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ABSTRACT. Let S be a stable set in a graph G, possibly S == §. The
subgraph G — N[S], where N[S] closed neighborhood of S, is called
a co-stable subgraph of G. We denote by CSub(G) the set of all co-
stable subgraphs of G. A class of graphs P is called co-hereditary if
G € P implies CSub(G) C P. Our result: If the set of all minimal
forbidden co-stable subgraphs for a non-empty co-hereditary class P
is finite, then Stable Set is an NP-complete problem within P. Also,
we prove that the decision problem of recognizing whether a graph
has a fixed graph H as a co-stable subgraph is NP-complete for each
non-trivial graph H.
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1. Co-hereditary classes

We use standard graph-theoretic terminology, see for example Melnikov,
Sarvanov, Tyshkevich, Yemelichev, and Zverovich [9]. A complete graph
of order n is denoted by K,. Here we admit the existence of the null-
graph Ko. The neighborhood N(v) = Ng(v) of a vertex v in a graph G
is the set of all vertices that are adjacent to v. The closed neighborhood
of v is Njv] = {v} UN(v). Foraset X C V(G), N(X) = |J N(z)

X

[ 15
and N[X] = X UN(z). Aset S C V(G)is stable it N(S)nS = 0. A

mazimal stable set is not contained in any other stable set. A stable set .S
is mazimum in a graph G if |S| > |S’| for each stable set S’ of G.

Definition 1. Let S be a stable set of G, possibly S = 0. The subgraph
G — N[S] is called a co-stable subgraph of G. We denote by CSub(G) the
set of all co-stable subgraphs of G [considered up to isomorphism].

For example, the 5-cycle Cg has the following co-stable subgraphs: Cs,
K, and Kj, that is CSub(Cs) = {Cs, K2, Ko}. Clearly, each co-stable
subgraph is an induced subgraph, but not conversely.
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Definition 2. A class of graphs P is called co-hereditary if it is closed
under taking co-stable subgraphs, i.e., G € P implies CSub(G) C P.

A hereditary class is a class closed under taking induced subgraphs. Each
hereditary class is co-hereditary, but not conversely. Recall that a graph is
called well-covered if all its maximal stable sets have the same cardinality.
Well-covered graphs constitute a well-known example of a co-hereditary
class. Indeed, suppose that H is a co-stable subgraph of a well-covered
graph G. It means that H = G — NIS] for some stable set S of G. If
there are two maximal stable sets S; and S2 in H of different size, then
SUS; and SU S would be two maximal stable sets of G of different size,
contradicting to the fact that G is a well-covered graph.

For a set of graphs Z, we put

FCS(Z) = {G : CSub(G) N Z = B}.

If P =FCS(Z) then Z is called a set of forbidden co-stable subgraphs for P
characterizing P. A forbidden co-stable subgraph H € Z for P is minimal
if CSub(H)\ {H} C P. The following observations are straightforward.

Proposition 1. (i) P is a co-hereditary class if and only if P = FCS(Z)
Jor some set Z.

(ii) The inclusion-wise minimal [with respect to the partial order "to be a
co-stable subgraph”] set Z that satisfies (i) is uniquely defined. Moreover,
it coincides with the set of all minimal forbidden co-stable subgraphs for P.

Proposition 1 shows that each co-hereditary class can be characterized
in terms of forbidden co-stable subgraphs. Such a characterization for the
class WELL of all well-covered graphs was found by Zverovich [15]. No
other characterizations of co-hereditary classes are known.

2. Stable Set Problem

The stability numberof a graph G, denoted by (@), is the maximum car-
dinality of a stable set in G. The problem of calculating «(G) is polynomial-
time equivalent to the following decision problem.

Decision Problem 1 (Stable Set).
Instance: A graph G and an integer k.
Question: Is there a stable set S of G with |S| > k?

Let us consider the corresponding constructive variant of this problem.
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Constructive Problem 1 (Stable Set).
Instance: A graph G and an integer k.
Output: A stable set S of G with |S| > k or "No” [there is no such a stable

st in C.

Let P be a class of graphs. Imagine that we have an oracle O that,
given a graph G € P, returns (G) in polynomial time. Can we construct
2 maximum stable set of each graph in P in polynomial time using O only?
The answer is "yes” for co-hereditary classes.

Proposition 2. If P is a co-hereditary class then Constructive Problem
Stable Set and Decision Problem Stable Set are polynomial-time equivalent.

Proof. An output of the constructive problem can be easily transformed to
an answer to the question of the decision problem. Conversely, let Alg be
an algorithm for solving Decision Problem Stable Set. Given an instance
(G, k) to Constructive Problem, we proceed as follows.

Algorithm 1.

Input: A pair (G, k).

Step 1. Set S =10.

Step 2. If V(G) = @ then return S and Stop.

Step 3. For each vertez u € V(G), apply Alg to the instance (G—Nu],k—
1). Note that the co-stable subgraph G — N[u] is in P by co-hereditariness.

Step 4. If the answer is No for each vertez, then return No and Stop.
If the answer is Yes for a vertez u then set G = G—N[u] and k =k -1,
include u into S and go to Step 2.

The algorithm either constructs a stable set S of G with |S| > k, or
returns "No” [there is no such a set]. o

In view of Proposition 2, the model of co-hereditary classes is very nat-
ural when we deal with Decision Problem Stable Set. However, almost all
known results on the problem were obtained for hereditary classes. Among
them perfect graphs (Grétschel, Lovész, and Schrijver [5]), claw-free graphs
(Minty [10], see also corrections in Nakamura and Tamura [11}, and the un-
weighted version in Sbihi [14]), chair-free graphs (Alekseev [1]), (Ps, Ps)-
free graphs and their extensions (Giakoumakis and Rusu [4], and Zverovich
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and Zverovich [20]), AH-free graphs (Hertz and de Werra [6]), penta-

graphs (Zverovich and Zverovich [21]), superbipartite graphs (Zverovich
and Zverovich [19]), a class of Mahadev and Reed and its extensions (Ma-
hadev and Reed [8], Rautenbach [12] and Zverovich [17]), etc. Some gen-
eral methods for Stable Set Problem in hereditary classes were developed
by Alekseev [2], Rautenbach, Zverovich, and Zverovich {13], Zverovich [16],
Zverovich (18], and Zverovich and Zverovich [22].

The class of well-covered graphs is the only known co-hereditary non-
hereditary class of graphs for which Stable Set Problem can be solved in
polynomial-time. Why do not people consider other such classes? We
provide some reasons for that.

3. Negative results

A class of graphs P is called a-polynomial if there exists a polynomial-
time algorithm for Stable Set Problem within P. A class of graphs P is
a-complete if Decision Problem Stable Set is NP-complete within 7.

Definition 3. For an integer n > 1, we define an n-replication of a graph
G as a graph Rep(G,n) defined as follows:
o introduce a copy V; of the complete graph K, for each vertez v; of
G, and
o when i # j, a vertex z € V; is adjacent to a vertez y € Vj if and
only if the vertices v; and v; are adjacent in G.

In other words, Rep(G, n) is obtained from G by inflating each vertex
of G with n — 1 new vertices. Clearly, G = Rep(G, 1).

Theorem 1. Let Z be the set of all minimal forbidden co-stable subgraphs
for a co-hereditary class P. If Z is finite and Z # {Kq}, then P is a-
complete.

Proof. Let N be the maximum order of a graph in Z. Clearly, Z cannot
contain an (N + 1)-replication of a graph G # K.

Claim 1. For each graph G, the graph H = Rep(G, N + 1) belongs to P.
Proof. We consider an arbitrary co-stable subgraph H’ of H. By definition
H' = H — Ny[S] for a stable set S of H. Without loss of generality we

may assume that S C V(G). It follows that H’ = Rep(G’, N + 1), where
G’ = G — N¢[S]. We show that H' ¢ Z.
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Each graph contain Ko as a co-stable subgraph. Since all forbidden co-
stable subgraphs in Z are minimal and Z # {Ko}, we have Ko ¢ Z. Hence
if G’ = Ko then H' = Ko & Z. Also, if G’ # Ky then |[V(H')| > N +1.
The definition of N implies that H’' & Z. Thus, no co-stable subgraph of
H belongs to Z. It follows that H € P. O

Claim 2. For each graph G and each integer n > 1, a(G) = a(H), where
H= R.ep(G, n).

Proof. 1t follows directly from Definition 3. O

Claim 1 and Claim 2 give a polynomial-time reduction from the general
Stable Set Problem to the same problem within P, namely G — Rep(G, N+
1). Since Stable Set is known to be NP-complete in general (Karp [7]), the
result follows. a

An n-replication is the graph Rep(G,n) for some graph G.

Corollary 1. Let P be an c-polynomial co-hereditary class of graphs de-
fined by a set Z of forbidden co-stable subgraphs. If P # NP then Z
contains an n-replication for each n > 1.

Proof. If Z does not contains an n-replication for some n > 1, then we may
use the reduction G — Rep(G, n) to show that P is a-complete [as in the
proof of Theorem 1]. The assumption P # NP produces a contradiction,
since a-polynomial class cannot be a-complete. O

For example, the trivial class © = {Ko} is a-polynomial. As it follows
from Proposition 3 below, O can be defined by the set Z; = {K, :n > 1}
of forbidden co-stable subgraphs. Clearly, Z; contains an n-replication for
each n > 1. A graph is non-trivial if it has at least one vertex.

Proposition 8. Each non-trivial graph G contains a non-trivial complete
graph as a co-stable subgraph.

Proof. Let H be the smallest non-trivial co-stable subgraph of G. Suppose
that H is not complete, i.e., H contains distinct non-adjacent vertices » and
v. We delete Ny[u] from H, and obtain a co-stable subgraph H’ of G. The
subgraph H' is non-trivial, since v € V(H’). We arrive to a contradiction:
|V(H")| < |[V(H)|. Thus, H is a complete graph. 0O
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Unfortunately, the converse of Corollary 1 does not hold in general,
i.e., if Z contains an n-replication for each n > 1, then FCS(Z) is not
necessarily an a-polynomial class [assuming P # N P]. We consider the set
Z ={K, :n=2,3,4,...} that contains an n-replication for each n > 1.

Proposition 4. The class P = FCS(K, : n=2,3,4,...) i3 a-complete.

Proof. Given a graph G, we construct a graph H by subdividing each
edge of G with two new vertices. It is well-known and easy to see that
a(H) = o(G) + |E(G)}. Since graph H is triangle-free, it does not contain
K, as a co-stable subgraph for all n > 3. Further, we define a 2-duplication
of H as the following graph Dup(H, 2):
e introduce a set V; of two non-adjacent vertices for each vertex v;
of H, and
e a vertex z € V; is adjacent to a vertex y € V; if and only if i # j
and the vertices v; and v; are adjacent in G.
It is easy to see that each co-stable subgraph in Dup(H, 2) consists of
a 2-duplication of a co-stable subgraph of H and, possibly, some isolated
vertices. Therefore Dup(H,2) does not contain K, as a co-stable subgraph
for all n > 2. In other words, Dup(H,2) is in P. Also, a(Dup(H,2)) =
2a(H) = 20(G) + 2|E(G)|. Thus, we have constructed a polynomial-time
reduction from the general Stable Set Problem to the same problem within
P. O

Open Problem 1. Find necessary and sufficient conditions for Z under
which FCS(Z) is an a-polynomial class, assuming P # NP.

4. Complexity

Here we consider the following problem, where H is a fixed graph.

Decision Problem 2 (Co-Stable Subgraph H).
Instance: A graph G.

Question: Is H isomorphic to a co-stable subgraph of G?

Co-Stable Subgraph Kj is a trivial problem, since each graph contains
Ko as a co-stable subgraph.

Theorem 2. Co-Stable Subgraph H is an NP-complete problem for each
graph H # Kj.
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Proof. The problem is in NP. Indeed, if we guess a stable set S of G, we
can check in polynomial time that H 2 G — N[S]. To show NP-hardness,
we use a polynomial-time reduction from Satisfiability Problem, see Garey
and Johnson [3). Let C = {c1,¢2,...,cm} be a set of clauses over a set of
literals L = {z1,%1,%2, %2, -,Zn, En}. We define a graph G* as follows:
e V(G*) = UuUC* U L*, where the sets U, C* and L* are pairwise
disjoint,
e U induces H,
e G*(C*) is a disjoin union of complete subgraphs ct,c?,...,.c™,
each having exactly k + 1 vertices, where k = [V(H), .
e L* consists of 2n pairwise disjoint sets X1, X1, X2, X2,..., Xn, Xn,
where | X;| = [Xi| =k +1 foreveryi=1,2,...,n, _
e G*(L*) is a union of complete graphs induced by X; U X;, i =
1,2,...,n,
e every vertex of U is adjacent to every vertex of C*,
e there are no edges between U and L*, and
o vertices z € L* and c € C* are adjacent if and only if either
— z € Xi, c € C7 and the clause ¢; contains the variable z;, or
- z € X;, ce CJ and the clause ¢; contains the literal T;.

Claim 3. A set U induces a co-stable subgraph of G* if and only if there
exists a truth assignment for L that satisfies C.

Proof. Suppose that H = G*(U) is a co-stable subgraph of G. It means
that there exists a stable set S C V(G*) such that H = G* — N[S]. Since
every vertex of U is adjacent to every vertex of C*, we have S C L*. Clearly,
every vertex of C* is adjacent to some vertex of S, that is S dominates C*.
Since S is a stable set, S contains at most one vertex from each complete
graph K* induced by X;UX;. Since S C L* and H = G*—N[S), S contains
exactly one vertex from each K*. Thus, we can define a truth assignment
¢ setting z; = 1 if and only if SN X; # 0. Since S dominates C*, ¢ is a
satisfying truth assignment for C.

Conversely, if there is a truth assignment ¢ that satisfies C, then we
define a stable set S C L* as follows: S contains a vertex from X; (re-
spectively, X;) if and only if ¢(z;) = 1 (respectively, ¢(z;) = 0). Since
exactly one of z;, Z; is true, every vertex of L* is in N[S]. The assign-
ment ¢ satisfies C, so S dominates C*, and therefore C* C N[S]. We have
L* UC* C NI[S]. The construction of G implies U N N[S] = @. Thus,
N[S]=L*uUC*, or H= G — N[S] € CSub(G), and the result follows. [
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Clatm 4. J{W CV(C) induces o co-stable subgruph of G* isomorphic to
H, then W =U.

Proof. Suppose that W contains a vertex w ¢ U. By the construction, w
belongs to a complete subgraph K of order k+1 such that N [a] = NTb] for
all a,b € V(K).

Further, W induces a co-stable subgraph, i.e., W = V(G) \ N[S] for
some stable set S of G. Since w € W, we have w ¢ N[S]. It follows that
SN N[w] = 0. Since N[w] = N[2] for each vertex z € V(K), we obtain
that V(K) C W, a contradiction to the fact that [V(K)| > &k = |[V(H)| =
|W|. The contradiction implies that W C U. Since |W| = |U], we have
W=U. O

a

Theorem 2 shows that there is no an obvious recognition algorithm for
finitely defined co-hereditary classes of graphs in opposition to finitely de-
fined hereditary classes.
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