 4(15)
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