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Abstract

For a solution S of the n-queens problem, let M(S) denote the
maximum of the absolute values of the diagonal numbers of S, and
let m(S) denote the minimum of those absolute values. For n > 4,
let F(n) denote the minimum value of M(S), and let f(n) denote
the maximum value of m(S), as S ranges over all solutions of the n-
queens problem. Say that a solution S is an n-champion if M(S) =
F(n) and m(S) = f(n).

Approximately linear bounds are given for F(n) and f(n), along
with computational results and several constructions together pro-
viding evidence that the bounds are excellent. It is shown that, in
the range 4 < n < 24, n-champions exist except for n = 11, 16, 21, 22.

Keywords: n-queens problem, Parallelogram Law.

1 Introduction

The n-queens problem requires placing n queens on an n x n chessboard
so that no two attack each other. This combinatorial problem has been
studied from many viewpoints. Ahrens showed (1] by construction that a
solution exists for all positive integers n except 2 and 3; some recent work
[5] has aimed at determining good bounds for the number of solutions for
each n > 4. Also, solutions of particular forms have been studied [2, 3, 4].

In this paper, we examine the n-queens problem with constraints on
the diagonals that the queens can occupy. For a precise statement, some
notation is necessary.
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We will identify the n x n chessboard with a square of side length n in
the Cartesian plane, having sides parallel to the coordinate axes. We take
the origin of the coordinate system to be the center of the board, and refer
to board squares by the coordinates of their centers. The square (z,y) is in
column z and row y. The difference diagonal (respectively sum diagonal)
through square (z,y) is the set of all board squares with centers on the line
of slope +1 (respectively —1) through the point (x,y). The value of y —z
is the same for each square (z,y) on a difference diagonal, and we will refer
to the diagonal by this value. Similarly, the value of y + z is the same for
each square on a sum diagonal, and we associate this value to the diagonal.
Note that when n is even, each of the column and row numbers is half an
odd integer. However, for any n the diagonal numbers are integers.

Let S be a set of squares of the n x n board; then M(S) will denote
the maximum of the absolute values of the diagonal numbers of S, and
m(S) will denote the minimum of those absolute values. (The definitions
of the diagonal numbers imply M(S) = max{ly| + |=| : (z,y) € S} and
m(S) = min{|ly| - |=|| : (z,y) € S}.)

For each integer n > 4, let F(n) be the minimum value of M(S), and
f(n) the maximum value of m(S), as S ranges over all solutions of the
n~queens problem. In this paper, we examine the functions F' and f.

One motivation for our work arose from the second author’s paper [6]
on the queen domination problem: finding for each positive integer k the
least size of a set D of squares of the k x k board such that queens on the
squares of D attack or occupy every square of the board.

The construction employed in [6] for dominating sets required choosing
an n, n <€ k, and a solution S of the n-queens problem, applying the
function k(z,y) = (2(y + z),2(y — z)) to S, and placing copies of h(S) on
the k x k board. The smaller the sub-board that ~(S) fit inside, the better
the result was; since k is a clockwise rotation by /4 radians (and dilation
by 2v/2), h interchanges diagonals with orthogonals. Thus it was desirable
for M(S) to be as small as possible.

A second motivation came from consideration of how the number Q(n)
of solutions of the n-queens problem grows as n increases. It was recently
conjectured [5] that there exists 8 > 0 with limp_,o[In Q(n)/nlnn] = B.
This would imply that for any € > 0, Q(n) > nf—*)" for sufficiently large n.

Such rapid growth invites the imposition of further constraints. We ex-
amine the effect of requiring M(S) = F(n) and m(S) = f(n) on the number
of solutions S, for 4 < n < 24; the results are in Table 2. For example,
there are 3860 such solutions for » = 20, while Q(20) = 39029188884 is
reported in [5].
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2 Bounds and values for F(n) and f(n)

We first observe some simple relations between M(S) and m(S) for a solu-
tion S of the n-queens problem, and their consequences.

Proposition 1 For anyn and solution S of the n-queens problem, M(S)—
m(S) 2 (n/2) — 1 and M(S)+ m(S) < n— 1. Therefore 0 < m(S) < n/4,
s0 f(n) <n/4, and (n/2) =1 < M(S)<n-1, so F(n) > (n/2) - 1.

Proof. By the definitions of M(S) and m(S), the difference diagonals
available for squares of S are numbered —M(S),..., -m(S) and m(9),...,
M (S); there are 2(M(S) — m(S) + 1) of these if m(S) > 0, and 2M(S) +1
if m(S) = 0. The first inequality of the proposition then follows from the
fact that the n squares of S lie on different difference diagonals.

By the definition of m(S), S contains no square on a sum or difference
diagonal with number of absolute value less than m(S). These squares in-
clude all those on sum or difference diagonals whose numbers have absolute
value exceeding n — 1 — m(S), so M(S) < n—1—m(S). This gives the
second inequality of the proposition, and the two inequalities imply the
stated bounds on m(S) and M(S), and on f(n) and F(n). ]

With § = {(zi,1%) : 1 < i < n} a solution of the n-queens problem, let
d; =y —z; and s; = y; + x; for each 1, 1 < i < n. Since the board has n
columns and n rows, and no two squares of S share a column or row,

{wa:ISiSn}={y,-:15ign}={1‘n 3-n  n-3 n—l}.

2 ' 2 2 g
1)

This implies

Zdt':ZSi-—-Zzi:Z'yi:Q 2
i=1 i=1 i=1

i=1

For each 1, the Parallelogram Law gives 272 + 22 = (3 — z:)% + (y; +
;)% = d? + s?. Then summing from 1 to n, and using (1) to evaluate the
left side of the resulting equation, we obtain

(nd —n)/3= zn:d?+is?. 3)
i=1 i=1

Using (2) and (3), we can now considerably improve on the bounds for
F and f given in Proposition 1.
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Theorem 2 For each n > 4,

4
[( 7n;—4 +n- 2) /41 if n i3 even,

F(n) 2 §
[( 7n3-_t;0nj:3 +n-3) /4] if n is odd,

\

and

l( Kt 2)/4J if n is even,
f(n)sl l( Inii2nid —n—l)/4J if n is odd.

Proof. We will use similar methods to establish each of the four stated
bounds; we consider the maximum (for F) and the minimum (for f) possible
values of the right side of (3). For this we need the following definitions.

Definitions. Let n, £ be integers, withn >1and £ >0, andlet ki, ..., kn
be distinct integers satisfying .., ki = 0. If |k;| < £ for each 4, then (k;)7,
is an (n, ¢, maz)-sequence. If |k;| > € for each i, then (k;), is an (n, ¢,
min)-sequence.

For n > 4, let S be any solution of the n-queens problem and let M =
M(S) and m = m(S). Then each of the sequences (d;)7; and (s;)i; of
diagonal numbers of S is both an (n, M, max)-sequence and an (n, m, min)-
sequence, by (2). So if B is the maximum value of }:‘hl < among all
(n, M, max)-sequences, and b is the minimum value of }_;. , kZ among all
(n, m, min)-sequences, then (3) implies 2b < (n3 —n)/3 < 2B

To bound F(n), we consider an (n, M, max)-sequence K = (k;)7,. If
integers h < j occur in K and h—1 and + 1 do not, and —-M < h -1
and j + 1 < M, then by replacing h and j with h —1 and j+1 in K,
we obtain an (n, M, max)-sequence with larger square sum. Using this fact
and now assuming that K has maximum square sum among (n, M, max)-
sequences, we see that for some positive integers s and u, K consists of a
run —M,1— M, ..., —s, another run u,z+1,..., M, and possibly a single
integer ¢ intermediate between the two runs. Since negating each term in an
(n, M, max)-sequence gives an (n, M, max)-sequence with the same square
sum, we may assume s 2> u.

If there is no intermediate term, then Y ., k; = O implies s = u, so
n is even. If there is an intermediate term t, then 3 ;. ; ki = 0 implies
t =) i_us1 i Since —s <t < u, and therefore ]t| < s,it follows that s = u,

t =0, and n is odd. For even n, (3) implies (n®—n)/3 < 4 Z,: M—(n/2)+1 i2
which simplifies to (7n? — 4)/3 < (4M + 2 — n)2. For odd n, (3) gives
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(n®-n)/3<4 E:Ai M—((n~3)/2) 12, which simplifies to (7n? + 10n + 3)/3 <
(4M + 3 —n)2. These inequalities give the bound stated for F(n).

To bound f(n), consider an (n,m, min)-sequence K = (k;){_; having
minimum square sum among such sequences. Since f(n) > 0 by definition,
we may assume that m > 1.

For any integers k < j that occur in K, it must not be possible to replace
them in K with A+1 and j—1 and get another (n, m, min)-sequence, as this
sequence would have smaller square sum. This implies two facts: first, that
either the positive terms of K consist of a run with least member m, or the
negative terms of K consist of a run with greatest member —m; without
loss of generality, we can assume the latter. Second, that then the positive
terms consist of a run with at most one term omitted. That is, there are
integers s,w > 1 and u > 0 such that the terms of K in increasing order
are ~m—s+1,...,—m and then m+u, m+u+1,..., m+u+n—s, except
that some term w is omitted from the second run. (Here m+u+1<w <
m+u+n—s, withw =m+u+n— s being the case where the positive
terms are an unbroken run.) Say that an (n, m, min)-sequence of this form
is a candidate (for minimum square sum).

Viewing the positive and negative terms in order of increasing absolute
value, we see that 3", k; = 0 requires s > n/2. Also, Y7, k; = 0 implies

sm+s(s—1)/2=n—s+1)m+u)+(n—-s+1)(n—3s)/2—-w (4)

for any candidate sequence.

For n even and s = n/2, (4) implies w = (v + 1)(n/2) + m + u. Then
the bound w €< m+u +n — s implies v = 0 and w = m + (n/2). Let Ko
denote the resulting (n,m, min)-sequence, which consists of +m,+(m +
1),...,x(m+ (n/2) - 1).

For n odd and s = (n + 1)/2, (4) implies w = u(n + 1)/2. Here the
bound m 4 u < w implies m < u(n —1)/2; since 1 < m, we see 0 < u. The
bound w < m + u + n — s implies (z — 1)(n — 1) < m; from Proposition
1 we have m < nf4,sou < 1. Thusu =1 and w = (n + 1)/2. The
resulting (n, m, min)-sequence K has terms —m —((n—1)/2),...,—m and
m+1,...,m+ ((n+1)/2), except not (n+ 1)/2.

We claim that the minimum square sum among all (n, m, min)-sequences
is given by Ko when n is even, and by K; when n is odd. The proof for
even n is similar to but much simpler than the proof for odd n, so we give
only the latter.

Let » be odd and let K’, with parameters s/, ', w’, be a candidate
sequence other than K. Since s’ > n/2 and K’ # K, we have s’ >
(n + 3)/2. If also w’ < 1, then (4) gives w’ < —(n+4m +1)/2 < 0, which
is not possible, so v’ > 1.

Now, K’ and K, have (n+1)/2 negative terms in common, and K’ has
s’ — ((n+1)/2) more negative terms; in increasing order, they are —m —s’+

169



1,...,—m — ((n+1)/2). Comparing absolute values, it is easy to see that
these s’ —((n+1)/2) terms have greater square sum than the s'—({n+1)/2)
largest positive terms of K;. Thus we can conclude by showing that the

n — s’ smallest positive terms of Ky, which are m+1,...,m+u+n— s
with one term (n + 1)/2 missing, have smaller square sum than the n — s’
positive terms of K’, which for some u are m+ u,... . m+u+n—s with

one term w’ omitted. This conclusion follows from u' > 1.

Then for even n, using Ko with (3) gives 42"’"'("/ D142 < (n8 —n)/3,
which simplifies to (4m + n — 2)2 < (7n? + 28)/3. This reduces to the
desired bound for f(n) when = is even.

For odd n, using K; with (3) similarly implies (4m + n + 1)% < (7Tn? +
2n 4+ 3)/3, and then the final bound of the theorem. [ ]

Notation. For each n > 4, let B(n) denote the lower bound for F(n)
derived in Theorem 2, and let b(r) denote the upper bound for f(n) derived
there.

Table 1 shows that the bounds are quite good for 4 < n < 24. Later we
give solutions achieving the values in Table 1.

Definitions. Say that a solution S of the n-queens problem is an upper
champion if M(S) = F(n) and m(S) = max{m(U) : U is a solution of
the n-queens problem and M(U) = F(n)}. Say S is a lower champion if
m(S) = f(n) and M(S) = min{M(U) : U is a solution of the n-queens
problem and m(U) = f(n)}. If S is both an upper and a lower champion,
then S is an n-champion, or simply a champion; here M(S) = F(n) and
m(S) = f(n).

For large n, b(n)/n ~ (\/7/3 —1)/4 = 0.13188... and B(n)/n =~
(V7/3+1)/4 = 0.63188.... Thus the sequences —B(n),...,—b(n) and
b(n),..., B(n) together contain about n integers, and we may hope that an
n-champion exists.

For some n, it is not difficult to see that no champion exists. For
example, suppose there were a 16-champion S; then m(S) = f(16) =
2 and M(S) = F(16) = 10. Of the 18 integers —10,...,-2,2,...,10,
all but two, say a; and a3, occur as difference diagonal numbers for S.
By (2), the difference diagonal numbers sum to zero, as do the integers
-10,...,-2,2,...,10, so a; + a3 = 0. Similarly, the sum diagonal numbers
of S comprise all but two, say by, by, of those 18 integers, and b; + by = 0.
By (3) we have

10

(17-16-15)/3=4) i* - (a? + a} + b2 + b3).
=2
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This reduces to a? + b} = 88, but 88 is not the sum of two squares.

Surprisingly, it appears that at least for most small n, champions exist.
As might be expected, the number Ch(n) of n-champions appears to corre-
late with how free the choice of diagonals is; we next introduce a measure
of this freedom.

Definition. A sum or difference diagonal is available (for a champion)
if its number h satisfies f(n) < || < F(n). Let A(n) denote the excess of
the number of available diagonals of the n x n board over the number 2n
of diagonals occupied by a solution of the n-queens problem.

For 4 < n < 24, the values of Ch(n) and A(n) are shown in Table 2.

We were curious about what effect & symmetry constraint on solutions
S would have on the values of M(S) and m(S). For n =12, 16,...,48,52,
a computer search was made to determine the maximum value of m(S)
subject to the requirement that S be a solution of the n-queens problem,
symmetric by a quarter-turn about board center, and satisfying M(S) =
B(n). Let that maximum be f*(n). We found that f*(44) = 4 = b(44) - 2,
f*(48) = 3 = b(48) — 3, and for the other values of n mentioned, f*(n) =
b(n) — 1. (Later we give an example for n = 52.) This shows for these
n that F(n) = B(n), and that the symmetry constraint does not have a
strong effect.

3 Constructions

As mentioned earlier, Ahrens showed [1] by construction that solutions of
the n-queens problem exist for all positive integers except 2 and 3. Other
authors independently did the same (see the discussion and references of
[5]). Most of these constructions are not useful here. For example, some
methods take a previously found solution for » — 1 and add an edge row,
edge column, and a queen square in the newly formed corner to obtain a
solution S for n. But then M(S) = n — 1 and m(S) = 0 are poor values.
More generally, methods that choose squares near any of the corners will
not work well.

For odd n, another difficulty is that any solution S that is symmetric
by a half-turn about board center necessarily includes the center square,
and thus has m(S) = 0. So for odd » > 9, this type of symmetry cannot
be used if we want minimum values of m(S).

The first construction we present is a special case of one due to Erbas
and Tanik [2], and can be used for all n = £2 (mod 6). It gives n-champions
for n = 4, 8,10, but not for larger n, as the values of m are always one.
Constructions that use a “repeated motion”, as this one does, generally can
give good values for M but not for m, as n increases.
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Let n = £2 (mod 6). Let g be the largest integer such that 18¢+9 < n,
except that g = 0ifn < 9. Set I = |242| 4+ 1. Let B, = {+(-3¢— 5 +
2, 2L —4) 1 1 < S TJU{H(-3q—n—3+2i, 2 ) : T <i < 3} (Aless
formal description: E, is symmetric under rotation about the board center
by a half-turn, so we only need give the squares of E,, in the top half of the
board. To generate these, begin with (—3g — 3, 252) and make successive
knight moves “two right, one down” until a square has been chosen in each
row of the top half; for n > 4, it will be necessary to pass once from the right
edge of the board to the left edge, as though those edges were identified.)

Then E,, is a solution of the n-queens problem; this is easily verified
for n = 4,8, and for n > 10, it follows from {2, Construction 2]. (In the
notation of [2], d = 6¢g+3 and s = (n/2) —3q here.) For each n, m(E,) = 1.
Straightforward calculation shows M(E;) = 2, M(Es) = 5, and otherwise

_ [ 3] ifn=2,4,8, or 16 (mod 18),
M(En) = { [ZZ’-' | ifn =10 or 14 (mod 18).

Thus for all » = £2 (mod 6), M(E,)/n =~ 2/3, which is not too far from
B(n)/n ~ 0.63188.

It would be interesting to see, especially for n = 3 (mod 6), construc-
tions giving good values of M and, if possible, of m.

The next construction, due to Pélya, uses any solution S; of the h-
queens problem, h > 4, to generate solutions S for each n = hk, with
k = £1 (mod 6), such that M(S)/n is only slightly larger than M(S;)/h,
and m(S)/n is only slightly smaller than m(S;)/A.

Definition. A solution S of the n-queens problem is toroidal if no two
difference (respectively sum) diagonal numbers of S are congruent mod-
ulo n.

The name derives from the fact that if the left and right edges of the nxn
board are identified, and the top and bottom edges also, so that the board
occupies the surface of a torus (and each orthogonal and each diagonal
becomes a loop of n squares), a toroidal solution retains the property that
no two queens attack each other.

Pélya showed [4] that there are toroidal solutions for n if and only if
n = %1 (mod 6).

Proposition 3 (Pdlya Construction) Let h,k be integers with h > 4,
k>1, and k = X1 (mod 6). Let S = {(X;,Y;) : 1 < i < h} be a solution
of the h-queens problem. Let S; = {(zi,3s) : 1 < i < k} be a toroidal
solution of the k-queens problem. Then S = {(kX; +z;,kY; +y;):1<i <
h,1 < j <k} is a solution of the hk-queens problem. We have

M(S) < kM(Sy) + M(Ss) and m(S) > km(Sy) — M(S2).
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Thus
F(hk) < kF(h) + M(S2) and f(hk) > kf(h) — M(S2). (5)

Proof. Pélya [4] showed that S is a solution of the hk-queens problem.
We may choose i and j with the square (kX;+z;, kY;+y;) on a diagonal

d whose number has absolute value M (S). Then (taking the plus from each

+ below if d is a sum diagonal, and the minus if d is a difference diagonal)

M(S) = |k(Yi £ Xi) +y; £ 5| < k|Y; £ X;| + |y; £z5] < kM (1) + M(S2),

Similarly, if (kX; + z;, kY; +y;) is on a diagonal with absolute value m(S),
then

m(8) = [k(Yi £ Xi) +y; £ 251 2 kIYi £ Xi| — ly; £z5] 2 km(51) — M(S2).

The final claims of the proposition follow if we take an S satisfying M (S;)
= F(h), and then another satisfying m(S1) = f(h). [ ]

By using a particular toroidal solution for each k, we get a more specific
bound, which we state in quotient form.

Corollary 4 Let h,k be integers with h > 4, k > 1, and k = £1 (mod 6).

Then F(hk) F(R) 3, f(hk) _ f(h) 3
W < h T ™ T hIh

Proof. Let Sp = {(4,24) : —5;—1- <i< "—gl}, where row coordinates are

reduced modulo k so that their absolute values do not exceed (k — 1)/2.
Then S; is a toroidal solution (see [3] or [4] for discussion of such regular
toroidal solutions) of the k- queens problem. Choose r in {1, —1} such that
k =r (mod 4). In [6, Lemma 7] it is shown that M(S;) = (3k — 2 —r)/4.
(This can be verified by checking that the square of S2 nearest the lower
right board corner is ((k + 2 + 7)/4, (=k + 2 + 7)/2), and that no square
of Sy has a diagonal number of larger absolute value than the difference
diagonal of this square.) Then employing (5) with this S, dividing by hk,
and using |r| = 1 gives the desired conclusion. [ |

We note in passing that for k = +1 (mod 6), the S; used in the proof
of Corollary 4 satisfies m(S2) = 0, as does every toroidal solution, and
M(S2)/k ~ 3/4.

Our final construction requires some definitions.

Definitions. Let sgn : R — R be the signum function, defined by
sgn(z) =1if z > 0, sgn(z) = -1 if x < 0, and sgn(0) = 0. For i = 1,2
define f; : R? — R? by fi(z,y) = (2z - (sgn(y — z)/2), 2y + (sgn(y — z)/2))
and fa(z,y) = (2z - (sgn(y + z)/2), 2y — (sgn(y + =)/2)).
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Define h : R? — R? by h(z,y) = (z, %)

For a set S of squares of the n x n board, let Mg(S) and mq(S) (re-
spectively M,(S) and m,(S)) denote the maximum and minimum absolute
values of difference diagonal (respectively sum diagonal) numbers of S.

The construction arose from our consideration of some solutions along
with the usual alternating square coloring used on chessboards. For a square
(z,), this coloring can be thought of as the parity of y + z.

Examining solutions for n = 4k, we saw that for some k, there was a
solution S’ such that the even squares of S’ formed a double sized, slightly
distorted copy of a solution S for n = 2k (the copy is f1(S)), and the odd
squares of S’ formed a similar copy of S, but upside down (the copy is
f2(h(S))). An example is shown in Figure 1.

Proposition 5 (Doubling Construction) Let n be an even positive in-
teger and let S be a solution of the n-queens problem that is symmetric by a
half-turn about the board center. Then S’ = f1(S)U fa(h(S)) is a solution of
the 2n-queens problem that is symmetric by a half-turn about board center.

If Ma(S) < M,(S) then Ma(S’') = M,(S") = 2M,(S), so M(S’) =
2M(8S).

If M4(S) = M,(S) then Mg(S’) = Ms(S")+1 = 2M4(S)+1, so M(S') =
2M(S) + 1.

If Mg(S) > M,(S) then Mg(S’) = My(S')+2 = 2M4(S)+1, so M(S') =
2M(S)+1.

If ma(S) > my(S) then ma(S’) = ms(S’) = 2m4(S), so m(S') =
2m(S).

If mg(S) = my(S) then me(S') = ma(S') -1 = 2my(S) -1, so m(S’) =
2m(S) — 1.

If m4(S) < my(S) then me(S’) = ma(S') —2 = 2ma(S) -1, so m(S’) =
2m(S) - 1.

Proof. Let n and S satisfy the hypotheses. Since n is even and S is
symmetric by a half-turn about board center, neither sum nor difference
diagonal 0 contains a square of S. Thus m(S) > 0, and the values of the
signum function occurring in the row and column numbers of S’ are not
zero. We show that S’ is a solution of the 2n-queens problem.

For any (z,y) in S, the diagonal numbers of the corresponding squares
in S’ are below.

square fi(z, ) fa(h(z,y))
diff. diagonal no. | 2(y — z) +sgn(y — z) —2(y + x)
sum diagonal no. 2(y+2z) —2(y — z) +sgn(y — z)

No square of f1(S) can share a difference diagonal with a square of
Ff2(h(S)), as the numbers have different parity; similarly for sum diagonals.
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Suppose that for distinct squares s, = (%4,%a) and sy = (zp, 1) of S,
the squares f1(s,) and fi(sp) share a diagonal. If it is a sum diagonal,
then 2(ya + Za) = 2(ys + Tb) SO s, and s, share a sum diagonal, which is a
contradiction. Ifit is a difference diagonal, then 2(y, —z,) +sgn(y, —z,) =
2(yp — zp) +sgn(ys — z). However, each side of this equation has the same
sign as the first term of the side, so sgn(ys — z,) = sgn(ys — 2s), and
then y, — 2o = yp» — zp. This contradicts the fact that s, and s; lie on
distinct difference diagonals. A similar argument shows that f2(h(ss)) and
f2(h(sp)) do not share a diagonal.

We then need to check that no two squares of S’ share an orthogonal,
or equivalently that S’ occupies each row and column of the 2n-board. The
latter follows from the fact that that for each (z,%) in S, we also have
(—=z, —y) in S, and then the four squares fi(£(z,y)), fo(h(%(z,v))) jointly
occupy columns +2z + (1/2) and rows +2y & (1/2).

Since applying any of fi, fa2, » to a set that is symmetric by a half-turn
about board center gives such a set, S’ has this type of symmetry.

For the remaining claims, note that if k > 0 occurs as a difference diago-
nal number of S, then by symmetry so does —k, and then the corresponding
diagonals of S’ are difference diagonals numbered +(2k + 1) and sum di-
agonals numbered +(2k — 1). Similarly, if ¥ > 0 occurs as a sum diagonal
number of S, then the corresponding diagonals of S’ are difference and sum
diagonals numbered +2k. We examine one of the six claims; the others are
similar.

Suppose My(S) > M,(S). By the preceding paragraph, the diagonals of
S’ corresponding to sum diagonals of S all have numbers of absolute value
at most 2M,(S), so the difference diagonal number of S’ of largest absolute
value is 2M4(S) +1, and the sum diagonal number of S’ of largest absolute
value is 2M4(S) — 1, which implies the claim. [

Notation. In the situation of Proposition 5, we write d(S) = 5’

Choose particular n, S satisfying the hypotheses of Proposition 5. Start-
ing with S, there are many ways to use the functions d and A to inductively
construct solutions of the 2°n-queens problem for each i > 0. We give two
of these: first, the one that gives the largest values of the function m, then
the one that gives the smallest values of M. Let E =1 if Mg(S) > M,(S),
and let £ = O otherwise. Let e = 1 if mq(S) < my(S), and let e = 0
otherwise.

Let Lo = S and for each ¢ > O define L;yy = d(L;). Then L; is a
solution of the 2¢n-queens problem for each i. If e = 1, the final statements
of Proposition 5 imply that m(Lit1) = 2m(L;)+1 for even i, and m(Li4,) =
2m(L;) for odd i. Examining this and the case e = 0, it is easy to prove
by induction that m(L;) = 2'm(9) — (2+1+e 4 (-1)**e — 3)/6 for i > 0.
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Similarly, M(L;) = 22M(S) + 242 — 1 for i > 1. '

These imply m(Li)/(2'n) > (m(S) — (2°/3))/n and M(L;)/(2'n) <
(M(S)+28-Y)/nfori>1.

Let Up = S and for each ¢ > 0 set Uy, = d(U;) if ¢ is even, and
Uiy1 = d(h(Uy)) if i is odd. (Note h interchanges sum and difference
diagonals.) Then U; is a solution of the (2¢n)-queens problem for each
i, and an induction yields m(U;) = 2!m(S) — 2¢-1*¢ 4+ 1 for i > 1, and
M(U;) = 22M(S) + (24++E 4 (—1)i+F — 3)/6 for i > 0.

It follows that m(U;)/(2in) > (m(S) — 2°71)/n and M(U;)/(2'n) <
(M(S)+ (2E/3))/n for i > 1.

For each n, 4 < n < 24, we now give an n-champion, referred to herein
as Cy, if one exists. If there is no champion, we give an upper champion
followed by a lower champion. In the latter situation, for these n each
upper champion S has m(S) = f(n) — 1, and with one exception each
lower champion S has M(S) = F(n) + 1. The exception is n = 22, where
M(S)=F(n)+2.

We give the row numbers as the column number increases from (1—n)/2
to (n — 1)/2. (Recall that for even n, the row and column numbers each
are half an odd integer.) If the solution is symmetric by a half-turn about
board center, then only the row numbers for the left half are given. Where
possible, we describe the solution using d, h, E, as defined previously.

n =4. }(1,—3). Symmetric by a quarter-turn.
n = 5. (1, —2,0). Symmetric by a quarter-turn.
n=6. $(1,-5,3). Symmetric by a half-turn; see Figure 1.
n="1. (20,3, -3,-1,1,2).
n=8. 3(3,~1,5,—7). Symmetric by a half-turn; this is d(C;).
n=9. (2,033, -4,-2,4,1,-1).
n=10. 1(3,-5,1,-7,9). Symmetric by a half-turn; this is h(E1o).
n=11. A. (2,0,-3,3,5,-5,-1,—-4,4,1, -2).
B. (3,1, -1, -3, —5,4,2. 5, —4, —2,0).
n=12. 3(3,-1,9,-11,7,-5). Symmetric by a half-turn; this is d(Cs).

See Figure 1.

n=13. (2,0,-3,-5,4,6,—6, -4, —1,5,3,1, —2).

n=14. %-(5, 1,-3,-11,9,-13,7). Symmetric by a half-turn.

n=15. (3,1,4,2,-5,-7,-2,-6,5,7,0,6, -4, -1, —3).

n=16. A. %(—5,7, 3,-1,9,~11, 15, —13). Symmetric by a half-turn;
this is d(h(C3)).
B. 3(7,-5,-1,3,11, 9,13, —15). Symmetric by a half-turn;
this is d(Cg).

n=17. (241 -3,-6,6,-5,-8,8,5,-4,-7,7,0,-2,3, —1).

n=18. 3(5,-1, —7 -3,-13,11,15,9, -17). Symmetnc by a half-turn.

n=19. (3,1,4,-2,-7,6,—-6,-9,4,-5,9, —4,8,-8,7,2, -1, —3,0).
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n = 20. -%(—5, 7,11, -9, -1, 3,15, 13,17, —19). Symmetric by a half-turn;
this is d(C10). Another champion is given by applying the Pélya
construction to C4 and Cs.

n=21. A. (3,1,4,2,-5,-8,-6,-9,5,10,8,-10,-3,9,7, -7, -2,6,-1,
—4,0).

B. (4,2,5,3,1,-7,-9,-6,-8,-10,9,6,10,7,0, =2,8, -5,-3,
-1, -4).

n=22. A. %(7, 3,9,5,1,-15, 19, —13,-17, -21, 15,11, 21, -9,19, 13,17,
-3,-7,-11,-1,-5).

B. (11,5, -1, -9,7,3, —21, -15,17, —13, ~19). Symmetric by a

half-turn.

n=23. (4,2,5,3,1,-3,-7,-9,-11, -8, -10,6,11,9,7,0,10,8, -4, —6,
-1, -5,-=2).

n=24. 1(7,3,9,-11,-5,~1,-19,17,13, 21,15, —23). Symmetric by
a half-turn.

For n = 52, we give a solution S that is symmetric by a quarter-turn,
with M(S) = F(52) = 33 and m(S) = f*(52) = 6 = b(52) — 1. By
the symmetry, it suffices to give a set of 13 squares which generate S
under rotation. The squares of this S in the leftmost 13 columns form
such a set; we give their row numbers as their column numbers increase:
-%(5, 15,3,13,23,11,21,25,19,9,17,7,1).

We conclude with two conjectures.
Conjecture 1 For alln >4, f(n) 2 b(n) —1 and F(n) < B(n) + 1.

Conjecture 2 There are infinitely many n for which n-champions exist.
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n]4 5 6 7 8 9 10 11 12 13 14
JW [T 0 1T 0 1 1 1 1 1 1 2
Fn)[[2 3 4 5 5 6 6 7 8 8 9

nl] 15 16 17 18 19 20 21 22 23 24
R 1T 2 2 2 2 2 2 3 2 3
F(r) [10 10 11 11 12 13 13 14 15 15

Table 1: Values of f(n) and F(n) for 4 < n < 24, found by computer
search. Those in bold differ from the appropriate bound in Theorem 2 by
1; otherwise, the bound is attained.

nfl4 5 6 7 8 9 10 11 12 13 14
Chin)[2 2 4 24 4 8 4 0 136 16 16
AR)]|]0 4 4 8 4 6 4 6 8 6 4
n] 15 16 17 18 19 20 21 22 23 24

Ch(n) 2744 0 8 36 80 3860 0 0 296080 240
AR) [ 10 4 6 4 6 8 6 4 10 4

Table 2: Values of Ch(n), the number of n-champions, found by computer
search, and values of A(n), the excess of the number of available diagonals
over the number of occupied diagonals, for 4 < n < 24.

O ®)
O O

O
O o

Figure 1: On the left a 6-champion § is shown. On the right is a 12-
champion §’, obtained from S by the doubling construction of Proposi-
tion 5. Diagonal lines mark the odd squares of the 12 x 12 board. The even
squares in S’ are the members of f;(S), and the odd squares in S’ are the
members of fa(h(S)).
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