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Abstract

In this paper we show the cordiality of following families of graphs:
(1) Pyramid graphs, (2) One point unions of plys, (3) One point
unions of wheel related graphs, (4) Path unions of shells of different
sizes, (5) Path unions of flags of different sizes.

By a graph G we always mean a simple loop-less graph with vertex
set V(G) and edge set E(G). Let f : V(G) — {0,1} be a binary map.
By vs(0) and vy(1) we mean the number of vertices which are assigned
the value 0 and 1 respectively by f. Such a binary function f induces
a mapping f : E(G) — {0,1} given by f(e) =| f(u) — f(v) | where
e = uv € E(G). By ef(0),e;(1) we mean the number of edges which are
assigned the values 0 and 1 respectively by f. The map f is called a cordial
labeling if | vs(0) —vp(1) |[< 1 and | ef(0) — ef(1) |< 1. A graph G is said
to be cordial if it admits a cordial labeling. For a binary labeling f of
a graph G, By the dual f we mean the labeling obtained by interchanging
the labels 0 and 1 in f. One notes that v;(0) = v;(l),'uf-(l) = vy(0) and
e;(0) = es(0),e4(1) = es(1). For a graph G by the indez of cordiality i(G),
we mean the minimum of | e;(0) — ey(1) | where the minimum is taken
over all the binary labelings of G which are equitable on the vertices. It
has been proved by Cahit that an Eulerian graph with number of edges
= 2( mod 4) is not cordial.

Pyramid Graphs
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The family {PY,,n = 1,2,---} of Pyramid Graphs is defined induc-

tively as follows:

Definition: The first member PY; is just Cy x K;. The vertex of K, is
denoted by u and the vertices of Cy are denoted by {u} ;,u} 5, u3,,u5,}
The edge set is given by

E(PYh) = {UU},j | 1<4,5 <2} U{u},ﬂ‘i,mui,z“%,za”%,zué,u“'13,1“}.1}'

PY, Base of PY2

If PY,_; is constructed inductively, then to construct PY,, one takes
new vertices {u’; | 1 <4,j < 2"}. This is added to PY,_; as the base for
PY,, in the form of the grid Pas X Pen. Thus,

V(PYy) V(PY. o) | Jfuly | 1<4,5 <27},

E(PYn-y) {uijulyn | 18527~ 1)

i=1

E(PY,)

an
Ufupjul, | 1Si<2m-1)
j=1

U{u:;lugi—l,-zj-l JULT UB 0y UL U0y, w7t ug; 50}
i'j
Thus, | V(PYs) |= 1+ 4+ 42 + - + 4" and | E(PY,) |=| E(PYa1) |

+4™ 4- 27~1(27 — 1), that is, PY, has odd number of vertices and even

number of edges.
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Theorem 1: The pyramid graph PY;, is cordial for every integer n > 1.
Proof: We define the labeling as follows: Define f(u) = 0, f(v],) =1=
fud ),

(u;) = 0 = f(u},). One can see that at this stage three vertices have
been labeled 0, two have been labeled 1, four edges have received label 0
and four edges have received label 1, that is the labeling is equitable on the

vertices as well as the edges.

1 1 1] 0 1 1 0 0

Base Labels of PY3

For the base of PY,,, we define f as follows:

flul;) = 1 i=1,0( mod 4)andj = 1,2( mod4),
f(ul;) = 0 i=1,0( mod 4)andj = 3,0( mod4),
flul;) = 1 i=2,3(mod 4)andj = 1,2( modd),
f(ul;) = 0 i=2,3( mod 4)andj = 3,0( mod4).

One can easily check that v;(0) =1+ 2+ 2% +.--+ 22"~  and vy(1) =
424234 ... 42201 That is, the labeling is equitable on the set of vertices
of PY,. We have seen that the labeling is equitable on the edges of PY;.
The cordiality of PY;, follows from the observation that the attachment and
labeling of each of the successive bases creates equal number of vertices as

well as edges with labels 0 and 1. g
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One Point Union of Plys

Definition: A t—ply P,(u,v) is a graph with ¢ paths, each of length at
least two and such that no two paths have a vertex in common except for

the end vertices v and v.

We say that a path P is of type ¢ if I(P) = i(mod4)),i = 1,2,3,4.
Denote by t;, the number of paths of the type ,i = 1,2,3, 4. Then

t=t+la+tz+tqg:----- (I)
If e =| E(P(u,v)) |, then
e=(t1 +2t2+ 3 t3)(mod4)------ (ID

Further, let ty =4 s; + 2,83 =4 s3+ 23,82 =2 82+ 20,84 =254+ 24,0 <
2y, 23 £ 3 and 0 < 22, 24 < 1. By (II), it follows that

e=x) +2x2+ 3 23(mod4)------ (ILI)

Since 2;, 23 take 4 values each and @, x4 take 2 values each, there will in all
be 64 cases to be considered for cordiality. In the following 8 cases, P, (u, v)
is Eulerian and by (III), e = 2 (nod4), and hence P, (u, v)is not cordial.

(1) $1=3}3=0;$g=3;4=1.
(2) 3y =a:3=a:4=0,:z:3=2.

4)zy =120 =24 = 0,23 = 3.
(8) 21 =2,20 =24 = 23 =0.
6) 21 =2=23,20 =24 = 1.
(N z1=3,20 =24 =0,23 =1.
B)zy =23 =320 =24 =1.

Cordiality of single plys have been studied in detail in [5]. Let P =
{u,v1,--- ,vn,v} be a typical path with end points » and v in the t-ply
Py (u,v). The length I(P) of this path is n + 1. The type of labelings to be
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used for such ¢—ply graphs have been given in detail in [5]. The classifica-
tion of plys is done according to the lengths of paths present in those plys.
We give only the relevant details herein in the form of a table, in which the
letters 'E’ and NE’ denote an Eulerian, non-Eulerian graph respectively.
Further let ’e’ be the number of edges in the corresponding ¢—ply graph
and let e = r(mod4),0 <7 < 3.

Property A A Az Aq As Ag B C

E/NE E NE | NE | NE E E NE E
r 0 1 3 2 3 1 0 2

0000 | 0030 | 0010 | 0021 | 0011 | 0031 | 0001 | 0020
0121 | 0111 | 0131 | 0100 | 0130 { 0110 { 0120 | 0101
1010 | 1000 | 1020 { 1031 | 1021 | 1001 | 1011 | 1030
1131 | 1121 §{ 1101 ( 1110 | 1100 | 1120 | 1130 | 1111
(z1,22,23,24) | 2020 | 2010 | 2030 | 2001 [ 2031 { 2011 | 2021 | 2000
2101 | 2131 | 2111 | 2120 | 2110 { 2130 | 2100 { 2121
3030 { 3020 | 3000 | 3011 | 3001 { 3021 | 3031 ; 3010
3111 | 3101 | 3121 | 3130 | 3120 | 3100 | 3110 | 3131

We next list the labelings that we will require, to label the various types
of plys in the one point unions. Throughout, we note that the vertex v in
the ply graph will be taken as the central vertex in the one point union.
We emphasize that the labelings listed here, are part of the huge list of
labelings provided in [5]. As we do not need the exact formulae of these
labelings, we take their exitance for granted.

As before,let e’ be the number of edges in the corresponding t—ply
graph and let e = r(mod4),0 < r < 3. We have to handle those plys which
are Eulerian with e = 2( mod4) rather carefully because they are not cor-
dial. Following table gives the list of all those labelings which we use.
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Type | E/NE f | Label | Label Relation of Relation of
foru | forw vertex labels edge labels
A B ay 1 0 vs(0) = vy(1) es(0) = ef(2)
[ 7% 1 0 vr(0) + 2 =vyp(1) er(0) = ez (1)
Az NE B 1 0 vy7(0) = vy (1) er(0) +1=¢ez(1)
B2 1 0 v(0) +2=vs(1) | es(0)+1=¢es(1)
B3 0 0 vr(0) =vr(1) +2 | ef(0) =e;z(1)+1
Ba 0 0 vs(0) = vyp(1) er(0) =esf(1)+1
Aj NE T 1 0 vr(0) = vp(1) er(0) =ep(1)+1
¥2 1 0 vr(0) +2=v5(1) | es(0) =e;(1) +1
Y3 0 0 vi(0) =vp(1) +2 | ef(0) +1 =¢s(1)
| 0 0 v7(0) =vs(1) | es(0)+1=¢e/(1)
Ay NE o 1 0 v7(0) +1 =vp(1) er(0) =ef(1)
d2 0 0 vs(0) =vs;(1) +1 | e(0) +2=e/(1)
As E 6, 1 0 vp(0) +1 =v(1) | ef(0) +1 =ef(1)
82 1 0 vr(0) +1=v,(1) | ef(0) = es(1) +3
As E " 1 0 vp(0) +1=v,(1) | es(0) = ep(1) +1
o2 1 0 vr(0) +1=10s(1) | e(0) +3 =es(1)
B NE # 0 0 vy(0) +1 =v(1) es(0) =ef(1)
p2| O 0 [v@=v(1)+1| es(0)=¢es(2)
pa| 1 | 0 [up0) +1=v,(1) | ef(0) =ef(1) +2
c E G| 1 0 vr(0) =vs(1) | es(0) =ep(1)+2
& 1 0 v7(0) =vp(1) | es(0) +2=es(2)
&3 1 0 | vs(0) +2=vs(1) | es(0) =ep(1) +2
& 1 0 vs(0) +2=1v;(1) | es(0) +2 = es(1)

We firstly observe that [for every labeling listed above, for each type

of graph, at least one end vertex has the label 0. Moreover, for each type
from {A;,---, Ag, B,C}, we have a labeling which is not cordial; in some of
them the vertices are not equitably labeled and in the remaining the edges
are not equitably labeled.

Definition: Let f be a cordial labeling of a single t-ply graph Pi(u,v,).
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Let f be a binary labeling of Py(u,v) such that flw) = fw), fw) = f(u).
Also, on any path, u,v1,v2,- - , s, in Py(u,v) let fw;) = f(vp—ita) e
F(v1) = fvn) f(wz2) = f(vn—-1) and so on. We call f the inversion labeling
of f. Then, v§(0) = v7(0),v5(1) = vp(1) 5 e5(0) = es(0),e7(1) = es(1).

Definition: Let P, (u;, v) be single t6)-plys, 1 < i < n. A one point union
G of these nt()-plys is the graph obtained by taking v as a2 common vertex
such that any two plys Py (ui,v) and Py (uj,v),1 # j are edge disjoint
and do not have any vertex in common except v.

Theorem: The one point union of 2 single ¢(-plys G is cordial if and only
if G is not Eulerian with | E(G) |= 2( mod 4).
Proof: Let n;,1 < i < 6 be the number of #(;-plys of Type 4; in G.
Let n7,ng denote the number of ¢(;)-plys of Types B, C respectively. Then
ni=2p;+7i,4=1,2,3,80<r; <land n; =4p; + 7,8 =5,6;0< 7 < 3.
Let f be a binary labeling of G described below: The labeling of G will
be done in two stages.Let 'u'f(O),v'!(l),e’f(O),e'f(l) denote the number of
vertices and edges which receive the label 0,1 respectively after Stage 1.
Let 'v; (0), 'u; (1), e; (0), e; (1) denote the number of vertices and edges which
receive the label 0,1 respectively at Stage 2.
Stage 1: In this stage we label vertices in all the plys except r; plys of the
respective type, 1 < i < 8. Those remaining will be labeled in Stage 2.

1

In each of I_%J graphs of Type A;, use the labeling o and for each of

the remaining I.%I-J graphs of Type A1, use the labeling dis. If ny is even,
all graphs of Type A; are labeled. If n; is odd, then one block of Type A;
remains. This will be labeled after Stage 2.

Out of 2p, of the graphs of Type A2, use the labeling 8, for each of p,
of these and the labeling B3 for each of the the other p, graphs. If na is
even, all the plys of Type 4, are labeled. If ns is odd the remaining ply
will be labeled in Stage 2.

Of 2ps of the graphs of Type As, use the labeling v, for each of p3 of
these and the labeling 3 for each of the other ps. If at all one ply of Type
Aj is remaining it will be labeled in Stage 2.
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In each of the n4 graphs of Type A4, use the labeling 6:1.

Out of 4ps of the graphs of Type As, for each of 3ps of these use the
labeling 9:1 and for each of the other ps graphs of the same type, use the
labeling 6a.

Out o{ 4pg of the graphs of Type Ag, for each of 3pg of these, use the
labeling ‘él and for each of the other pg graphs of the same type, use the
labeling ¢

In each of the n7 graphs of Type B use the labeling p,.

Out of 2pg of the graphs of Type C, for each of ps of these, use the
labeling & and for each of the other pg graphs of the same type, use the
labeling &;. Then
W(0) = | 3| (v 0 =1)+ | 2| (v, (0)=1) 420, (0) = 1) +pa(us, (0)-1)
37, (0)=1)+ps (v (0) ~ 1) ¥4 (v (0) ~1)+3ps(v; (0) ~1)+s v (0)~
1)+
Po(0,(0) = 1) +6(v, (0) = 1)+ 7{vy (0) — 1) + Pa(ve, (0) — 1) + pi(o; (0) -
1) + 1

=% J (Ve (1) = 1)+ | 2| (0, (1) + 1)+ g, (1) = 1) + pa(v, (1) + 1)
+p;.,~('v71 1)- 1)+p3(v,,3(1)+1)+n4v (1)+3p5v (1)+p5v (1)+3pe('v ( )
+p6(v (1) + n7vu, (1) + pslve, (1) — 1) +p8(v (1) +1)+ 1

=[2 J[vm(l)+v (1)]+z»{(v/s,(1)+vﬂ,(1)]+pa[v7,(1)+v»u(1)]+n4v (1)
+p5[3v (1)+v (1)]+p6[3v (1)+u (1)]+u-u,,..(1)+pg[v€,(1)+'v (1)]+1
But

V(1) = | 2| e (1) + v, (0] + Pl(03, (1) + 0, (1)] + palm (1)

o (D] +nav; (1) +ps[3uz (1) +v; (1] +p0[30; (1) +z (1) +n70,,(1) +
Palve, (1) + v (1)]

Thus v%(0) = vf(l)

Also,

€4(0) = | 5] lews (0) + €5, (0)] + pele, (0) + e, (0)] + Pslen, (0) + ey (0)) +
n4e-(0)

+p5[3e (0)+e (0)]+pa[3e (0)+e (0)]+n ep3(0)+pg[e€,(0)+e (0)]
=3 J[ea,(1)+e,,.(1)]+po[eal(1) ~Lren (O + 4l ()4 1 er (D -1]
+n4e1(1)+p5[3e ll(1)—1+e2(1)+3]+ps[3e¢l(1)+1+e¢2(1) 3]

124



+ nzeu, (1) + psleg, (1) +2 + eé(l) -2).

But we have

(1) = | B | (eas (1) + e, (1)] + Paless (1) + eay (1)) + slen (1) + exs (1] +
nge ‘,:1(1)

+p5[3e9=1 Q)+ 39’2(1)] +pe[36¢=1 (1)+ e; (1)] + nreuy (1) + psleg, (1) + ez ).
Consequently, we have e}(0) = e}(1).

We now list in tabular form, the 128 cases that arise due to the various
values of ;. The choice of the appropriate labeling made in each case is
indicated alongside, in brackets. Where r; > 1, we have more than one block
of the same type and the labeling used for each block is also mentioned.
Thus for instance an entry of the form 2y ,ij;g) means that for one of the
two blocks of that type we use the labeling é, and for the other block, we
use ¢p. Cases which are problematic are marked with an asterix () and

will be dealt with separately. The table is broken according to the value of

T9,73,75,7¢ and rg. f ry =1 we deal with it later.

re | rs rs 6 T8 Vertex condition Edge Condition
ofjof o 0 0 0 0

ojo]| o 0 1 * x

ojol] o Ué1) 0 vy (0) =v;(1) | es(0) =ep(1) +1
o|lof| o (1) 1(€2) | vr(0)+1=v7(1) | €} (0) +1=es(1)
0o 0 2 0 * *

olol o A d) | UE) | vj @ =vi(1)+1 ]| €f(0)=ef(1)
00| 0 |3édid)| O vi(0)=v (1) | er(0)+1=es(1)
0 (0] 0 [3(d1.é1,61) | 1UE) | vr(0) +1=0}(1) | ef(0) =ef(1)+1
0|0 |1d) 0 0 v (0) = v (1) | e (0)+1=es(1)
0| 0|16) 0 1&) | v (@) +1=v,(1) | €;(0) =ef(1) +1
0f0]|1d)| 1) 0 | v(@=v;Q) | er(0)=ep(1)
o{o] 1 1 1 x .

o fofu6)| 2bd) | 0 | O=vj0) |ej@=er)+1
00| 16) | 261,61) |1e) | vy (@ +1=1v;0) | er(0)+1=e5(1)
010 1_ ) 3_ i 0 * *

0| 0| 16) | 3br, b1, 61) | 1€2) | vy (O +1=w7(1) | €r(0)=ef(1)
ojof 2 0 0 * *
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Vertex conditon

r2 r3 s Ta 3" Edge Condition
0| o 261,61) 0 &) [ v (@) +1=v,(1) | ef(0) =€;(1)

0| o 2(61,61) W) 0 v (0)=vy(1) | ef(0)+1=¢5(1)
o o | 26.6) b)) | €D | vr(O) +1=v7(2) | €f(0) =€ (1) +1
0] 0 | 28n6) | 2Abud) | 0 | f(0)=wj(1) e7(0) = e} (1)
0 0 2 i ) 2 i 1 * *

o o | 26u8) [S@ene | 0 | =0 | o=@+
0 o 2A60,6) | 3(er.didi) | 1) | vr(0) +1=v7Q) [ €f(0)+1=e[(1)
0| 0 |3(6,61,6) 0 0 | v(0)=v;(1) |es(0)=ef(1)+1
0| 0 |3(6,61,6) 0 1(61) | v7 () +1=17(1) | €7 (0) +1=¢[(1)
0 0 N 3_ A 1‘ 0 * *

0 0 |36,6,6) Y1) &) | v (@) +1=v7(1) | ef(0) =€;(1)
0 0 |[3(6,6,6) | 20bb) 0 v (0) =vy(1) | ef(0)+1=¢e/(1)
0 0 |3(60,6,6) | 2di,6) [16) | v (O +1=vQ1) | ef(0) =ef(1)+1
0 0 |3(6.6,6) ] 3(bi,0,41) | 0 vy (0) = vy (1) €r(0) = e (1)

0 0 3 3 1 * *

0 | 1m) 0 0 0 e +1=v;Q1) | ef(0) =€ (1) +1
0 | 1(2) 0 0 H&) | w0 =v;(1) |ef(®+1=¢/(1)
0 | 1{va) 0 1(¢}) 0 v (O+1=0v;(1)] ef(0)= er(1)

0 | 1{72) 0 1@12 &) | v/ (0) =v;(1) er(0) = ey (1)

0 | 1(va) 0 2Ad) | 0 [vf(O) +1=v[(1) | €f(0) =ey(1)+1
0 | 1) 0 Ybud) | 1) | v =vi(1) | ef(0)=ef(1)+1
0 | i(n) 0 Abudnd) [ 0 | v@+1=vj(1) [ e}(@) =e;(1)

0 | 1(7) 0 | 3@uduen) | Ue) | O =vi() | efO)=e;()

0 | 1(m) 1(61) 0 0 | e +1=0v5(1) | ef(0)=e;(1)

0| 1w) | 18) 0 We | w0 =vf() | ef(0)=ef(1)

0 |1m)| 16 1) 0 | (O +1=v7(1) | €7(0) =ef(1)+1
0| 1R) | b ) | UE) | w0 =v;(1) |ef(0)+1=e)2)
0| 1m) [ 1) 2A06) | 0 | @ +1=v70)] ej0) =€)

0| UR) [ 1(6) 2Aéi,61) | UE) | vr(0) =v(1) e7(0) = €4 (1)

0 | 1(va) 1(9:1) 3(4’:1,@,05:1) 0 v; 0 +1= v’; (1) e','(O) = e';(l) +1
0 | 1(%) 1(6,) 3budid) | Ue2) | vf(0) =) (1) er(0) =ef(1)+1
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r2 ry r, ri 3 Vertex conditon Edge Coudition
0 Im) | 26,60 0 0 | v +1=2r(1) | ef(0) +1=ef(1)
0 (1) | 206.60) u Q) | w0 =vi() | ep0) =ef(1)+1
0 |1 | 206,60 1) 0 | @ +1=v() | €(0)=ef(1)
0 3w | 206,61 o) | UE) | v @ =wi(D) | ef(0) =ep(D)
0 {iw) | 2.0 | 2ébi) 0 | vf@+1=v;Q) | ef(O) =ef(1)+1
0 |ad) | 26,60 | Ade) | UE) | v @ =vi() | ej(O)+1=¢€f(1)
o |1w) | 2006 [3@neen | 0 | i@ +1=v70) | ef0) =€5(1)
0 ) | 2A6,6) | Bonenm) | 1E) 7 {0) = vy (1) ¢1(0) = 7 (1)
0 |10 | 36,660 0 0 [ +1=2) | €0 =€)
0 | ) | 36,66 " e | vy (0) =v;(1) €7 (0) = ef(1)
o |um|3d.dud) | 16 0 | w0 +1=17(1) | ef(0)+1=ep(1)
0 | 1R) | H6.6,8) | Ue) | UED) | w@=v1) |ef(0)=ep(1)+1
0 1(m) 3(0:.,9:1.9:1) 2(¢:I|§il) 0 ”'/'(0) +1= "’;(1) 8'1'(0) = 67(1)
0 | 1n) [3(6,6,6) | Adé) | UE) | vr(0)=vr() er(0) = ef(1)
0 | 1) | 36.60,6) | Btdioia) | 0 [ er (@) +1=v[() | ef(0) =ef(1)+1
0 | 1w | 306,66 | Heroo) | UE) | v (@) =vp(1) | ef(0) =ef(1)+1
1(81) 0 0 ] 0 [ oy +1=2v,() | €f(0) +1=¢;(1)
1(32) 0 0 0 1ED | vy (0) = v (1) ej(0) = ey (1)
1) | o 0 Yon) 0 |y @+1=0) | €5 (0) =€)
18s) | o 0 o) [ HE) | w0 =) ef(0) = ef(1)
18) | o 0 2, 1) 0 | +1=2v7(1) | ef(0) =ep(1)+1
Why | o 0 o) | UE) | w0 =2/Q) | €f(0)+1=e[(2)
1(34) 0 0 Yoo | 0 | uf@+1=97(1) | e5(0)=ep(1)
1betaz) | O 0 3 o.d) | 1E) | wf(0) =, (1) €(0) = ef(1)
Bs) | 0 16 0 0 e +1=v/(1) | e7(0) =es(1)
16 | o 16)) 0 W) | v @=vi) | €p(0)=ep()
A1) 1) o) 0 v +1=2,(1) | efO)+1=€7(1)
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r2 ra re i s Vertex conditon Edge Condition
) | o 1(6)) ) | )| @ =v) | €f)=ep1)+1
1(81) v 1) 2(45..,{,) 0 | W +1=) s (0) = ¢ (1)
1(Bs) 0 1(9:1) '-’gd;n._t';l} Ue) | wp(0) = v (1) ef(0) = ef (1)
) | 0 W6 | buene) | 0 [ wp@+1=vi1) | €f(0) =ef(1) +1
1B2) 0 1(6) Hbnono) | &) | @ =vi1) | ef(0)=cr(1)+1
18y | 0 | 2ddn 0 0| ef+1=v;0) | €0 +1=ef(1)s
Wy | 0 | 2ddn o W | ey @ =wi(1) | ef(0)+1=e72)
1@y | o | uendy o) 0 | HO+1=e) | e(0) = €5(1)
1(82) 0 -_»(e:.,o:. ) 154712 HE) | vf(0) = (1) ef(0) = ef(1)
180 [ 0 | 2A6,8) | Abé) | 0 | f@+1=v() | ef@)+1=¢[(1)
8 | o | 26,60 | 2Abue) | U | w0 =v;) | vi(0)=vj(1)+1
1(81) 0 201,6)) | 3@néid) | 0 [ @+1=2) | ef(0) =ep(1)
Ibetas) | O 261,01 | 3(biéue) [ 16D | v (O)=v;(1) | ef(0)+1=¢(1)
1{fa) 0 | 3(6,6..62) 0 0 e +1=v,Q) | ef(0) =e;(2)
ga) | o | 386160 0 Ha) | wp () =2(1) e7(0) = e7 (1)
1(31) 0 :;(;):,,ﬁ:,.o:,) 1(4,:, ) 1} :-';(0) +1= v.'l;(l) c';(O) +1= e;(l)
108 | 0 3880 | e | HED | O =) | ) =ef(1)+1
1060 [ 0 366000 Ada) | 0 | +1=vi() | er(0) =€)
W) | 0 360,80 2de) [N | O =vi) | ef@) =)
1(B) 0 3(6:1.9:1.9:1) 3({1,4’::.'.‘21) 0 | w0 +1=v(1) e (0)+1= er(1)
W8 | 0 |[36,60,6:) | 36nbud) | 1) | w0 =vf(1) | ef(0)=ef(1)+1
1B | 1m) 0 0 0 v (0)=v/(1) | ej(0)=ep(1)+1
1A | 1) 0 0 &S | e (0 +1=27(1) | ef(0) = ef(1)
) | 16 0 (1) 0| e@=v(1) | e;0)=er(1)+1
1) | 1) 0 You) | 1&) | wi0) +1=u7(1) | €f(0)+1=e;(1)
131) | Uz 0 Appan) | 0 | @) =0y 1) ef(0) = e7(1)
180 | 1) 0 Abron) | 1E) [ v (O +1=v(1) | €7(0) =e}(1)
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2 3 e 6 s Vertex conditon Edge Condition
1(81) | 1) 0 (b1, d) [ 0 ui(0) =vy(1) | er(0)+1=ep(l)
1(By) | 172) ] (b, b 0n) | UE) [ v/ (O +1=v(1) [ ef(0) =ef(1)+1
18 |14 | 1) 0 0 vi(0) = v (1) | ef(0) +1=ep(1)
180 | W) | 16) 0 HE) | v/ () +1=v7(1) | €f(0) =ep(1)+1
180 | 1) | 16 (1) 0 | wO=va) | e(0)=es1)
180 | 1) | 1060) 1) 1ED | @ +1=e1) | €7 (0) =€ (1)
1) | 16 | e Hbuo) | 0 | w0 =v(1) | e =ep(1)+1
1B | 9) | 1(6) Hbi,o) | HE) | vy () +1=127(1) | €f(0) +1=ef(1)
) [ 1w | 16 | 3@uduen | 0 | v @ =vi) | ef(0)=er(1)
180 [ 1) | 16) | 3(dudi,en) | 1ee) | v (0) +1=17(1) | €f(0) =ef(1) +1
1(83) | 1tm) | 261,61 0 0 | v =v;() | e (0)=es(1)
18) [ 10R) | 2616) 0 &) [ vp @ +1=v,1) | €f(0) = (1)
18 | 166 | 266061 e) 0 | w@=vi(1) |e0)+1=e;(1)
180 1) | 26,60 b)) | HO) | vi(@)+1=r5(1) | ef(0) =ef(1)+1
1) [ 1) | 26,8 | 2bnen) | 0 | w0 =vi(1) | ef(0) =ef(1)+1
1(31) § {7a) 2(0},1{,) 25&1,‘14;12 1) [ vy +1=v5(1) | ef(0) =er()
180 | 1d) | 200,80 | 3ndro) | 0 | i) =vi) | €f(0) =ef(1)+1
B | 1042) | 200,61) | 3(6udi,on) | 1E) | vp(0) +1=17(1) | e (0) +1=e5(1)
1B1) | 1(+2) | 3(61,61,62) 0 0 v () =vi(l) | er(0)=er(1)+1
1(By) | 1) [ 3(61,61,61) 0 &) | v (@) +1=15(1) | €(0)+1=¢ef(1)
1(81) | 1(72) 3(9:|,é:|.6’:|) 1(¢:|) 0 vy (0) = vy (1) er(0) = ef(1)
1B) | 1(F2) | 3(6:,61,61) 1(é1) 1€) | v @) +1=¢7(1) | ef(0)=e;(1)
1B | 1) | 3(61,81,80) | 2dno) | 0 | v (@ =vr(1) [ef(0)+1=ep(1)
B | 1642) | 3(60,81,62) | 2Aduon | U&) | w7 (0)+1=2p(1) | e}(0) =ef(1)+1
1B | 1) | 360.81.00) | 3B eren | 0 | w=wi) | €f(0)=er()
1B | 1am) | 3(60,60,80) | 31, é0.01) | 1€) | vj ) +1=127(1) | €7(0)=e}(1)

Excepting in the cases marked with an asterix(*), the above table shows that
v} (0)+vy (0) = v} (1)+vy (1) or v} (0)+vy (0) = v;(1)+v) (1)+1. If there remains
ablock of Type A, and if v} (0)+v}' (0) = v (1) +v; (1), then choosing the labeling
2 for this block, we will obtain a labeling f for which v;(0) = vs(1) + 1. If there
remains a block of Type A; and if v (0) +v'f' 0) = v (1) +'u; (1) +1 then choosing
the labeling a; for this block, we obtain v;(0) = v;(1). Hence, in all cases except

possibly the starred ones, G is cordial.
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‘We now take a look at the starred cases. For easy reference, we list them in the

table below. Note that we also give along with cach case, two alternate labeling
functions f one in which ef(0) = es(1) + 2 and in the other e;{0)+2 =es(1). In
both, | v7(0) —vs(1) |€ 1.

re | T3 ry rs rs Veartex conditon Edge Condition
&) | vy (@) +1=u,() | e (0) =e;(1) +2
0 0 0 0
16 | vp0)+1=2v,(1) | e;(0)+2=e/(1)
21, é1) 0 v (0) =1, (1) | ;) =ep(1)+2
oo
A, 1) 0 v (0)=v;(1) | ef(0)+2=¢e(1)
] ] HE) [ 2 +1=0p(1) | ef(0) =€ (1) +2
0 0 1(61) 1((;';1)
UEN | i () +1=vf(1) | 7 (0)+2=¢}(2)
: (o1 o, 1) rp(0)=wp(1) | ep(0)=ep(1)+2
oo 1(61) o 0
3(b1. 1, ) v () =v7(1) | es(0)+2=es(1)
2(6,,6,) ep(0) =vp(1) | ef(0)+2=ef(1)
oo o 0 0
261, 62) v (0)=v,(1) | ef(0)=e,(1) +2
.. L M | @ =v) | ep0)=ep() +2
0]0 2(6,,86,) 2o, o)
&) | ey =v/(1) | ef(0)+2=e/(1)
3(6:,6,,6) i w0 =v;(1) |ef(0)+2=ef(1)
ofo} 1) 0
3(61,6:,61) gy =y (1) | ef(0) =ef(1)+2
.. R G v (0) +1=u;(1) | ef(0) =ey(1) +2
0| 0 |3(6,61,6) | 3((61,61,61)
&) | v (0)+1=v;(1) | e/ (0) +2=e/(1)
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We now take a look at the starred cases. [For easy reference, we list
them in the table above. Note that we also give along with each case, two
alternate labeling functions f one in which ef(0) = es(1) + 2 and in the
other es(0) + 2 = ey(1). In both, | v5(0) —vs(1) < 1.

We note that the number of edges in a graph of
(i)Type As is congruent to 3(mod4),

(ii)Type As is congruent to 1(imod4),
(iii) Type C is cougruent to 2(mod4).

Thus in the eight cases given in the table, | E(G) |= 2(mod4). Fur-
ther, graphs of Types 4;, As, Ag, C' are Eulerian whereas, those of Types
As, Az, A4, B are non Eulerian.Hence, if n2 = 0,n3 = 0,4 = 0,n7 = 0 then
in the one point union G, there are no graphs of Type A, A3, A4, B, hence G
is Eulerian. Therefore,in the above cases, if ng = 0,73 = 0,24 = 0,n7 =0
then G is Eulerian with | E(G) |= 2( mod 4). By Theorem 1.2 , G cannot
be cordial. However as indicated by the table, we will have proved that the
index of cordiality of G, in each case, is 2.

Next suppose that at least one ol n., ng, nq, ny is non-zero. Then G is
non-Eulerian. In this case we disturb the labeling in Stage 1 so as to obtain
a cordial labeling of G.

Firstly, suppose that ns # 0. Then n, = 2ps that is there are at least
two graphs of Type A4a2. In Stage 1, we had used the labeling 8, for ps of
these and the labeling B3 for the remaining pa. Now, in the altered label-
ing, we use B1 for pa of these; the labeling S5 for (p» — 1) of these and the
labeling ﬁg for the remaining one of this type of ply. Then at Stage 1, we
obtain ¢ (0) + 2 = ¢/,(1). Now, in Stage 2, we choose the labeling from the
table in which (:;(0) = (:;(1) + 2. This will ensure that ey(0) = ey(1).

In case, we have no = 0,13 # 0. Then ny = 2p; that is there are at
least two graphs of Type As. In Stage 1, we had used the labeling v, for
pa of these and the labeling 3 for the remaining ps3. Now, in the altered
labeling, we use 7, for p; of these; the labeling «3 for (p3 — 1) of these and
the labeling +» for the remaining one of this type of ply.Then at Stage 1,
we obtain e%(0) = e}(1) + 2. Now, in Stage 2, we choose the labeling from
the table in which ¢} (0) +2 = e;(1).
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Next suppose that ns = 0, %13 =0,n4 ;é. 0. Then in one of the graphs of
Type A4, instead of using the labeling deltay, at Stage 1, use the labeling
d5. Then at Stage 1, we obtain €}(0) + 2 = e}(1). Now, in Stage 2, we
choose the labeling in which €;(0) = e;(1) + 2.

Finally, suppose that no = 0,n3 = 0,24 = 0,77 # 0. Then in one of
the graphs of Type A4, instead of using the labeling 1, at Stage 1, use the
labeling g3. Then at Stage 1, we obtain ¢}(0) = €}(1) + 2. Now, in Stage
2, we choose the labeling from the table in which e; 0)+2= el}(l).

In this case too, if one ply of Type 4, remains, then the appropriate
labeling can be chosen for it as explained earlier. Hence in all cases except
" when G is Eulerian with | E(G) |= 2( mod 4), we have obtained a cordial
labeling for G. This finishes the proof. O

One Point Union of Wheel Related Graphs.

It is known that a large class of wheel related graphs are cordial [1]. The
one point unions of wheels, fans and flags of same size have been proved to
be cordial by Shee and Ho[7]). We now consider the one point union of the
following graphs.

(i) Helms (ii) Closed Helns (iii) Flower graphs (iv) Gear graphs (v) Sun-
flower graphs

A wheel W, is the Cartesian product Ky xCy,. Thus if V(Cy) = {v1,-- - ,un}
then V(W,,) = {u,v,- -+ ,v,} where v,--- v, are the vertices of C, and
u is called the central vertex. A Helm H, is obtained {rom the wheel by
attaching a pendant vertex to cach ol the vertices on G, in Wy,. The ver-
tex set of Hy is then V = {u,v1, - ,tn,wy, - ,wWs} where wy,--- ,wy,
are the pendant vertices. closed helm CH, is obtained by taking a helm
H, and by adding edges {wawy,wsw;y, | 1 <i<n-1}. flower FL,
is a graph obtained from the helm H, by attaching each of its pendant
vertices to its central vertex to the edge set E(Hy). A gear graph G, is
obtained from a wheel W, by inserting a vertex on each of the cyclic edges
of Cp in W,,. A sunflower graph SF, has vertex set and edge set as follows:
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V(SF,) = {u,vi | 1<i<n}U{wi | 1 <i<n},
E(SF,) = {uv;,vjviy1,wivi, wiviy1 | 1 < i < n}, where the value of 1 + 1

is taken modulo n.

It was proved by Andar, Boxwala and Limaye [1], that the helm H,, the
closed helm CH,, the flower graph FL,,, the gear graph G,,, the sunflower
graph SI9, and various other families of wheel related graphs are cordial.
We use the labelings given in [1].

Let g; be the binary labeling of a helin H,, given by ¢;(u) = 0, and

_J 1, i=1,2mod 4

gilos) = { 0, i=0,3 mod 4

0, i=1mod?2

w;) =
o) {1, i =0 mod 2

Theorem: The one point union of helins is cordial.

Proof: We first, give additional binary labelings of a helin H,, as {ollows:
(i)A binary labeling ¢ is defined as g2 (u) = 0 = ga{vy,)

g2(vi) = 1,7 = 1,2(mod 4),% # n, g2(v;) = 0,7 = 0,3( mod 4). ga(w;) =
1,2 = 1( mod 2),i # 0, ga(w;) = 0,4 = 0{ mod 2), and g2(w,) = n.

(ii) A binary labeling gs is defined as y3(u) = 0 = g3(vn-1),93(Wn~1) =
1,93(wn) =0,

93(v;) = 1,4 =1,2( mod 4),% # n—1, g3(v;) = 0,i = 0,3( mod 4), ga(w;) =
0,i =1(mod 2),7 # n~1,93(w;) =1, =0( mod 2),i # n.

(iii) A binary labeling g4 is defined as g4 (1) = 0 = ga(vp-2), ga(wWn-2) = 1,
ga(v:) = 1,i = 1,2(in0d4),% # n — 2,94(v;) = 0,7 = 0, 3(mnod4), g4(w;) =
0,7 = 1(mod2),i #n — 2, ga(w;) = 1,i = 0(mod?2).

Ifn =49+ 10 < 3,. depending on the value of r, we use the labeling as
described in the table below.
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Labeling | Vertex condition Edge condition

1 5, (0) = vg, (1) +1 eg,(0) = ey, (1)
1 9 g, (0) = v, (1) +1 | €5, (0) + 1 = e, (1)
g2 Uga(0) = vgo (1) +1 | €45(0) = €9, (1) +1

2 g3 199 (0) = vg,(1) +1 €93(0) = €y, (1)
()] 19, (0) = v, (1) + 1 | €4,(0) + 1 = ey, (1)
94 19,(0) = vg,(1) +1 | €4,(0) = e, (1) +1

Let H(ny,--- ,n) denole a one point union of k helins Hy,,1 <i< k.
Let p; be the number of helms in the one point union for which n; =
1(mod4) and p» the number of helms for which »n; = 3(mod4). Then p; =
2q) +81;p2 = 2¢g2 +82;0 < 81, 82 < 1. In each helm Hy,,; with n; = 0(mod4),
use the labeling ¢; and in each helm with n; = 2(mod4), use g;. In ¢; of
the helms with n; = 1(mod4), use g; and in the ¢ of such helms use ga.
Of 2¢» helms with n; = 3(inod4), for g1 of them use ¢, and for the other g2
use gq.

There now remain s, hclms Hy,, with #; = 1(inod4) and s2 helins H,,,
with n; = 3(mod4). If s, = 0,82 # 0 or s, # 0,52 = 0 then for the remain-
ing helm use g;.

If 53 = 1,52 = 1; then use g for the helin for which n; = 1(inod4) and use
g4 for the helm for which n; = 3(mod4).

Let f be a binary labeling of H(ny,--- ,n,) whose restriction to each
of the H,, is the labeling chosen above. It is clear that

()If 8y =0,52 =00r 8 =1,50 =1, we get vp(0) = vp(l) + 1,e,(0) =

es(1).
(i)If sy =0,80=1ors =1,8=0,weget vy(0) =vs(1)+1,e70)+1=
e/(l).
Hence [ is a cordial labeling. ]

Remark: The closed helm C'H,, the {lower graph I'L,, and the sunflower
graph SF, are all cordial [1}. The cordial labeling g given [1] satisfies
v9(0) = vg(1) + 1,e4(0) = e4(1). When we take one point unions of many
copies of these graphs with arbitrary sizes and the central vertex as the
common vertex, all we have to do is repcat the labelings given in [1]. That
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gives a cordial labelings of the correspounding vue point unions. Hence we
have following:

(1) The one point union CH(ny, -+ ,np) of closed helms of sizes ny,na,- -+,
ny, is cordial.

(2) The one point union IFL(n,,- -+ ,n) of flower graphs of sizes ny,n9,: - -,
ny, is cordial.

(3) The one point union SF(n,,: - ,n;) of sunflower graphs of sizes n;,ns,
-+-,ny, is cordial. [m]

We now consider the one point union of gear graphs, with the central
vertex as the common vertex. Let G, denote a gear graph with central
vertex u,

V(Gy) = {u,v1,va, -+ ,up;wn, wa,  ,wn},
E(Gr) = {uvs, viwi, wivigq|1 < i < n — 1} Y{vnwn, wav; }.
We call a gear graph G, even or odd according as n is even or odd. Let g;
be the cordial labeling given by: g(u) = 0, g(v;) = 1 = g(w;),i = 1(mod2)
and g(v;) = g(w;) = 0,7 = 0(mod2). In addition to this, we require the
following binary labelings ol G,,.
(i) The labeling g2 is as [ollows: ga(u) = 0,g2(v;) = 1, i = 1( mod 2),i #
1,92(v) =0, i=0(mod 2),i =1
g2(wi) =1, i =0( mod 2), g2(w;) =0, = 0(nod2).
(ii) The labeling g is as follows: ga(u) = 0,43(v;) =1, i = 1( mod 2), ga(v;) =
0, i =0( mod 2),
g3(w;) =1, i =0( mod 2),7# 1, g3(w;) =0, 7= 0(mod2).

3n

If n is even we note that, vg, (0) = n + 1,u,, (1) = n;ey, (0) = €5, (1) = >
that is ey, (0) = ¢y, (1), v, (0) = vy, (1) + 1.
When 7 is odd, u5,(0) = n+ 1,0,,(1) = n;e(0) = %,egl(l) =
dn+1 .
s that is €4, (0) + 1 = €9, (1), 09, (0) = vy, (1) + 1.
. 1
When n is odd, vy;(0) = n + 1,vg5(1) = n;eg(0) = 3"'2+ veq(l) =

In-1
2

; that is eg, (0) = egy(1) + 1,054 (0) = vg,(1) + 1.

Theorem: The one point union of gear graphs is cordial
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Proof: Let G(ny,na,--- .ng) be the one point union of k gear graphs
Gn;,1 <1 < k. Amongst these k gear graphs, let ¢ of them be even gear
graphs. Then the remaining k — ¢ of them are odd gear graphs. Let f; be
a binary labeling assigned to each gear graph G, as follows:

-t
For n; even, let fi(v) = 1(v),v € V(Gy,;). In k2 J of the odd gear

graphs, let fi(v) = g2(v),v € V(Gy;)-In l- 5
fi(v) = 93(v),v € V(Gh;). Let [ be a binary labeling of G(ny,na, - ,nr)

] of the odd gear graphs, let

defined as
f©) = fi(v),v € V((G),;),1 €4 < k. Evidently, vp(0) = vy(1) + 1.
In every gear graph, with even nwunber of points, the edges are equitably

labeled. TFurther in each of the of the odd gear graphs, to which

2
the labeling ¢» has been assigned, the number of edges with the label 0 is

one less than the number of edges with the label 1; while in each of the
k—

2
the number of edges with the label 0 is one greater than the number of
edges with the label 1. Hence if & —¢ is even, then ef(0) = es(1) and if k—¢

is odd, then e¢;(0) = ef(1) + 1. Hence G(ny,na,- - ,ng) is cordial. a

of the odd gear graphs to which the labeling g3 has been assigned,

Path unions of shell related graphs

In 1993, Shee and Ho called a graph obtained by taking graphs Gq,--- ,G»n

and adding an edge from one vertex of G; to one vertex of Gi41,1 <i <
n—1, a path union of Gy, --- ,G,. In the same paper they proved that the
path union of % shells k > 2, of the same size is cordial.
Definition: While taking the path union of shells, we join the apex of
Syn; to the apex of S,,,,,,1 < i < k— 1. This path union is denoted by
PS(ny,na,--- ,ng). I the edge joining one vertex of S, to a vertex of
Sniyy does not necessarily join the two apex points, then the resulting path
union is denoted by GPS(ny,na, - 1) and is called the generalised path
Union.

In a shell S, we have | V(S,) |= n and | BE(S,) |= 2n — 3. It clearly
follows that | V(PS(ni,na,- -+ ,n)) |= (01 + na + -+ ng) and
| E(PS(ni1,na, - ,np)) |= 2001 + 02 + - +n4) — (26 + 1).
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Let g1, g2, g3, 44, 45, 46, 47 be the binary labelings of shell S, defined as
follows:
(1) ;1w) =0, g1 () = 1, if i = 1,2(mod 4) and gy (vi) = 0, if
i = 0, 3(mod 4).
(2) g2(uw) =0, g2(v;) =0, if i =1,2(mod 4) and g2(v;) = 1,
if £ = 0,3(mod 4).
(3) ga(u) =0,g3(v;) = 1,if ¢ =1,2(mod 4),i # n — 3, and
ga(vi) = 0,if i = 0,3( mod 4),% # n—1.Let ga(vp-.3) = Oand gs(vp-1) = 1.
(4) ga(u) = 0,94(v;) = 1,if i = 1,2(mod 4),i # n — 2, and g4(v:) =0, if
i =0, 3(mod 4). Let gs(tq—2) = 0.
(5) gs(u) = 0,g5(v;) =1, if i = 1,2(mod 4),i # n -1, and gs(v;) =0, if
1= 0,3(mod 4). Let gg(vy,—1) = 0.
(6) go(u) = 0 = ga(nn-1),96(vn-3) = L, g6(v;) = 1, i = 1,2 (mod 4),i #
n—1,g6(v;) =0, i =0,3 ( mod 4),i # (n~3).
(7) gr(u) = 0,g7(vn-2) = 1,g7(v;) = 1, i = 1,2 (mod 4),g7(v;) =0, 1 =
0,3 ( mod 4),7 # (n — 2).

Ifn = 4g+7,0 < r < 3, depending on the value ol r, we use the following
vertex and edge label conditions for the labelings mentioned above.

r | Labeling | Vertex condition Edge condition
9 v, (0) = vy, (1) | ¢, (0) +1=¢,(1)
93 g3 (0) = v, (1) €g5(0) = ega(1) +1
1 M 19, (0) = vg, (1) + 1 | ¢4,(0) = ¢4, (1) +1
g3 Uga (0) = 1g5 (1) + 1 [ €9,(0) + 1 = e45(1)
g1 1g; (0) +1 =y, (1) | ¢, (0) +1 = ey, (1)
2 n 19, (0) = vy, (1) g, (0) +1=ey(1)
9o 195 (0) = v, (1) €ge(0) = €go(1) +1
3 0 g, (0) + 1 =1y, (1) | 09, (0) +1=req,(1)
9 119,(0) = vy (1) + 1 | €4, (0) = e (1) +1
gs 09, (0) = vgg (1) + 1 | 9, (0) +1 = eg,(1)

Theorem: The path union PS(ny.na,--- ,n) is cordial for each finite
SEQUENCE 723, Na, *« + , k-
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Proof: Consider the path union PS(y, 12, -+ 1) of k shells Sy, , Sn,,

-+ Sp,.- Let f; be the labeling chosen for \S,,; and let [ be the labeling for
PS(ny,na,- - ,nyg) defined by 7(v) = [i(e), ¢ € V(S,,). We will choose f;
carefully. Let there be ¢ shells of even width. Then the number of shells of
odd width is & — {. In every shell of eveu width, let f; = g;. For the shells

of odd width, do as follows: In the first l _

such shells use

<

fi = g7, n;=1(mod4)

= g, 0;=3@modd).

In the lasg [k ; f'] such shells use

fi = g, n;=1(modd)

= g5, n; = 3(modd).

The way we have defined the labeling f, in each of the shells of even width,
k - ! shells of odd
width, the number of vertices with the label 0 is one less than the number
k—t .
shells of odd

width, the numbcer of vertices with the label 0 is one more than the number

the vertices are equitably labeled. In cach of the first

of vertices with the label 1. Finally,in each of the last. -
of vertices with the label 1.

Hence, vp(0) = vp(1), il k — tis even and vp(0) = vp(1) + 1, if k — ¢ is
odd.

Further each of the k — 1 connecting edges receives the label 0 and in
each of the k shells, the number of edges with the label 0 is one less than
the number of edges with the label 1.

Hence, ef(0) + 1 = ef(1).

The proof can also be given inductively as follows. In fact we prove
that we can always obtain a labeling [ [or the above path union which will
satisly vy (0) — (1) =0 or 1 and e;(0) + 1 = ep(1).

For k = 2, consider the path union PS(ny,ns) of two shells Sn, and

Sno- Let f be a binary labeling of PS(y, na) defined as f(v) = fi(v),v €
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V(Sy;),i = 1,2. Depending on the values of n;,n2 we choose the labelings

f1, fa for Sy,,Sn, respectively as shown in the table below:

0

0

labeling of PS(7,6.8).

Let ny =4¢, + 1y 00 =42 +72;0 <1y yma < 3.

1 (f1) | r2(f2) | Vertex condition | Edge condition
for f for f

0(g:1) | Og) | v (@ =vs(1) | es(0)+1=e,0)
0(g1) | Ugs) | vs(0) =vs(1) +1 | €s(0) +1=e¢/(1)
0(g1) | 2Am) | vr(@) =vs(1) |es(0)+1=es(1)
0(g1) | 3(gs) | vs(0) =vs(1) +1 | ef(0) +1=¢s(1)
Wgs) | Ugr) | vr0)=vs(1) | es(0) +1=1es(1)
UWgs) | 2g) | or0) =vs(1) +1 | ¢r(0) +1 =es(1)
Wgs) | 3(m) | ws(0)=wp(l) | es(0) +1=es(1)
20) | 2n) | v 0)=wp(1) | e (0) +1=e(1)
2(n) | 3gs) | w(0) =vs(1)+1 | ef(0) +1=¢s(1)
3g1) | 3(gs) | vw(O)=v,(1) |er(0)+1=¢s(1)

iFrom the above table, it is evident that such a labeling can be given.

Next assume that the result is true for some natural number m; that is for
a path union of m shells, we have a labeling f [or which v;(0) —vs(1) =0
or 1 and es(0) + 1 = e;(1). Now consider a path union of m + 1 shells
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PS(ny, .-+

let f» be a labeling chosen [or Sp,,,, as explained below. Let f be the

y ). Let [y be the cordial labeling of PS(ny,- -

binary labeling of PS(ny, - ,2m41) defined as

f(w) = fi(v),v € V(PS(ny,---

Nyntl = T'ma1 (In0d4).

,n)) and f{v) = fa(v),v € V{(Sp,.,.)- Let

Case 1: v;,(0) = vy, (1),¢5,(0) + 1 = ¢/, (1).

rm41(J2) | Vertex condition Edge condition
for f lor f
0(xn) vr(0) =vs(1) | ef(0) +1=ep(l)
1(g3) vp(0) =ws(1)+1 ]| ef(0) +1=es(1)
2(q1) vr(0) = vs(1) er(0) +1=ep(1)
3(gs) | vr(0) =u;(1)+1 ] e;(0) +1=es(1)

Case 2: vy, (0) = vy (1) +1,e5(0) +1 = ey, (1).

a1 (f2) 1 Vertex condition Edge condition
for f for f
() | vr(0) =ws(1)+1 ] ep(0)+1=¢ep(1)
1(gs) vp(0) =vp(1) [ es(0) +1=1¢es(1)
2(q1) vp(0) =vp(1)+1 | ef(0) +1=1es(1)
3(g1) vr(0) = vy(1) er(0) +1=-ep(l)

That f is a cordial labeling and that it satisfics the aforementioned condi-

tions is evident [rom the above tables. a
We next show that while taking the path union oue does not necessarily

have to join the apexes to obtain cordiality.

Theorem: The geuceralized path union GPS(ny, 1, -+ ,ny), is cordial for

each finite sequence ny,na, -+, ny.

Proof: The proof can be given inductively as [ollows.

For k = 2, consider the gencralized path uniou GPS(ny,ns) of two
shells S, and S,,. Let f be a binary laheling of GPS (n1,7n2) defined as
flv) = fi(v),v € V(S,,;),i = 1,2. Depending on the values of ny,n2 we
choose the labelings [y, f2 for S,,,,S,, respectively as shown in the table
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helow:
Lot ny = 4q +7r1,n2 =42 +712;0 < ryr2 3.

r(f1) | ra(fa) | Vertex condition | Edge condition
for f for f
O(g1) | Ogs) | wr(@) =1vs(1) | er(0)=es(1)
0(gr) | Ugs) | vs(0) =wp(1)+1 | er(0)=es(1)
0(g1) | 2(g6) | s(0)=1,(1) er(0) = es(1)
0(g1) | 3(m) | vs(0)=0v;(1)+1 | €r(0)=es(l)
W) | Ugr) | vr(0) =wp(1) er(0) = ef(1)
Wgr) | 2m) | vp(@)=v,(1)+1 | er(0) =ef(1)
Ugr) | (o) | vr(0)=1;(1) er(0) =ef(1)
2(q) | 2ge) | vs(0) =vs(1) er(0) = ¢s(1)
2g1) | 3(g) | vs(0) =ws(1) +1 | €r(0) =es(1)
3(g1) | 3(g) vy{0) = vy(1) es(0) = es(1)

We note that while writing down the edge label conditions for f, we have

taken into account only the cdges of S, and S,,. However we have not
considered the label of the adge connecting the two shells. This edge can
cither have the label 0 or the label 1 depending on the labels of its end ver-
tices. jFromn the above table, it is evident, then that cither e (0) = ef(1)+1
or es(0) + 1 = es(1), thus guaranteeing cordiality of GPS(rny, na).

Next assume that the result is true [or some natural number m; that is,
that a generalized path union of m shells is cordial. Now consider a general-
ized path union of m+1shells GPS(ny, -+ , N1 ). Since GPS(ny, -+ , nn)
is a generalized path union of m. shells, by induction hypothesis, it is cor-
dial. Let therefore f1 be a cordial labeling of GPS(#ny, -+ ,n,,) and let fa
be a labeling chosen for S, ., as explained below. Let f be the binary
labeling of GPS(iy.- -+ ynmy1) defined as
fv) = fitw),v € VIGPS(ny, -+ 1)) and f(v) = fa(v),v € V(Sn,.py)-
Let N1 = gt (modd). Without loss of gencrality, we can assume that
v, (0) = vy, (1). Let wy, be the vertex of Sy, connected L0 a vertex w4y
in Sp,..,- Let ¢}(0),e}(1) be the number of edges with the labels 0 and 1
respectively in GPS(ny, -+, m1) \{Wwm®m41 }. Then
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Case 1: vy, (0) = vy (1), 05 (0) = ¢ (1) + 1.

Tin-d (f.’)

Vertex condition

for f

Edge condition
for f

0(g1)
1(gs)
2(g1)
3(91)

vy(0) = vy(1)
vr{0) = vp(1) +1
vr(0) = vs(1)

vr(0) +1=w(1)

¢ (0) = ej(1)
¢} (0) = € (1)
)(0) = ¢ (1)

¢(0) = €;(1)

Case 2: vy, (0) = v, (1) + 1, ¢4, (0) = ef, (1) + 1.

Toaa {(f2)

Vertex condition
for f

Edge condition
for f

0(g1)
1(g7)
2(m)
3(p)

1p(0) = vp(1) + 1
0r(0) = vy(1)

vp(0) = vp(1) +1
vp(0) = vy (1)

e (0) = ¢y(1)
e (0) = e} (1)
e (0) = ¢4(1)
e (0) = ¢y(1)

Case 3: vy, (0) = vy, (1),e5,(0) + 1 = ¢, (1).

T (f2)

Vertex condition
lfor f

Edge condition

for [

0(gs)
1(g1)
2(4s)
3(g4)

vy (0) = vs(1)
vr(0) =vp(1) +1

vp(0) = vp(1)
vr(0) =v,(1) +1

¢h(0) = ¢4 (1)
¢4(0) = €j(1)
1 (0) = e4(1)
er(0) = /(1)
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Labeling of ('’S(7.6.8)

Case 4: v, (0) = vy (1) + 1,e,(0) +1=cp (1).

Tert (J2) | Vertex condition | Edge condition
for f for [

Owa) | vs(0) =vp(1) +1 | (D) = &p(1)

1) 00 =vp(1) | ¢(0) = €)(1)

2(y6) wp(0) =vp(1)+1 | e} (0) = (1)

3(4a) up(0) = vy(1) ¢ (0) = ¢(1)

In all cases observe that e (0) = €}(1). Hence ¢p(0) = €;(1) +1 or eg(0) +
1 = ez (1) according as the induced label for the edge wy,wme is 0 or 1.
Thus f is a cordial labeling. G

Next we investigate the cordiality of a Stemmed shell which we now
define:
Definition: A Stemmed shell STy, is obtained by attaching a pendant
vertex w to the apex 1 of a shell S, of widili #. The vertex w will be called
the root, of ST,,.

Obscrve that | V{ST,) |= n+ 1;| E(5Ty) |= (21— 2). A stemuned shell
will be said Lo be of even (odd) width il # is even(odd).
In what follows, we prove that the path union of steinined shells is cordial.
We use the labelings g1, 92, - , 97, as defined carlier, in what follows. We
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first, prove the following result:

Theorem: All stemined shells are cordial.

Proof: Let ST, be a stemned shell with apex u and root w. Then V(ST,,) =
V(Sn) U{w}, B(STy) = E(Sn) U{uw}. We deline a cordial labeling of ST,
as follows:

Case 1: n = 0(mod4)

Let fi(v) = g1(v),v € V(Sy), f1(w) = 0. Then since vy, (0) = vg, (1), eg, (0)+
1= ey, (1), it follows that vy, (0) = vy, (1) + 1,¢5,(0) = ef, (1)-

Case 2: n = 1(mod4)

Let fa(v) = gi(v),v € V(Sz), fi(w) = 1. Then since vy, (0) = vy, (1) +
1,e,,(0) = ¢4, (1) + 1, it follows that v, (0) = v, (1), ¢p(0) = ef,(1).

Case 3: n = 2(modA)

Let fa(v) = gi(v), v € V(S,), fa(w) = 0. Then since vy, (0) = vg, (1), €y, (0)+
1= e, (1), it follows that up, (0) = vy (1) + 1,ep,(0) = ef,(1).

Case 4: n = 3(mod4)

Let fa(v) = g1(v),v € V(Sy), fa(w) = 0. Then since vy, (0)+1 = vy, (1), &4, (0)+
1 = e, (1), it Iollows that vy, (0) = vy, (1), e, (0) = e, (1).

In each case ST, is cordial. Hence the resull. O

Remarks: (a) For n = 0(inod4), if we define [5(0) = ga(v),v € V(Sy), fs(w) =

1, then vp, (0) = vp, (1) + 1,¢p,(0) = ef,.(1). Notice that fi(w) =0, fs(w) =

1. Also the duals of [, f5 that is fl, f, satisv

050 +1= v, (1).0,(0) = ¢, (1), filw) = L v, (0) +1 = v, (1),e,(0) =

e (1), fo(w) = 0;

(b) For n = 1(mod4), we have vy (0) = v, (1),¢4,(0) = (ef;:(l),fg(w) =0;

(¢) For n = 2(mod4), il we define fe(v) = ga(v).v € V(Sy), fo(w) =1, then

v75(0) = vse (1) + 1,¢4,(0) = ep,(1). Notice that f3(w) = 0, fe(w) = 1. Also

the duals of f3, fo that is _f:;, Jo, satislv

07, (0)+ 1= wp (1),e(0) = e, (1), falw) = 1w (0) + 1=, (1),e[,(0) =

e, (1), falw) = 0;

(d) For n = 3(mod1), we have g, (0) = v, (1),0 (0) = (Jh(l),f,,('u.') =1.
We now discuss the cordiality of Path unions of stemmed shells STy, - -

STy, with wy, -+ wy, as their respective rools. Wo note that for the path

union, the edges connecting ST}, to ST,,,., join the vertices w; to Wity.
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Theorem: All path unious of stemmed shells are cordial.

Proof: Let PST (1, -, ng) be a path union of k steined shells ST, , -+ -,
ST,,. where ny,- -, ny are not necessarily the saine. For convenience, we
denote this path wunion by PST. Deline a binary labeling g of PST in two
steps as follows: In step 1 we first label the vertices wy, -+, we. In the next
step we label cach stemmed shell with the scheine described below. For
each stemmed shell STy, the restriction of g to STy, will be the labeling
chosen for that particular stemmed shell.

Let g(w;) = 1,7 = 1,2(inod4) g(w;) = 0,4 = 0, 3(1nod4).

Firstly note that in every stemmed shell of odd width, the vertices and
edges are equitably labeled. Thus in the above path union, for a stemmed
shell of odd width, we either use the labeling gy or its dual according as the
lahel for its root is 0 or 1.

A
Let ¢ be the munber of stemmed shells of even width. In bJ of these

stemined shells, use the labeling for which the number of vertices with the
label 0 is one less than the nuinber of vertices with the label 1 and in {%]
of these use the labeling for which the munber of vertices with the label
0 is one more than the number of vertices with the label 1. Since in any
stemmed shell of even wideh also, the edges are equitably labeled, we need

1o look only at the labels of the connecting edges. IF & is even then amongst

(k~2)

. k .
the connecting edges. 5 receive the Iabel O and

edges receive the
label 1. Henee in this casc,

eg(0) = e4(1) + 1. However if k is odd. then the conucecting edges are also
equitably labeled. In this case eg(0) = cg(1). Further, if ¢ is even, then
14(0) = vy(1) and il £ is odd, then v, (0) = v,(1) + 1. Hence g is a cordial
labeling. 0O

One point unions and Path unions of Flags

We first investigate the cordiality of the one point union of graphs called
Flags and later the cordiality of their path unions. All the techniques in
this seclion are similar to those used in the previous results. Because of

this, we give ouly the linal result in tabular forn.
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Definition: A flag F'G,, is the graph obtained by joining exactly one vertex

of the cycle Cy, to an exira vertex called the root.

Let V(Cp) = {w1.,v2,--- ,u,} and let » be the pendant vertex at-
tached to the vertex ;. Then V(F'G,) = V(C,)U{v} and E(FG,) =
E(Cﬂ) U{'U-l'l’}.

We define the [ollowing binary labeling for I'G,, which we will use in
8 8

our constructions.

(i)Let f1 be defined by:

N(u;)) =0,i=1,2( mod 4), fi(u;) = 1,i = 0,3( mod 1), fi(v) =0.

(ii)Let f» be defined hy:

Jfo(ui) = 0,i = 1,2( mod 4),i # 2, fo(u;) = 1,i = 0,3( mod 4), fo(us) =
1, fa(v) = 0.

(iii)Let f3 be defined by:

Ja(w) = 1,i = 1.2( mod 1), fs(u;) = 0,7 = 0,3( mod 1), f3(v) = 0.

(iv)Let f4 be defined by:

fa(ui) = 1L,i = 1,2( mod 4),i #n =1, f4(u;) = 0,i = 0,3( mod 4),
Ja(ua1) =0, fa(v) = 0.

(v)Let f5 be defined by:

Js(ui) = 1,7 = 2,3( mod 4), fs(u;) = 0,i = 0,1( mod 4), Js(v) = 0.

(vi)Let fe be defined by:

Jo(ui) = L,i = 1,20 mod 4),7 # n, fo(u;) = 0,7 = 0,3( mod 1), fg(v) =0 =
Ja(un).

We use these labelings in what follows:

Consider a flag I'G',,. Let n = 4q++,0 < r < 3. Depending on the value
of r, we use the labelings for FG,, as shown in the table. In each case, for
the labeling used, we note that the vertex v is labeled 0. Fromn this table it
is clear that {lags are cordial.
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r | Labelingf | Vertex condition for f | Edge condition for f
It vy (0) =vn (1) +1 en(0)=epn(l)+1
0
fa v, (0) = vy (1) +1 ¢n(0)+1=¢ep(l)
Is v, (0) =vp, (1) e, (0) = eg(1)
1
fo 07, (0) = wpy (1) +2 ¢rs(0) = ege(1)
Ja v, (0) = v (1) +1 er,(0) = es (1) +1
2
Js vg (0) = v (1) +1 en(0)+1=-¢ep(1)
fi vy (0) =vp(1) +2 e, (0) =ep(1)
3
J2 vy, (0) = vy, (1) en(0)=ep(l)

We now make nse of these labelings to show that the one point union of
{lags is cordial. We remark at the ontset that S.C.Shee and Y.S.Ho have
proved in [7] that the one point union of n copies of a flag F, are cordial.
Our result is more general, in the sense that we consider the one point union
of flags FGyn,,FGuy,, -+ ,I'G,, which are not necessarily of the same size.
Thus

Theorem: All one point unions of flags are cordial.
Proof: Let FG(ny,na,---
FGh,,--+ , FGy, not necossarily of the same size. Let f be a binary labeling

, 1) denote the one point union of k flags FG,,,,

of
FG(ny,na,--
number of vertices which receive the labels 0,1 respectively at the end of

-5 1) to be defined in two stages. Let v5(0), v} (1) denote the

Stage 1. Let e}(0),e}(1) denote the number of edges which receive the
labels 0,1 respectively at the end of Stage 1. Lel v',' (0),1:; (1) denote the
number of vertices which receive the labels 0,1 respectively at the end of
Stage 2 and c;(O), c;(l) the number of edges, which receive the labels 0,1
respectively at the end of Stage 2.
Stage 1:

Let py be the munber of llags FG,, for which n; = 0( mod 4). Let
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7 = 2q1+31,81 = 0,1. Ont of 2¢, of these [lags F'G,,, with n; = 0( mod 4),
in each of q; flags, use the labeling f| and in each of the other q; flags of
this type, use the labeling fs.

Let pa be the number of flags FG,,, for which n; = 1( mod 4). Let
Pa = 2ga+ 82,82 = 0, 1. OQut of 2¢2 of these llags I'G),, with n; = 1( mod 4),
in each of g2 of these, use the labeling f3 and in cach of the other g2 flags
of this type, use the labeling fs.

Let p; be the number of flags F'G,,, for which n; = 2( mod 4). Let
Ps = 2q3+83, 83 = 0, 1. Out of 2q3 of these flags FGy,; with n; = 2( mod 4),
in each of gs of these, use the labeling fi and in each of the other gs flags
of this type, use the labeling fs.

Finally, let ps be the unmber of flags £, for which n; = 3( mod 4). Let
M =24+ 34,81 = U, 1. Oul of 2¢4 of these llags FG,,; with n; = 3( mnod 4),
in each of g4 of these, use the labeling /i and in cach of the other g4 flags
of this type, use the laheling fa.

At this stage, we have v}(0) = v}(1) + 1,€%(0) = € (1).

Stage 2:

There now remain to be labeled, s flags for which n; = 0( mod 4), 89
flags for which n; = 1( mod 4), s flags for which »; = 2( mod 4) and s,
flags for which n; = 3( mod 4). We now lahel these by the binary labeling
as shown in the [ollowing table. Depending on the values of sy, 8a, 33, 84
we indicate the appropriate labeling function chosen, in parentheses, at the
side. The vertex and edge label conditions then obtained in each case, are
also mentioned.
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1 $a 83 54 Vertex condition | Edge condition

0 0 0 0 v, (0) = vy (1) er(0) = e,(1)
0 0 0 | Uf2) [ w0 +1=07(1) | e (0)=e/(1)
0 0 |1(f0)]| © v (0)=vp(1) | ep(0)=ep(1)+1
0 | 0 [1(a) | 1) | vp(0)+1=w;(1) | €}(0) = e;(1) +1
0 {13 | 0 0 |v O +1=0v;(1)| ¢}0)=e}(1)
0 {1 | 0 [0 v =i 1(0) = ;(1)

0 [ 1) [ 1) | 0 | +1=0v,(1) | ¢p(0) =€ (1)+1

0 | 1) [ 100 | 1) | 070 =0 (1) | ep(0)=e (1) +1

1(f1)| O 0 0 v (0)=v;(1) | er(0) =ep(1)+1

()] © 0 | 1) | v (0 +1=1,(1) | e/ (0) =€ (1) +1

)| 0 |1ys)| 0 v;(0) = vy (1) €,(0) = e, (1)

W) | 0 1) [ [vio+1=v)| € =c))

1) | 1) | 0 0 «»”m)+1=n',’(1) e;(0) = e;(1) +1

1) [ 1) | 0 1| w0 =ep(1) | e[(0) = e (1) +1

1) | [ | o v +1=v(1) (',’(0)_e',’(1)

1/0) | 1U3) [ 10s) | 1) | vp0) =0;(1) ¢/ (0) = e;(1)

As can be easily seen from the table, al the second stage, either v’ r [(0)+
1= :r; (1) or 1’:; (0) = 'u'j'(l), whereas [or the edge conditiow, e; 0) = e;(l)
or e ,(0) = e;(1) + 1. Hence the labeling [ defined in these two stages,
satisfies the conditions | v;(0) — vs(1) |< 1 and | ef(0) —ef(1) [< 1.

It follows therefore that f is a cordial labeling lor the one point union
FG(ny,na, .-+ ,ng) of k llags. Hence the result. a

We now consider the path union of llags G, -+ . FG,,, withw, -+,
wy, as their respective roots. We note that for the path union, the edges
connecting F'G,; to FGy,,, join the vertices wy 1o wiy. . We use the label
ings f1,f2,-++ , Js for a flag G, as mentioned carlier. Depending on the
value of n, only some of these labeling [inetions will be required. These
labeling functions, along with the corresponding vertex and edge label con-
ditions, are listed below:

For n = 0( mond 4) we have [roin the above,
v (0) = v (1) + ey, (D) =¢p (1) + 12 fi(e) = 0.
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and vy, (0) + 1= vpy (1):e(0) = ep(1) + 1: fo(e) = 0.
Now v (0) +1 =wvp (1):e5(0) =¢f (1) :I- LA (v) =1and
v7,(0) = v (1) + Lies(0) = e;, (1) + 1; folv) =1,
TFor n = 1( mod 4) we have
vs(0) = vy (1) ey (0) = ey (1): fo(v) = 0.
Its dual gives v (0) = vy, (1);e4,(0) = ¢, (1); falv) =1.
For n = 2( mod 4) we have
v(0) +1 = v, (1):cpn(0) =ep(1) + 1: fulo) = 0.
Its dual gives v (0) = vy (1) + Lep () = e (1) + lgf;,('u) =1.
Also vy, (0) = vy, (1) + 1iep, (0) = e (1) + 1; falv) = 0.
Its dual gives v (0) + 1 = v (1);¢4,(0) = e (1) + 1; fa(v) = 1.
For n = 3( mod 4) we have
v(0) =0 ()iep(0) = ey (1) f5(w) = 0.
Its dual gives vf!_(O) = zrﬁs(l);r»ﬁ,'(O) =ep (1) [s(v) = 1.
Theorem: All path unions ol flags ave cordial.
Proof: Let PIG(ny,ns, -+, 1) denote the path nnion of k flags FG,,,,
FrG,,, - .FG,,. We nse induction on k. In fact we will be obtaining a
cordial labeling g for whicl v, (0) > v, (1), ¢, (0) > ¢,(1). We first prove the
result for k = 2.
Let 1,42 be the binary labelings chosen for FG,,, FG,, respectively.
Let g be a binary labeling of PIG/(ny,n2) deseribed as follows:

g(w) = gi(w),w € V(FGy,)
.’I’Z(""):"" € "'(FG'II';)'

Let ny = Aq) + ri,ne = dgo + 1r2;0 < < 3. Depending on the values
ol r1,ra we choose (he Yabeling function accordingly. The choice made, in
each case, is indicated by wriling the chosen labeling [unction alongside in
parentheses. The vertex conditions and edge conditions obtained for g are

also given.

150



() | nalee) | Vertex condition for ¢ | Edge condition for g
0f0) | O(1) 1y (0) = (1) g(0) = (1) + 1
0(f)) | 1(fs) | vp(0) =ws(1) +1 eg(0) = €,(1)
0(h) | 2(J0) 15(0) = vy(1) eg(0) = ¢,(1) +1
0(f1) | 3(fs) | wg(0) =w,(1)+1 ¢5(0) = €,(1)
1(/3) 1(/3) 19(0) = vy(1) ¢y(0) = €4(1) +1
1Js) | 20fa) | we(0) =w,(1) +1 ¢(0) = ey(1)
1fs) | 3(Js) 1(0) = 1,(1) eg(0) = ey(1) +1
2/3) | 2fs) vy (1) = (1) y(0) = eg(1) +1
2(f3) 3(f5) 19(0) = vg(1) + 1 e9(0) = e4(1)
3(fs) 3(fs) 19(0) = vy (1) eg(0) = eg(l) +1

Hence g is a cordial labeling satisfying the alorementioned conditions.
Assume that the result is true for some m € N. Then there is a cordial

labeling g1 for PFG(ny,na, -+, ) such that wy,, (0) > vy, (1) and ¢4, (0) >

€,,(1). Let ¢ be the labeling for PFG{ny, 0, -

glw) = g (w), ifw € V(PFGG 0o, - -

V(G (1n1), where the choiee for g2 i as explained in cacl case below.

Case 1: v, (0) = ¢, (1):0,,(0) = ¢, (1).

Case 1(a): g, {#,) = 0.

(1) np = 0(modd).

Take g» as fa. Then as g, (0) = g, (1) + 1109, (0) = e, (1) +1; g2 (1) = 1;

moreover the edge 1,4 that is the edge connecting PFG (ny, na, - - | Nn)

to I'G(nn41) receives Lhe label 1. Henee v,(0) = 1g(1) + 1 and e4(0) =

eg(1).

(ii) Npgr = 1{modd).

Take g2 as f3. Then as vy, (0) = vy, (1):¢,,(0) = 4. (1); g2(tin g ) = 0; more-

over the edge 1,14, | that is the edge connecting PF G(nyyna, -« ,ngy) to

FG(nn1) receives the label 0. Hence 1,{0) = v,(1) and e, (0) = eg(l) + 1.

(iil) 22041 = 2(mod1).

Take g2 as fs. Then as 19,(0) = v, (1) + 1100, (0) = €y, (1) +1; ga(vmapr) = 1;

Mgyttt ) defined as
e )) and glw) = ga(w), if w €

moreover the edge 1y vy .y that is the edge connecting PEG(ny,na, -+ - , 1)
to F'G(nm41) receives the label 1. Henee v,(0) = vg(1) + 1 and €,(0) =
eg(1).
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(iv) 1 1 = 3(tnod t).

Take g2 as f5. Then as vg, (0) = v, (1): 0y (0) = ¢4, (1); g2{vmp1) = 0; more-
over the edge v, vy, that is the edge connecting PFG(ny,na,- -+ ,iy,) to
FG(nm.y1) receives the label 0. Henee 1, (0) = ¢, (1) and e,(0) = e,(1) + 1.
Case 1(b): g,(vm) = 1.

(i) nm4a = 0(mod4).

Take g2 as fi. Then argning as above it follows that 1,(0) = ¢y(1) + 1 and
eg(0) = e4(1).

(1) 120 11 = 1anadd).

Take ¢ as f; Then arguiug as above it follows that ©,(0) = v,(1) and
ey(0) = e,(1) + 1.

(iii) 241 = 2(mod4).

Take g2 as fs. Then arguing as above it [ollows that vy(0) = vy(1) + 1 and

€9(0) = e,(1).
(iv) g = 3(mocdd).

Take g2 as f. Then argning as above it [ollows that vy (0) = v,(1) and
eo(0) = e,(1) + 1.

Case 2: v, (0) =1, (1) + 1:¢,,(0) = ¢,,(1).

Case 2(a): ¢ (vy,) = 0.

(1) 14p 41 = 0(nodq).

Take g2 as fy. Then () = 14 (1) and ¢ (0) = ¢, (1).

(ii) 7ynp1 = 1inod4).

Take g2 as f3. Then v4(0) = v,(1) + 1 and ¢,(0) = ey(1) + 1.

(iii) nyn.p1 = 2{mod4).

Take g2 as f4. Then 1y (0) = vy (1) and ¢ (0) = ¢, (1).

(iv) nypq = 3(modl).

Take g2 as [, Theu ¢,(0) = vy (1) + 1 and e,(0) = ¢,(1) + 1.

Case 2(b): ¢ (vy) = 1.

(1) fmq1 = 0(1nodd).

Take g2 as [fa. Theu it ollows that v, (0) = 0,(1) and e, (0) = ¢,(1).
(ii) R = 1nod4).

Take g as fs. Then it follows that vy (0) = v,(1) + 1 and ¢, (0) = €,(1) +1.
(iil) n,n41 = 2(mod4).
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Take g2 as f3. Then we lave ¢, (0) = v, (1) and ¢, (0) = ¢, (1).

(iv) 1t = 3(nodd).

Take g2 as fs. Then we have 1g(0) = ¢4(1) + 1 and ¢,(0) = e4(1) + 1.
Case 3: vy, (0) = vy, (1);¢4,(0) = ¢4, (1) + 1.

Case 3(a): g1(vy) = 0.

(i) g1 = 0(modd4).

Take g2 as fa. Then v9(0) = v,(1) + 1 and ¢4(0) = ¢4(1) + 1.

(ii) nmg1 = 1(modd).

Take g2 as fz. Then 19(0) = vy (1) and e, (0) = e4(1).

(iii) g4 = 2(n0dq).

Take g2 as f; Then v,(0) = v,(1) + 1 and ¢, (0) = ey(1) + 1.

(iv) nypr = 3(mod4).

Take g3 as f5. Then v,(0) = vg(1) and ¢, (0) = e,4(1).

Case 3(b): ¢ (v} = 1.

(i) 14 = 0(modd).

Take g as fi. Then it [ollows that v,(0) = ,(1) + 1 and ¢,(0) = e,(1) + 1.
(ii) 1,541 = 1{mod4).

Take g2 as f3. Then it follows that v, (0) = v, (1) and ¢, (0) = eg(1).
(ifi) 1yn9 = 2(1n0dd).

Take ga as [y. Then we have v, (0) = v, (1) + 1 and £,{0) = e,(1) + 1.
(iv) m41 = (modd).

Take go as [s. Then we have 115(0) = ¢4(1) and ¢,(0) = ¢4(1).
Case 4: v,,(0) = v, (1) + Lie,, (0) = ¢, (1) + 1.

Case 4(a): g;(vm) =0.

(i) nme1 = 0(mod4).

Take g2 as fi. Then 19(0) = vg(1) and ¢4(0) = ¢, (1) + 1.
(ii) Py = 1(mod4).

Take go as fg. Then vg(0) = vy(1) + 1 and ¢, () = ¢, (1).
(iii) 72p1 = 2(modd).

Take ga as f; Thew 14(0) = y(1) and ¢, (0) = ¢4(1) + 1.
(iv) 7y 1 = 3(mod4).

Take ga as f5. Then 14(0) = v,(1) + 1 and e,(0) = e, (1).
Case 4(b): g, () = 1.
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(1) regq 1 = 0(1nod4).

Take g2 as fa. Theu it [ollows that u,(0) = ¢g(1) aud ¢, (0) = e, (1) + 1.
(ii) 191 = 1(nod4).

Take g2 as f3. Then it [ollows that v,(0) = v,(1) + 1 and €,(0) = e,(1).
(iii) np1 = 2(inod4).

Take g2 as f3. Then we have v, (0) = v, (1) and ¢,(0) = ¢,(1) + 1.

(iv) g = 3(mod4).

Take ga as fs5. Then we have vy(0) = vy(1) + 1 and ¢,(0) = ¢4(1).

Hence in all cases, we see that the labeling g for PFG (e, -+ iy nte1)

is cordial. Therelore,by induction, it follows that the path union of flags
PEFG(1y,na,--- .ny) is cordial. a
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