ON LABELING THE UNION OF TWO CYCLES

JERRETT DUMOUCHEL AND SAAD I. EL-ZANATI 4520 MATHEMATICS DEPARTMENT ILLINOIS STATE UNIVERSITY NORMAL, ILLINOIS 61790-4520, U.S.A.

ABSTRACT. It is conjectured that any 2-regular graph G with n edges has a ρ -labeling (and thus divides K_{2n+1} cyclically). In this note we show that the conjecture holds when G has at most two components.

1. Introduction

If a and b are integers we denote $\{a, a+1, \ldots, b\}$ by [a, b]. Let N denote the set of nonnegative integers and \mathbb{Z}_n the group of integers modulo n. For a graph G, let V(G) and E(G) denote the vertex set of G and the edge set of G, respectively. Let $V(K_v) = \mathbb{Z}_v$ and let G be a subgraph of K_v . By clicking G, we mean applying the isomorphism $i \to i+1$ to V(G). Let K and G be graphs such that G is a subgraph of K. A G-decomposition of K is a set $\Gamma = \{G_1, G_2, \ldots, G_t\}$ of subgraphs of K each of which is isomorphic to G and such that the edge sets of the graphs G_i form a partition of the edge set of K. If K is K_v , a G-decomposition Γ of K is cyclic if clicking is a permutation of Γ . If G is a graph and Γ is a positive integer, Γ denotes the vertex disjoint union of Γ copies of G.

For any graph G, an injective function $h:V(G)\to\mathbb{N}$ is called a *labeling* (or a *valuation*) of G. In [15], Rosa introduced a hierarchy of labelings. We add a few items to this hierarchy. Let G be a graph with n edges and no isolated vertices and let h be a labeling of G. Let $h(V(G))=\{h(u):u\in V(G)\}$. Define a function $\bar{h}:E(G)\to\mathbb{Z}^+$ by $\bar{h}(e)=|h(u)-h(v)|$, where $e=\{u,v\}\in E(G)$. Let $\bar{E}(G)=\{\bar{h}(e):e\in E(G)\}$. Consider the following conditions:

- (a) $h(V(G)) \subseteq [0, 2n],$
- (b) $h(V(G)) \subseteq [0, n],$
- (c) $\bar{E}(G) = \{x_1, x_2, \dots, x_n\}$, where for each $i \in [1, n]$ either $x_i = i$ or $x_i = 2n + 1 i$,
- (d) $\bar{E}(G) = [1, n]$.

If in addition G is bipartite, then there exists a bipartition (A, B) of V(G) (with every edge in G having one endvertex in A and the other in B) such that

- (e) for each $\{a,b\} \in E(G)$ with $a \in A$ and $b \in B$, we have h(a) < h(b),
- (f) there exists an integer λ such that $h(a) \leq \lambda$ for all $a \in A$ and $h(b) > \lambda$ for all $b \in B$.

Then a labeling satisfying the conditions:

- (a), (c) is called a ρ-labeling;
- (a), (d) is called a σ -labeling;
- (b), (d) is called a β -labeling.

A β -labeling is necessarily a σ -labeling which in turn is a ρ -labeling. If G is bipartite and a ρ , σ or β -labeling of G also satisfies (e), then the labeling is *ordered* and is denoted by ρ^+ , σ^+ or β^+ , respectively. If in addition (f) is satisfied, the labeling is *uniformly-ordered* and is denoted by ρ^{++} , σ^{++} or β^{++} , respectively.

A β -labeling is better known as a graceful labeling and a uniformly-ordered β -labeling is an α -labeling as introduced in [15].

Labelings are critical to the study of cyclic graph decompositions as seen in the following two results from [15] and [8], respectively.

Theorem 1. Let G be a graph with n edges. There exists a cyclic G-decomposition of K_{2n+1} if and only if G has a ρ -labeling.

Theorem 2. Let G be a graph with n edges that has a ρ^+ -labeling. Then there exists a cyclic G-decomposition of K_{2nx+1} for all positive integers x.

Let G be a graph with n edges and Eulerian components and let h be a β -labeling of G. It is well-known (see [15]) that we must have $n \equiv 0$ or 3 (mod 4). Moreover, if such a G is bipartite, then $n \equiv 0 \pmod 4$. These conditions hold since for such a G, $\sum_{e \in E(G)} \bar{h}(e) = n(n+1)/2$. This sum must in turn be even, since each vertex is incident with an even number of edges and $\bar{h}(e) = |g(u) - g(v)|$, where u and v are the endvertices of e. Thus we must have 4|n(n+1). Clearly, the same will hold if such a G admits a σ -labeling. We shall refer to this restriction as the parity condition. There are no such restrictions on |E(G)| if h is a ρ -labeling.

Theorem 3. (Parity Condition) If a graph G with Eulerian components and n edges has a σ -labeling, then $n \equiv 0$ or 3 (mod 4). If such a G is bipartite, then $n \equiv 0 \pmod{4}$.

The study of graph decompositions is a popular branch of modern combinatorial design theory (see [5] for an overview). In particular, the study of G-decompositions of K_{2n+1} (and of K_{2nx+1}) when G is a graph with n edges (and x is a positive integer) has attracted considerable attention.

The study of graph labelings is also quite popular (see Gallian [10] for a dynamic survey). Theorems 1 and 2 provide powerful links between the two areas. Much of the attention on labelings has been on graceful labelings (i.e., β -labelings). Unfortunately, the parity condition "disqualifies" large classes of graphs from admitting graceful labelings. This difficulty is compounded by the fact that certain classes of graphs with ρ -labelings meet the parity condition, yet fail to be graceful.

In this manuscript, we will focus on labelings of 2-regular graphs (i.e., the vertex-disjoint union of cycles). It is conjectured by El-Zanati and Vanden Eynden (see [3]) that every 2-regular graph G with n edges admits a ρ -labeling (and thus divides K_{2n+1} cyclically). Here, we shall show that this conjecture holds if G is 2-regular with at most two components.

2. Some of the Known Results for 2-regular graphs

The following is known for cycles (see [13], [14] and [8]).

Theorem 4. Let $m \geq 3$ be an integer. Then, C_m admits an α -labeling if $m \equiv 0 \pmod{4}$, a ρ -labeling if $m \equiv 1 \pmod{4}$, a ρ^{++} -labeling if $m \equiv 2 \pmod{4}$, and a β -labeling if $m \equiv 3 \pmod{4}$.

For 2-regular graphs with two components, we have the following from Abrham and Kotzig [2].

Theorem 5. Let $m \geq 3$ and $n \geq 3$ be integers. Then the graph $C_m \bigcup C_n$ has a β -labeling if and only if $m+n \equiv 0$ or 3 (mod 4). Moreover, $C_m \bigcup C_n$ has an α -labeling if and only if both m and n are even and $m+n \equiv 0 \pmod{4}$.

A restricted ρ -labeling (called a γ -labeling) for almost-bipartite graphs was introduced in [4]. A nonbipartite graph G is almost-bipartite if G contains an edge whose removal renders the graph bipartite. It was shown in [4] that if such a G with n edges admits a γ -labeling, then G divides K_{2nx+1} cyclically. It was also shown that odd cycles of length exceeding three and 2-regular graphs with one odd and one even component (with the exception of $C_3 \cup C_4$) admit γ -labelings.

For 2-regular graphs with more than two components, the following is known. In [12], Kotzig shows that $3C_{4k+1}$ admits a β -labeling for all $k \geq 2$. In [6], it is shown that rC_3 admits a ρ -labeling for all $r \geq 1$. In [9], Eshghi shows that $C_{2m} \bigcup C_{2n} \bigcup C_{2k}$ has an α -labeling for all m, n, and $k \geq 2$ with $m+n+k \equiv 0 \pmod 2$ except when m=n=k=2. In [1], Abrham and Kotzig show that rC_4 has an α -labeling for all positive integers $r \neq 3$. In [7], it is shown that rC_m admits a ρ -labeling for $m \geq 3$ and $m \geq 4$. An additional result follows by combining results from [8] and from [3].

Theorem 6. Let G be a 2-regular bipartite graph of order n. Then G has a σ^{++} -labeling if $n \equiv 0 \pmod{4}$ and a ρ^{++} -labeling if $n \equiv 2 \pmod{4}$.

In [11], Kotzig shows that if r > 1, then rC_3 does not admit a β -labeling. Similarly, he shows that rC_5 does not admit a β -labeling for any r. These 2-regular graphs (rC_3 for r > 1 and rC_5 for $r \ge 1$) fail to admit β -labelings even when the parity condition is satisfied. It is thus reasonable to consider labelings that are less restrictive than β -labelings when studying 2-regular graphs.

3. MAIN RESULTS

We shall show that if $m \geq 3$ and $n \geq 3$ are integers, then $G = C_m \cup C_n$ admits a ρ -labeling. By Theorem 5, if $m+n\equiv 0$ or 3 (mod 4), then G admits a β -labeling (and thus a ρ -labeling). By Theorem 6, if both m and n are even and if $m+n\equiv 2\pmod 4$, then G admits a ρ^{++} -labeling. By the results from [4], if $m+n\equiv 1\pmod 4$, then G admits a γ -labeling. Thus, it suffices to show G admits a ρ -labeling when $m+n\equiv 2\pmod 4$, and both m and n are odd. Some additional definitions and notational conventions are necessary.

Denote the path with consecutive vertices a_1, a_2, \ldots, a_k by (a_1, \ldots, a_k) . By $(a_1, a_2, \ldots, a_k) + (b_1, b_2, \ldots, b_j)$, where $a_k = b_1$, we mean the path $(a_1, \ldots, a_k, b_2, \ldots, b_j)$.

To simplify our consideration of various labelings, we will sometimes consider graphs whose vertices are named by distinct nonnegative integers, which are also their labels.

Let a, b, and h be integers with $0 \le a \le b$ and h > 0. Set d = b - a. We define the path

$$P(a,h,b) = (a,a+h+2d-1,a+1,a+h+2d-2,a+2,\ldots,b-1,b+h,b).$$

It is easily checked that P(a, h, b) is simple and

$$V(P(a, h, b)) = [a, b] \bigcup [b + h, b + h + d - 1].$$

Furthermore, the edge labels of P(a, h, b) are distinct and

$$\bar{E}(P(a, h, b)) = [h, h + 2d - 1].$$

These formulas will be used extensively in the proofs that follow.

FIGURE 1. The path P(0,3,5).

Theorem 7. Let x and y be positive integers and let $G = C_{4x+1} \bigcup C_{4y+1}$. Then G has a ρ -labeling.

Proof. Let G_1 and G_2 be the two cycles in G_1 defined as follows:

$$G_1 = P(0, 2x + 4y + 4, x - 1) + P(x - 1, 4y + 3, 2x - 1) + (2x - 1, 2x, 4x + 4y + 3, 0),$$

$$G_2 = P(4x + 4y + 4, 2y + 2, 4x + 5y + 4) + P(4x + 5y + 4, 3, 4x + 6y + 3) + (4x + 6y + 3, 4x + 6y + 5, 4x + 8y + 6, 4x + 4y + 4).$$

FIGURE 2. A ρ -labeling of $C_9 \bigcup C_{13}$.

Now we compute

$$V(G_1) = [0, 2x - 1] \bigcup [3x + 4y + 3, 4x + 4y + 1] \bigcup [2x + 4y + 2, 3x + 4y + 1]$$

$$\bigcup \{2x, 4x + 4y + 3\}$$

$$V(G_2) = [4x + 4y + 4, 4x + 6y + 3] \bigcup [4x + 7y + 6, 4x + 8y + 5]$$

$$\bigcup \{4x + 6y + 6, 4x + 7y + 4\} \bigcup \{4x + 6y + 5, 4x + 8y + 6\}.$$

We can order these as

$$[0, 2x - 1]$$
, $2x$, $[2x + 4y + 2, 3x + 4y + 1]$, $[3x + 4y + 3, 4x + 4y + 1]$, $4x + 4y + 3$ from G_1 , and

$$[4x + 4y + 4, 4x + 6y + 3], 4x + 6y + 5, [4x + 6y + 6, 4x + 7y + 4],$$

 $[4x + 7y + 6, 4x + 8y + 5], 4x + 8y + 6$

from G_2 . We see that the vertices of the two cycles are distinct and contained in [0, 8x + 8y + 4]. Note that if y = 1 then the set [4x + 6y + 6, 4x + 7y + 4] is empty. Likewise if x = 1 then [3x + 4y + 3, 4x + 4y + 1] will also be empty. These conditions however do not change the proof.

Likewise we compute

$$\bar{E}(G_1) = [2x + 4y + 4, 4x + 4y + 1]$$

$$\bigcup [4y + 3, 2x + 4y + 2] \bigcup \{1, 2x + 4y + 3, 4x + 4y + 3\},$$

$$\bar{E}(G_2) = [2y + 2, 4y + 1] \bigcup [3, 2y] \bigcup \{2, 2y + 1, 4y + 2\}.$$

We can order these as the edge label 1 from G_1 ,

$$2, [3, 2y], 2y + 1, [2y + 2, 4y + 1], 4y + 2$$

from G_2 , and

[
$$4y + 3$$
, $2x + 4y + 2$], $2x + 4y + 3$, [$2x + 4y + 4$, $4x + 4y + 1$], $4x + 4y + 3$ from G_1 . Thus $\bar{E}(G) = [1, 4x + 4y + 1] \cup \{4x + 4y + 3\}$. Since $2(4x + 4y + 2) + 1 - (4x + 4y + 3) = 4x + 4y + 2$, we have a ρ -labeling. As with the vertex labels, if $y = 1$ the set [3, 2y] will be empty. Likewise if $x = 1$, then [$2x + 4y + 4$, $4x + 4y + 1$] will also be empty. Neither condition would change the proof.

Theorem 8. Let x and y be nonnegative integers and let $G = C_{4x+3} \bigcup C_{4y+3}$. Then G has a ρ -labeling.

Proof. The two cycles will be defined as follows:

$$G_1 = P(0, 2x + 4y + 6, x) + P(x, 4y + 5, 2x) + (2x, 2x + 2, 4x + 4y + 7, 0),$$

$$G_2 = P(4x + 4y + 8, 2y + 4, 4x + 5y + 8) + P(4x + 5y + 8, 3, 4x + 6y + 8)$$

$$+ (4x + 6y + 8, 4x + 6y + 9, 4x + 8y + 12, 4x + 4y + 8).$$

Now we compute

$$V(G_1) = [0, 2x] \bigcup [3x + 4y + 6, 4x + 4y + 5] \bigcup [2x + 4y + 5, 3x + 4y + 4]$$

$$\bigcup \{2x + 2, 4x + 4y + 7\}$$

$$V(G_2) = [4x + 4y + 8, 4x + 6y + 8] \bigcup [4x + 7y + 12, 4x + 8y + 11]$$
$$\bigcup [4x + 6y + 11, 4x + 7y + 10] \bigcup \{4x + 6y + 9, 4x + 8y + 12\}.$$

We can order these as

$$[0, 2x]$$
, $2x + 2$, $[2x + 4y + 5, 3x + 4y + 4]$, $[3x + 4y + 6, 4x + 4y + 5]$, $4x + 4y + 7$ from G_1 , and

$$[4x + 4y + 8, 4x + 6y + 8], 4x + 6y + 9, [4x + 6y + 11, 4x + 7y + 10],$$

 $[4x + 7y + 12, 4x + 8y + 11], 4x + 8y + 12$

from G_2 . We see that the vertices of the two cycles are distinct and contained in [0,2(4x+4y+6)]=[0,8x+8y+12]. Note that if y=0, then the sets [4x+6y+11,4x+7y+10] and [4x+7y+12,4x+8y+11] are empty. Likewise if x=0, then the sets [2x+4y+5,3x+4y+4] and [3x+4y+6,4x+4y+5] will also be empty. This however does not change the proof.

FIGURE 3. A ρ -labeling of $C_7 \bigcup C_{11}$.

Likewise we compute

$$\bar{E}(G_1) = [2x + 4y + 6, 4x + 4y + 5] \bigcup [4y + 5, 2x + 4y + 4]$$

$$\bigcup \{2, 2x + 4y + 5, 4x + 4y + 7\},$$

$$\bar{E}(G_2) = [2y + 4, 4y + 3] \bigcup [3, 2y + 2] \bigcup \{1, 2y + 3, 4y + 4\}.$$

We can order these as the edge label 1 from G_2 , 2 from G_1 ,

$$[3, 2y + 2], 2y + 3, [2y + 4, 4y + 3], 4y + 4$$

from G_2 , and

[4y + 5, 2x + 4y + 4], 2x + 4y + 5, [2x + 4y + 6, 4x + 4y + 5], 4x + 4y + 7 from G_1 . Thus $\bar{E}(G) = [1, 4x + 4y + 5] \bigcup \{4x + 4y + 7\}$. Since 2(4x + 4y + 6) + 1 - (4x + 4y + 7) = 4x + 4y + 6, we have a ρ -labeling. Again, if y = 0, then the sets [3, 2y + 2] and [2y + 4, 4y + 3] are empty. Likewise if x = 0, then [4y + 5, 2x + 4y + 4] and [2x + 4y + 6, 4x + 4y + 5] will also be empty. These cases will not however change the proof.

4. Concluding Remarks

We summarize the known results for labelings of $C_m \bigcup C_n$ in the table below.

$m \pmod{4}$	$n \pmod{4}$	Labeling of $C_m \bigcup C_n$	Reference
0	0	α	[2]
0	1	γ	[4]
0	2	$ ho^{++}$	[3]
0	3	β	[2]
		γ if $(m,n) \neq (4,3)$	[4]
1	1	ρ	this paper
1	2	β	[2]
		γ	[4]
1	3	β	[2]
2	2	α	[2]
2	3	γ	[4]
3	3	ρ	this paper

Table 1. Labelings of $C_m \bigcup C_n$.

This work was done while the first author was an undergraduate student at Illinois State University. A group of undergraduates at Illinois State is currently investigating the various labelings of 2-regular graphs with three components.

REFERENCES

- J. Abrham and A. Kotzig, All 2-regular graphs consisting of 4-cycles are graceful, Discrete Math. 135 (1994), 1-14.
- [2] J. Abrham and A. Kotzig, Graceful valuations of 2-regular graphs with two components, Discrete Math. 150 (1996), 3-15.
- [3] A. Blinco and S.I. El-Zanati, A note on the cyclic decomposition of complete graphs into bipartite graphs, Bull. Inst. Combin. Appl., 40 (2004), 77-82.
- [4] A. Blinco, S.I. El-Zanati and C. Vanden Eynden, On the cyclic decomposition of complete graphs into almost-bipartite graphs, *Discrete Math.*, to appear.
- [5] J. Bosák, Decompositions of Graphs, Kluwer Academic Publishers Group, Dordrecht, 1990.
- [6] J.H. Dinitz and P. Rodney, Disjoint difference families with block size 3, Util. Math. 52 (1997), 153-160.
- [7] D. Donovan, S. I. El-Zanati, C. Vanden Eynden and S. Sutinuntopas, Labelings of unions of up to four uniform cycles, Australas. J. Combin., 29 (2004), 323-336.
- [8] S.I. El-Zanati, C. Vanden Eynden and N. Punnim, On the cyclic decomposition of complete graphs into bipartite graphs, Australas. J. Combin. 24 (2001), 209-219.

- [9] K. Eshghi, The existence and construction of α-valuations of 2-regular graphs with 3 components, Ph.D. Thesis, Industrial Engineering Dept., University of Toronto, 1997.
- [10] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., Dynamic Survey 6, 106 pp.
- [11] A. Kotzig, β-valuations of quadratic graphs with isomorphic components, Util. Math., 7 (1975), 263-279.
- [12] A. Kotzig, Recent results and open problems in graceful graphs, Congress. Numer. 44 (1984), 197-219.
- [13] A. Rosa, On the cyclic decompositions of the complete graph into polygons with odd number of edges, Časopis Pest. Mat. 91 (1966), 53-63.
- [14] A. Rosa, On the cyclic decomposition of the complete graph into (4m + 2)-gons, Mat.-Fyz. Časopis Sloven. Akad. Vied 16 (1966), 349-352.
- [15] A. Rosa, On certain valuations of the vertices of a graph, in: Théorie des graphes, journées internationales d'études, Rome 1966 (Dunod, Paris, 1967), 349-355.