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Abstract

There are six distinct ways in which the vertices of a 4-cycle
may be coloured with two colours, called colouring types. Let C be
the set of these colouring types and let S be a non-empty subset
of C. Suppose we colour the vertices of K, with two colours. If
D is a 4-cycle decomposition of K, such that the colouring type of
each 4-cycle is in S, then D is said to have a colouring of type S.
Furthermore, the colouring is said to be proper if every colouring
type in S is represented in D. For all possible S of size one, two or
three, exluding three cases already settled, we completely settle the
existence question for 4-cycle decompositions of K, with a colouring
of type S.

1 Imntroduction

Let G and H be graphs. A G-decomposition of H is a set G = {G1,G>, ...,
Gp} such that G; is isomorphic to G for 1 < ¢ < p and G partitions the
edge set of H. Most commonly, H = K, the complete graph on v vertices.
Another popular choice for H is K, — F, the complete graph with the edges
of a 1-factor removed. The problem of determining all values of v for which
there exists a G-decomposition of K, is called the spectrum problem for G.

An m-cycle, denoted by (z1,%2,...,Tm), is the graph with vertex set
{21,%3,...,2m} and edge set {{21, 2}, {22, %3},---, {Tm,Z1}}. The spec-
trum problem for m-cycles has recently been solved; see [3] and [7].

A variant of the spectrum problem for m-cycles arises when the vertices
of K, have been coloured and there are demands on how each m-cycle in
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the decomposition must be coloured. An m-cycle is said to be monochro-
matic if all m vertices are the same colour. Conversely, an m-cycle with m
distinctly coloured vertices is said to be polychromatic. A weak colouring
results in no m-cycle of the decomposition being monochromatic. A strong
colouring requires that each m-cycle of the decomposition be polychromatic.
Many existing papers have considered coloured 3-cycle decompositions of
K, (Steiner triple systems) and a fine survey can be found in [5).

While most work has considered weak colourings, new colouring systems
are emerging. If the vertices of H have been coloured with k colours and
each m-cycle in a decomposition of H has n; vertices of colour ¢;, for 1 <
i< k,and |n; —nj| <1, for all 4,5 € {1,2,...,k}, then the decomposition
is said to be equitably k-coloured. A decomposition that can be equitably k-
coloured is said to be equitably k-colourable. Thus far, only equitably 2 and
3-colourable m-cycle decompositions of K, K,,— F and certain multipartite
graphs have been considered for small values of m; see (1], (2], [6] and [10].

In this paper we consider coloured 4-cycle decompostions of K,. As
such, we often use the following well-known theorem.

Theorem 1.1 A 4-cycle decomposition of K, ezists if and only if v =
1 (mod 8).

There are clearly six distinct ways in which a 4-cycle may be coloured
with two colours, say black and white (denoted by B and W respectively).
Let C;C2C3Cy4 denote the colouring of the 4-cycle (z1,22,23,74) which
assigns the colour C; to the vertex z;, where C; € {B, W} fori=1,...,4

Definition 1.2 Let the colouring BBBB be denoted Type Al, WWWW be
denoted Type A2, BBBW be denoted Type B1l, WWWB be denoted Type
B2, BBWW be denoted Type C and BWBW be denoted Type D.

Let S be a subset of C = {Al, A2, B1, B2, C, D}. (For the sake of
brevity we omit the word Type). Supposing that the vertices of K, have
been coloured with two colours, then a 4-cycle decomposition of this graph
is said to be of colouring Type S if the colouring type of every 4-cycle in
the decomposition is in S. Furthermore, the colouring is said to be proper
if every colouring type in S is represented in the decomposition. Within
this paper, every colouring is proper.

The cases S = {B1, B2} and S = {B1, B2, D} were solved by Quattroc-
chi in [8]. The case S = {C, D} involves finding an equitably 2-coloured
4-cycle decomposition of K, and this was solved in [2]. Here, we con-
sider the remaining cases where |S] € {1,2,3}. Note that some colouring
types can be trivially obtained from other types by simply interchanging
the colours of all vertices. If S; and S, are sets of such colouring types then
in Table 1 and the constructions we write S; = Ss.
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Main Theorem There exist 2-coloured 4-cycle decompositions of K, with
colouring Type S with |S| € {1,2,3} if and only if the conditions in Table
1 are satisfied. Note that in every case, no decomposition with a proper
colouring of Type S exists for v = 1.

S. permissible v reference
{Al} = {A2} v=1(mod8), v#1 Thm 2.1
{B1} = {B2} none Thm 2.2
{C}, {D} none Thm 2.3
{Al, A2} none Thm 3.1
{A1, B1} = {A2, B2} v=1(mod8),v#1 | Thm3.5
{Al, B2} = {A2, B1} none Thm 3.6
{Al, C} = {A2, C} none Thm 3.7
{Al, D} = {A2, D} none Thm 3.8
{B1, C} = {B2, C} =1(mod8),v#1, | Thm 3.15

VVELZ
{B1, D} = {B2, D} none Thm 3.16
{B1, B2} v =49+ 1124 + 642, | [8]

r2>0

v =1+ 164 + 6442,

p21
{C, D} none [2]
{A1, A2, B1} = {Al, A2, B2} [ v=1(mod8), v # 1,9, | Thm 4.6

17, 25
{A1, A2, C} none Thm 4.7
{A1, A2, D} none Thm 4.8
{Al, B1, B2} = {A2,B1,B2} | v=1(mod8),v#1,9 | Thm 4.12
{A1, B1, C} = {A2, B2, C} v=1(mod8),v#1 Thm 4.15
{Al, B1, D} = {A2, B2, D} none Thm 4.16
{A1, B2, C} = {A2, B1, C} v=1(mod8), v#1,9 | Thm 4.21
{A1,B2,D} ={A2,B1,D} |v=1(mod8),v#1,9 | Thm4.25
{Al, C, D} = {A2, C, D} v=1(mod8), v#1 Thm 4.28
{B1, B2, C} v=1(mod8), v #1, Thm 4.30

VVELZ
{B1, C, D} = {B2, C, D} v=1(mod8),v#1 Thm 4.32
{B1, B2, D} v=1(mod8),v#1 8]

Table 1. The spectrum problem for 4-cycles with proper colouring type S,
|S| € {1,2,3}.

We now introduce some terminology and notation to be used throughout
this paper. We say that an edge is pure-coloured if it connects two vertices
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of the same colour. Alternately, an edge is said to be mized-coloured if it
connects two vertices of different colours. We let the lower case letters b
and w denote the number of black and white vertices in K, respectively.
We let G ~ H denote the graph G with the edges of the graph H removed.

In Section 2 we consider the case |S| = 1, in Section 3 we have |S| = 2
and in Section 4 we deal with the case |S| = 3.

2 18|=1
2.1 S={Al}=S={A2}

Theorem 2.1 There exists a 4-cycle decomposition of K, with colouring
type {Al} if and only if v =1(mod8), v # 1.

Proof. The result follows immediately from Theorem 1.1 (colour every
vertex black). 1]

2.2 S={Bl}=S={B2}
Theorem 2.2 There exist no 4-cycle decompositions of K, with colouring
type {B1}.

Proof. Let v > 1 and suppose that the decomposition exists. A 4-cycle
of Type B1 has two pure-coloured edges between black vertices, two mixed-
coloured edges and no pure-coloured edges between white vertices. Hence
w =1 and, since bw = b(b — 1)/2, v = 4. However, by Theorem 1.1, K,
cannot be decomposed into 4-cycles. o

23 S={C}and S={D}

Theorem 2.3 There ezist no 4-cycle decompositions of K, with colouring
type {C} or {D}.

Proof. Suppose a decomposition exists. Each 4-cycle has two black ver-

tices and two white vertices. Hence, b = w and so v is even. However, a
cycle decomposition of K, is possible only if v is odd. 0

3 |S|=2
3.1 S§={A1, A2}

Theorem 3.1 There exist no 4-cycle decompositions of K, with colouring
type {Al, A2}.
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Proof. This follows immediately as neither a 4-cycle of either Type Al
nor Type A2 have any mixed-coloured edges. o

3.2 S={A1, B1}=S={A2, B2}

We begin with some useful results.

Theorem 3.2 [9] There exists an uncoloured 4-cycle decomposition of
Ko if and only if m and n are both even, m > 2, n > 2 and 4|mn.

Corollary 3.3 There erists a 4-cycle decomposition of Ky n with colouring
type {A1} if and only if m and n are both even, m > 2, n > 2 and 4jmn.

Lemma 3.4 There exists a 4-cycle decomposition of Ko with colouring type
{A1, B1}.

Proof. Let the vertex set of Ky be Zg. Colour the vertices 1,2,...,8
black and colour the vertex 0 white. A suitable decomposition is given by:
(3,4,1,5), (3,7,2,8), (1,2,5,6), (2,4,8,6), (4,5,8,7), (1,3,2,0), (3640)
(5,7,6,0) and (7,1,8,0).

Theorem 3.5 There exists a 4-cycle decomposition of K, with colouring
type {A1, B1} if and only if v=1(mod8), v # 1.

Proof. The necessary conditions follow from Theorem 1.1 and the fact
that the colouring is proper.

Let v =8z + 1, for z > 1. Let the vertex set of K, be (U7, X;) U {0},
where | X;| = 8 for i = 1,2,...,z. Colour all vertices in X; black, for
i=1,2,...,2, and colour the vertex co white.

By Lemma 3.4, we can place a copy of the decomposition of Ky with
colouring type {Al, B1} on X; U {co}. By Corollary 3.3, we can place a
copy of the decomposition of Ky g with colouring type {A1} on X;UXj, for
1 < i< j < z. The result is a 4-cycle decomposition of K, with colouring
type {Al, B1}. o

3.3 S={Al1, B2} =S={A2, B1}

We begin with some observations. A 4-cycle of Type Al has four pure-
coloured edges, each of which connects two black vertices. A 4-cycle of
Type B2 has two pure-coloured edges, each of which connects two white
vertices, and two mixed-coloured edges.

Theorem 3.6 There exist no 4-cycle decompositions of K, with colouring
type {Al, B2}.
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Proof. Let v > 1 and suppose that the decomposition exists. We now
look for a contradiction. From the above observations, w(w — 1)/2 = bw,
sow = 2b+ 1 is odd. Now consider a black vertex z in K,. Edges in
K, connecting 2 and any white vertices can only be accounted for in the
decomposition using 4-cycles of Type B2 and, within each such cycle, z
is adjacent to two white vertices. Hence, w is even. Thus we have a
contradiction. |

3.4 S={Al,C}=S5={A2, C}

Theorem 3.7 There exist no 4-cycle decompositions of K, with colouring
type {Al, C}.

Proof. Suppose v > 1 and that the decomposition exists. Pure-coloured
edges between two white vertices and mixed-coloured edges occur only in
4-cycles of Type C, so bw = w(w — 1) and hence b = w — 1. Furthermore,
asv =b+w, then b= (v—1)/2 and w = (v + 1)/2. Also, as the colouring
is proper, the number of mixed-coloured edges must be less than twice the
number of 4-cycles in the decomposition. Thus bw < v(v — 1)/4. However,
substituting for b and w gives bw = (v — 1)(v + 1)/4 > v(v — 1)/4, a
contradiction. a

3.5 S={Al1,D}=S={A2, D}

Theorem 3.8 There exist no 4-cycle decompositions of K, with colouring
type {A1, D}.

Proof. Let v > 1 and suppose the decomposition exists. There can be
no pure-coloured edges between white vertices, so w < 1. However, at least
one 4-cycle in the decomposition must be of Type D, which contains two
white vertices. o

3.6 S$={Bl,C}=5S={B2, C}

This case is the most involved thus far. We begin with a number of existence
results.

Lemma 3.9 There exists a 4-cycle decomposition of Ky with colouring type
{B1, C}.

Proof. Let the vertex set of Ko be Zg. Colour the vertices 0, 1,...,5black
and the vertices 6, 7 and 8 white. A suitable decomposition is given by:
(2,3,1,6), (3,0,4,6), (2,4,3,7), (5,1,4,7), (0,2,1,8), (3,5, 2,8),(1,0,6,7),
(5,0,7,8) and (5,4, 8,6). 1]
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Lemma 3.10 There ezists a 4-cycle decomposition of Kg — K5 with
colouring type {B1, C}.

Proof. Let the vertex set of Ko be Zg. Colour the vertices 0,1,2,3 and
8 black and the vertices 4,5,6, 7 white. Let the edges of the copy of K32,
be {0,4}, {0,5}, {1,4} and {1,5}. A suitable decomposition is given by:
(0,1,7,6), (0,8,5,7), (1,2,4,6), (8,2,7,4), (3,8,6,5), (2,3,4,5), (2,0,3,6)
and (8,1,3,7). |

Lemma 3.11 There exists a 4-cycle decomposition of Kg g with colouring
type {C}.

Proof. Let the vertex set of Kgg be Ui=1,2{0i,1;,...,7:}. Colour the
vertices 0;, 1;, 2; and 3; black for ¢ € {1,2}. Colour the remaining ver-
tices white. A suitable decomposition is given by: (01,i2,4, (i + 4)2),
(11,42, 51, (6 + 4)2), (21,%2,61, (i + 4)2) and (31,42, 71, (¢ + 4)2), where & =
0,1,2,3. ]

Lemma 3.12 There ezists a 4-cycle decomposition of Kgg with colouring
type {B1, C}.

Proof. Let the vertex set of Kgg be Ui=1,2{0i,1;,...,7:}. Colour the
vertices 0y, 11,21,31, 0z, 12,. .., 42 black and the remaining vertices white.
A suitable decomposition is given by: (01,32, 4y, (i43)2), (11,42, 51, (+3)2),
(21,?:2,61,(1: + 3)2) and (31,i2,71,(i + 3)2) for ¢ € {2,3, 4}, along with
(02,41,12, (i + 4)1) for i € {0,1,2,3}. o

Lemma 3.13 Let G be the graph Kgg s with vertex set Ui=1,2,3 {0:, 15, ...,
7;}. Colour the vertices 0;,1;,...4; black for i = 1, 2. In the third part,
colour the vertices 03, 13, 23 and 33 black. All remaining vertices are
coloured white. Let H be the graph formed by adding four edges to G,
so H = GU {{03,43}, {03, 53}, {13,43}, {13,53}}. There ezists a 4-cycle
decomposition of H with colouring type {B1, C}.

Proof. A suitable decomposition is given by:

(21:22)43)62)a
(31,23,62,63),
(22)013 43) 71):
(02,23) 51,63),
(03)211 72)51)1
(03,42,61,72),
(21302, 611 43)|
(12121) 13, 43))
(311323415 43),
(221 13,32, 73):

(01,32,43,52),
(41a23:72a63)p
(421 11!43151)1
(12,23,61,63),
(03,31,62,61),
(03’02:71 )62)1
(42’ 0’.; 72y43):
(42) 31, 13153):
(311 22) 11153))
(22, 23y32;5l)y

(31)02)53152),
(01:33a 52! 73):
(32,21,53,71),
(02,33,71,73),
(13,01,62,51),
(03,12,51,52),
(221 41:72:53),
(13,02,1,,62),
(011233 21163)1
(22)33:32)61)1
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(4h 12153:62);
(11333»62’73)1
(02)41!53s51):
(12,33,51,73),
(131 11152)61),
(13,42,71,52),
{02,01,03,43),
(13,12,31,72),
(31133)41)73))
(03) 41’ 13a7l)'

(21:42)63:52)1
(21133)721 73):
(12) 111631 71))
(42)33!61)73))
(23,11,72,71),
(01) 12:61)53),
(32,11,03,53),
(23,42,41,52),
(22,03,32,63),



Lemma 3.14 Let vy = (2k + 1)%, k > 2. There ezists a 4-cycle decompo-
sition of K, — Ky, _,, with colouring type {B1, C}.

Proof. Arrange the vertices into one group of 8k vertices, of which 4k +1
are coloured black and 4k —1 are coloured white, and one group of (2k—1)2
vertices, of which k(2k—1) are coloured black and (k—1)(2k—1) are coloured
white. The hole will be placed on the second group of vertices.

Consider the group of 8k vertices. Divide these vertices into k subgroups
of eight vertices each: one group, labelled W, with five black and three white
vertices, and (k — 1) groups, labelled X;, X5, ... » X(k-1), each containing
four black and four white vertices.

Now consider the group of (2k — 1) vertices. Divide these vertices
into a single vertex and k(k — 1)/2 subgroups of eight vertices each. Let
the single vertex be labelled oo and coloured black. Let k — 1 subgroups,
labelled Y1,Y3,..., ¥(x_1), each contain five black and three white vertices,
and the remaining (k — 1)(k — 2)/2 subgroups of eight vertices, labelled
2y, Zs,. .., Z(k-1)(k—2)/2, €ach contain four black and four white vertices;

see Figure 1.
w
0000 0000
CEEIED (EDEDED

[} Yl Y, Y- 1 VA 1 Z; yA

X,

X, X

0000 0000 0000
LA

9000 0000 2000

(k~1Xk=-22

Figure 1: The vertex set of the graph K, — Koy_yy, where v = (2k+1)2,
k>2

By Lemma 3.9, we can place a 4-cycle decomposition of Ky and colour-
ing type {B1, C} on W U {0}. By Lemma 3.10, we can place a 4-cycle
decomposition of Ky — K, 5 with colouring type {B1, C} on X; U {00}, for
1 < i< k—1. Here the edges of each copy of K3,2 are entirely within X;, for
1< i< k-1. By Lemma 3.13, we can also place a 4-cycle decomposition of
H, as defined in Lemma 3.13, with colouring type {B1, C} on WUY;UX;,
for 1 <4 < k—1. Place a copy of the decomposition of K g given in Lemma
3.11on X;UX;,for1 <i<j<k-1,andon X;UZj,for1<i<k-1and
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1< j < (k—1)(k~ 2)/2. Place a copy of the decomposition of K3 s given
in Lemma 3.12on WU Z;, for 1 <1 < (k—-1)(k—2)/2, and on X; UYj,
for 1 <14,j < k — 1, excluding the case i = j. (1]

Theorem 3.15 There ezists a 4-cycle decomposition of K, with colouring
type {B1, C} if and only if v=1(mod8), v # 1 and /v € Z.

Proof. Let there be b black and w white vertices in X,. As a 4-cycle of
colouring Type Bl or C always contains two mixed-coloured edges, then
a decomposition is possible only if the number of mixed-coloured edges
in K, is twice the number of 4-cycles in the decomposition. Consequently,
bw = b(v—b) = v(v—1)/4. From this, we can obtain a quadratic expression
in b, the solution of which is b = (v £ 1/v)/2. Without loss of generality
let b= (v+ \)/2, so w = (v — /v)/2. For b and w to be integers, we
require that /v € Z. This fact, combined with Theorem 1.1, provides the
necessary conditions for a 4-cycle decomposition of K, with colouring type
{B1, C}.

To prove sufficiency, we use an inductive method. Let vz = (2k + 1)%,
for k > 2. The appropriate 4-cycle decomposition exists for Ky, by Lemma
3.9. By Lemma 3.14, there exists a 4-cycle decomposition of Ky, — Ky, _,,,
with colouring type {B1, C}. Thus, the decomposition exists for all v = vy,
kE>1 0

3.7 S={B1,D}=S={B2, D}

Theorem 3.16 There exist no 4-cycle decompositions of K, with colouring
type {B1, D}.

Proof. The proof mirrors that for Theorem 3.8. o

4 |9|=3
41 S={Al, A2, B1} =S = {Al, A2, B2}

Lemma 4.1 There exists a 4-cycle decomposition of K33 — Ko with colour-
ing type {Al, A2, B1}.

Proof. Let the vertex set of K33 — Kp be {001,01,11,..., 71} U (Uiz1,2,3
{02;, 12, .., 72:}). The hole is on the vertices with subscript 1. Colour
the vertices in the hole white and all other vertices black. Let the vertices
02i, 124, - .., T2; be contained in the set Y3, 1 = 1,2,3.

By Lemma 3.4 we can place a 4-cycle decomposition of Ky with colour-
ing type {A1, B1} on {001 }UY;, for i = 1,2,3. The remaining 4-cycles in the
decomposition are: (02, Ja(i41)s 12> J1)s (2285 Ja(i1), 3265 J1)s (424) Jagi+1),
52i)j1) and (62§sj2(i+1), 72i;j1): where i =1,2,3 and .7 =0,1,...,7. g
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Lemma 4.2 There exists a 4-cycle decomposition of K3z with colouring
type {Al, A2, B1}.

Proof. Let the vertex set of K33 be X UY', where |[X| =24 and [Y| = 9.
Colour all the vertices in X black and all the vertices in Y white. By
Theorem 2.1, we can place a 4-cycle decomposition of Ky with colouring
type {A2} on Y. By Lemma 4.1, we can place a 4-cycle decomposition of
K33 — Ky with colouring type {A1, A2, B1} on X UY, where the hole is
on the vertices in Y. o

Lemma 4.3 There exists a 4-cycle decomposition of Kgg with colouring
type {B1}.

Proof. Let the vertex set of Kgg be Ui=12{0;,1;,...,7:}. Colour the
vertices 4,, 51, 61 and 7, white and the remaining vertices black. A suitable
decomposition is given by: (iz, 01, (i-+1)3,41), (i2, 11, (i+1)2, 51), (2, 21, (i+
1)2,61) and (i2,31, (i + 1)2, 71), where i € {0, 2,4, 6} i

Lemma 4.4 There ezists a 4-cycle decomposition of K43 — Kas with colour-
ing type {Al, B1}.

Proof. Let the vertex set of K43 — K33 be ({oo} UX; UXo UY; UY2)UZ,
where |X;| = |Yi| = 8 for ¢ = 1,2 and |Z| = 8. Let the hole be on the
vertices {00} U X; U X, UY; UYs. Colour the vertex oo white. Colour all
vertices in X3, X, and Z black. Colour four vertices of ¥; black and four
white, for 1 = 1, 2.

By Lemma 3.4, we can place a 4-cycle decomposition of Ky with colour-
ing type {Al, Bl1} on {o0} U Z. By Corollary 3.3, we can place a 4-cycle
decomposition of Kgg with colouring type {Al} on X; U Z, fori = 1,2.
Finally, by Lemma 4.3, we can place a 4-cycle decomposition of Kgg with
colouring type {Bl} on ;U Z, fori =1,2. 0

Lemma 4.5 There do not ezist 4-cycle decompositions of Ky, K17 and
Kas with colouring type {A1, A2, B1}.

Proof. Each 4-cycle of Type Al (Type A2) contains four pure-coloured
edges between two black (white) vertices. Each 4-cycle of Type B1 contains
two mixed-coloured edges and two edges connecting two black vertices.
Consequently, the number of edges connecting two black vertices must
exceed the number of mixed-coloured edges, so b > 2w + 1. Furthermore,
the number of pure-coloured edges between white vertices in X, must be a
multiple of four. Hence, w = 0,1 (mod 8). However, as every white vertex
in a 4-cycle of Type A1, A2 or Bl, is adjacent to either two black vertices
or two white vertices, w is odd. Hence, w = 1(mod8), w > 9. Clearly,
for each of Ky, K17 and Kj; it is not possible to have both w =1 (mod8),
w>9%and b> 2w+ 1. a
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Theorem 4.6 There ezists a 4-cycle decomposition of K, with colouring
type {A1, A2, B1} if and only if v=1(mod8), v # 1,9,17,25.

Proof. The necessary conditions arise from Theorem 1.1 and Lemma 4.5.

Now, suppose v > 33. Let v =8z + 33, where z > 0. The case z =0
is covered in Lemma 4.2. Let the vertex set of K, be (U, X;) UY, where
|X;| = 8 for i = 1,2,...,% and |Y| = 33. Colour all the vertices in X;
black, for i = 1,2,...,z and colour twenty-four vertices in Y black and
nine white.

By Corollary 3.3, we can place a 4-cycle decomposition of Kgg with
colouring type {Al} on X;U Xj, for1 <i < j < z. By Lemma 4.2, we
can place a 4-cycle decomposition of K33 with colouring type {Al, A2, B1}
on Y. Finally, by Lemma 4.4, we can place a 4-cycle decomposition of
K4 — Kss with colouring type {Al, Bl} on YU X, for i = 1,2,...,2,
where the hole is on the vertices in Y. ]

42 S={Al, A2, C}

Theorem 4.7 There exist no 4-cycle decompositions of K, with colouring
type {Al, A2, C}.

Proof. Let v > 1 and suppose the decomposition exists. Without loss
of generality let b > w. Mixed-coloured edges only occur in 4-cycles of
Type C, each of which contains two such edges. Suppose that within the
decomposition there are n 4-cycles of Type C, then n = bw/2. Furthermore,
there must be more than n pure-coloured edges between two white vertices
and so w(w — 1) > 2n = bw. Simplifying this we find that b < w—1, which
is a contradiction. 8]

4.3 S={Al, A2, D}

Theorem 4.8 There ezist no 4-cycle decompositions of K, with colouring
type {Al, A2, D}.

Proof. Suppose that v > 1 and that the decomposition exists. Without
loss of generality, let b be odd and w be even, as v is odd. Consider a white
vertex z, say. Then z is adjacent to an odd number of white vertices in
K,. However, z can only be adjacent to an even number of white vertices
in the decomposition. o

4.4 S={A1, B1, B2} =S ={A2, Bl, B2}

Lemma 4.9 There does not ezist a 4-cycle decomposition of Ko with
colouring type {Al, B1, B2}.
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Proof. Suppose the decomposition exists. There are nine 4-cycles in a
4-cycle decomposition of Ky, at least one of which is of Type Al. Hence,
b > 4. By similar reasoning w > 3. Combining these two inequalities,
w € {3,4,5}. Only 4-cycles of Types Bl and B2 contain mixed-coloured
edges. Indeed, each of these 4-cycles contain two such edges and so the
number of mixed-coloured edges in K, is less than twice the number of
4-cycles in the decomposition. Hence, bw < 18. However, this condition is
not satisfied when w € {3,4,5}. o

Lemma 4.10 There exists a 4-cycle decomposition of K17 with colouring
type {Al, Bl1, B2}.

Proof. Let the vertex set of Ky7 be Z;7. Colour the vertices 4,5,...,16
black and the vertices 0, 1, 2 and 3 white. A suitable decomposition is
given by:

(0,1,2,4), (0,2,3,5), (0,3,1,6), (15,6,13,9),  (6,14,13,12),
(14,5,8,12), (16,4,10,5), (12,4,5,7), (8,7,10,16), (14,15,13,8),
(12,16,7,9), (0,7,4,8), (0,9,4,11),  (0,10,6,16), (0,12,5,13),
(0,14,4,15), (1,4,6,5),  (1,7,6,8),  (1,9,511),  (1,10,8,15),
(1,12,10,13), (1,14,9,16), (2,5,15,7),  (2,6,9,8), (2,9,10,11),
(2,10,14,16), (2,12,11,13), (2,14,11,15), (3,4,13,7),  (3,6,11,8),
(3,9,11,16),  (3,10,15,12), (3,11,7,14), (3,13,16,15).

Lemma 4.11 There ezists a 4-cycle decomposition of Kos — K7 with
colouring type {Al, B1}.

Proof. Let the vertex set of K5 — K37 be {01,1;,...,16,} U {02, 15,.. .,
72}, where the hole is on the vertices with subscript 1. Colour the vertices
13;, 144, 15; and 16, white and the remaining vertices black. A suitable
decomposition is given by:

(131:02)013 12)1
(151,02,21,12),
(131)42: 02) 52))
(151, 42,22, 72),
(101:02!62: 22))
(121, 02,2, 32),
(51,02,84,12),

(91,22,11y,332),
(611 4z, 71, 52);

(21,62,31,72),

(12;,62,91,72).

(131: 22n01)32):
(151,22121132):
(131 , 62,42, 72):
(151,52, 72,62),
(1011 12142132):
(121) 121521 22))
(31,22,41,32),

(01a42| 1, 52):

(81’421 101x52)l
(41,62,51,72),

(141902) llylé)s
(161l02)91)42))
(141,42,52,62),
(1611621 12122))
(111162132302),
(31,02,61,12),
(51;22’61a 32)1
(21) 4z, 31;52)1
(121, 42,114, 52),
(611 621 71; 72)1

(141:22: 11332)3
(161, 12,9:,52),
(141,52,32,72),
(161,72,12,32),
(111 ) 72:02) 12))
(41,02,71,12),
(7112%81:32);
(41,42,51, 52),
(011621 11)72))
(81,62,101,72),

u]

Theorem 4.12 There ezists a 4-cycle decomposition of K, with colouring
type {Al, Bl, B2} if and only if v =1(mod8), v #1,9. :
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Proof. The necessary conditions follow from Theorem 1.1, Lemma 4.9
and the fact that the colouring is proper.

Let v = 8z + 17, for z > 0. By Lemma 4.10 we know that the decom-
position exists when z = 0, so suppose z > 1. Let the vertex set of K, be
(UE, X;) VY, where | X;| = 8for i = 1,2,...,z, and |Y]| = 17. Colour all
vertices in X; black, for i = 1,2,...,z, and colour thirteen vertices of Y’
black and four white.

By Lemma 4.10, we can place a copy of the 4-cycle decomposition of
K17 with colouring type {Al, B1, B2} on Y. By Lemma 4.11, we can place
a. copy of the 4-cycle decomposition of Ka5 — K17 with colouring type {Al,
Bl} on Y UX;, for i = 1,2,...,z, where the hole is on the vertices in Y.
Finally, by Corollary 3.3, we can place a copy of the 4-cycle decomposition
of Kg g with colouring type {A1} on X;UXj;, for 1 <¢ < j < z. The result
is a 4-cycle decomposition of K, with colouring type {Al, B1, B2}. ]

45 S={A1,Bl1,C}=5={A2, B2, C}

Lemma 4.13 There exists a 4-cycle decomposition of Ky with colouring
type {Al, B1, C}.

Proof. Let the vertex set of Ky be Zg. Colour the vertices 0,1,...,6
black and the vertices 7 and 8 white. A suitable decomposition is given by:
(0,1,7,8), (2,3,0,7), (3,5,4,7), (5,2,6,7), (4,2,1,8), (5028),(6138),
(0,4,3,6) and (1,4,6,5).

Lemma 4.14 There ezists a 4-cycle decomposition of Kg g with colouring
type {Al, B1, C}.

Proof. Let the vertex set of Kgg be Ui=1,2{0;,1;,...,7;}. Colour the
vertices 0;,1;,...,5; black and the vertices 6; and 7; white,fori=1,2. A
suitable decomposition is given by:
(01)02;61:62)’ (01, 12, 61’72)) (11502)71162)3 (11; 12, 71,72): (21 122’31 )32)3
(21342131$52): (41)2215!.»32)) (41)42a51'52): (21)02131162)) (41v02151:62)s

(21)12131)72), (411 12151’72)1 (22,0[,32,61), (42)01)52161)’ (22111132)71),
(42) 11152: 71)-
o

Theorem 4.15 There ezists a 4-cycle decomposition of K, with colouring
type {A1, Bl, C} if and only if v=1(mod8), v # 1.
Proof. We use the construction from Theorem 3.5, with the vertex oo

coloured black, six vertices coloured black and two coloured white in each
X, and the designs given in Lemmas 4.13 and 4.14. o
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46 S= {Al, B1, D} =S= {AZ, B2, D}
Theorem 4.16 There exist no 4-cycle decompositions of K,, with colouring
type {Al, B1, D}.

Proof. Let v > 1 and suppose that the decomposition exists. No 4-
cycle contains a pure-coloured edge between two white vertices, so w < 2.
However, there is at least one 4-cycle of Type D in the decomposition, and
sow > 2. n|

47 S§={A1, B2, C}=S={A2, Bl, C}

Lemma 4.17 There does not exist a 4-cycle decomposition of Ky with
colouring type {Al, B2, C}.

Proof. The proof mirrors that provided for Lemma 4.9. ]

Lemma 4.18 There ezists a 4-cycle decomposition of K17 with colouring
type {Al, B2, C}.

Proof. Let the vertex set of K7 be Z;7. Colour the vertices 0,1,...,5

black and the vertices 6,7, ...,16 white. A suitable decomposition is given
by:
(0,1,2,3), (0,2,6,7), (0,4,6,8), (0,5,6,9), (1,3,6,10),
(17 4' 7’ 8)’ (1’5) 7! 9)’ (2’ 4’ 8) 9)7 (21 5’ 8! 10)) (3) 4’ 91 10),
(3,5,9,11), 4,5, 10,11), (0,6,11,12), (o,10,7,11), (0,13,6, 14),
(0,15, 6, 16), (1,6,12,7), (1,11,8,12), (1,13,7,14), (1, 15,8, 16),
(2,7,15,11),  (2,8,13,12), (2,13,9,14), (2,15,9,16), (3,7,16,12),
(3,8,14,13), (3,9,12,14), (3,15,10,16), (4,10,13,15), (4,12,10,14),
(4,13,11,16), (5,11,14,15), (5,12,15,16), (5,13, 16,14).

Lemma 4.19 There ezists a 4-cycle decomposition of Koy — K17 with
colouring type {Al, B2, C}.

Proof. Let the vertex set of K5 — K;7 be {01,21,...,16,} U{0s,1,,.. .,
72}, where the hole is on the vertices with subscript 1. Colour the vertices
01,1;,...,5; and 0,, 15 and 2 black and the remaining vertices white. A
suitable decomposition is given by:

(01)02:11:12): (21)02131)22): (02) 12’42161)’ (12)22)52)61)1
(22102,32161)’ (41102)42)52): (51,02»52:62)1 (21)12:32:52)r
(31,12,52,72), (41,12,62,32), (51,12,72,42),  (01,22,32,42), -
(11,22,42,63), (41,20,62,72), (51,22,72,32), (62,61,72,02),
(71152)81,02)1 (91)52)101;02)) (111142) 121)02)1 (1311421141:02))
(151,42,161,02), (71,62,81,12), (91,62,141,12),  (101,32,131,12),
(111,32,151,12), (121,32,161,12), (71,72,81,22), (91,72,14,,23),
(101,72,131,22), (111,52,151,22), (121,62,161,2), (32,141,52,01),
(62)151172:01)) (3237ly42111)) (52,161)72x11), (32181142:21)1
(62,111,72,21), (32)91142:31); (52;131162131)a (421101162:41)»

(52,121, 72,51).
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Lemma 4.20 There ezists a 4-cycle decomposition of Kgg with colouring
type {Al, B2, C}.

Proof. Let the vertex set of Kgs be Ui=1,2{0;,1i,...,7;}. Colour the
vertices 0;, 1; and 2; black, for ¢ = 1,2. Colour the remaining vertices
white. A suitable decomposition is given by:

(21,22,51,42),
(52,61, 72,21),
(61,42, 71,22),

o

(21)02) 6!)62)1
(62: 7, 72) 11);
(31)32!61y12))

(21,12,71,32),
(42,41,52,11),
(41)72)5lt12))

(01:22, 31’42)1
(32)51s62:01):
(31,62)41;02)1
(01:02s 1y, 12)‘

(11322)41 s32))
(52;31) 72s01):
(51152) T )02)1

Theorem 4.21 There ezists a 4-cycle decomposition of K, with colouring
type {A1, B2, C} if and only if v =1(mod 8), v # 1,9.

Proof. We use the construction from Theorem 4.12, with three vertices
coloured black and five coloured white in each Xj, six vertices coloured black
and eleven coloured white in Y, and with the designs given in Lemmas 4.18,
4.19 and 4.20. O

4.8 S={A1, B2, D} =S = {A2, B1, D}

Lemma 4.22 There does not exist a 4-cycle decomposition of Ko with
colouring type {Al, B2, D}.

Proof. Only 4-cycles of Type Al contain edges connecting two black
vertices, so the number of pure-coloured edges between two black vertices
in K, must be a multiple of four. Hence b = 0,1 (mod8). However, as
b >4 and w > 3, then b € {4,5,6}. Thus we have a contradiction. D

Lemma 4.23 There exists a 4-cycle decomposition of K17 with colouring
type {Al, B2, D}.

Proof. Let the vertex set of K17 be Z;y. Let the vertices 0,1,...,8
be coloured black and let the vertices 9,10,...,16 be coloured white. A
suitable decomposition is given by developing the starter cycle (0,1, 8, 5)
modulo 9 and including the following cycles:

(0,9,1,10),  (0,11,1,12), (0,13,1,14), (0,15,1,16), (2,9,3,10),
(2,11,3,12), (2,13,3,14), (2,15,3,16), (4,9,5,10),  (4,11,5,12),
(4,13,5,14), (4,15,9,16), (5,15,10,16), (6,9,14,12), (6,10,9,11),
(6,13,16,15), (6,14,11,16), (7,9,13,10), (7,11,10,14), (7,12,13,15),
(7,13,14,16), (8,9,12,10), (8,11,15,14), (8,12,11,13), (8,15,12,16).
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Lemma 4.24 There exists a 4-cycle decomposition of K5 — K17 with
colouring type {Al, D}.

Proof. Let the vertex set of Ko5 — K17 be {01, 21504 161} U {02, 1a,...,
72}, where the hole is on the vertices with subscript 1. Colour the ver-
tices 9,,10,,...,16; white and the remaining vertices black. A suitable
decomposition is given by:

(021 911 12, 101),
(02$ 114,12, 121)’
(02,13;,12,144),
(02,15,12,164),
(31102)41122),
(01) 22,1y, 32);
(71:22)81:32)$
(01)12122,72))
(51)52122:32)s
(11,12,52,72),

(22! 91,32, 101);
(221 111)32v 121):
(22,131, 32, 14;),
(22s 154,32, 161):
(51)021 61.12):
(01)42) 11)52):
(71 y42, 81,52),
(21122)42:02):
(21,62,32,42),
(51)2%02:62)’

(42)9’.:52’ 101):
(42) 111,52, 121))
(42,131,52,141),
(42) 151152: 161)’
(713021 81, 12):
(3ls42’ 41)52)1
(71)62) 81172)!
(21,32’ 02,12),
(61,72: 42,57),
(61) 32,12, 62))

(62v91,72) 104),
(62,114, 72,12;),
(62,131, 72, 14,),
(62a 154,72, 161):
(31) 12)411 32)1
(31:62)41, 72)!
(Ola021 72)62)y
(61)42)62; 22)1
(11)02152) 62)1
(51:421 12, 72):

(211521321 72)°
]

Theorem 4.25 There exists a 4-cycle decomposition of K, with colouring
type {Al, B2, D} if and only if v=1(mod8), v # 1,9.

Proof. We use the construction from Theorem 4.12, with all vertices
coloured black in each X;, nine vertices coloured black and eight coloured
white in Y and with the designs given in Lemmas 4.23, 4.24 and Corollary
3.3. 0

49 S={A1,C,D}=S={A2 C, D}

Lemma 4.26 There exists a 4-cycle decomposition of Ky with colouring
type {Al, C, D}.

Proof. Let the vertex set of Ky be Zgy. Colour the vertices0,1,...,5 black
and the vertices 6, 7 and 8 white. A suitable decomposition is given by:
(0,1,6,7), (2,5,6,8), (3,4,7,8), (0,2,1,3), (0,4,1,5), (2,3,5,4), (2,6,3,7),
(0,6,4,8) and (1,7,5,8). 1]

Lemma 4.27 There ezists a 4-cycle decomposition of Ky g with colouring
type {Al, C, D}.

Proof. Let the vertex set of Kgg be Ui=12{0;,1;,...,7;}. Colour the

vertices 0;,1;,...,9; black and the vertices 6; and 7; white, for i € {1,2}.

A suitable decomposition is given by:
(01y021 61,62), (011 1a, 61v72): (11:021 71,62),
(41,62,51,72), (22,61,32,71), (42,61,52,71),
(21,02,31,12), (21,22,31,32), (21,42,31,52),
(41,42,51,52).

(11,12,71,72),
(01,22, 11332)1
(41;02s5h12):

(21162)31)72)7
(01;42: 11’52))
(41,22,51,32),

a
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Theorem 4.28 There ezists a 4-cycle decomposition of K, with colouring
type {A1, C, D} if and only if v =1(mod8), v # 1.

Proof. We use the construction from Theorem 3.5, with the vertex oo
coloured white, six vertices coloured black and two coloured white in each
X;, and the designs given in Lemmas 4.26 and 4.27. o

410 S={B1, B2, C}

Lemma 4.29 There exists a 4-cycle decomposition of Ky with colouring
type {B1, B2, C}.

Proof. Let the vertex set of Ky be Zg. Colour the vertices0,1,...,5 black
and the vertices 6, 7 and 8 white. A suitable decomposition is given by:
(7,6,8,0), (4,1,7,8), (2,0,3,6), (4,0,5,7), (1,2,4,6), (1,3,2,8), (0,1,5,6),
(3,4,5,8) and (2,5,3,7). a}

Theorem 4.30 There exists a 4-cycle decomposition of K, with colouring
type {B1, B2, C} if and only if v=1(mod8), v # 1 and \/v € Z.

Proof. The proof mirrors that given for Theorem 3.15. In this case,
however, we use the 4-cycle decomposition of Ky with colouring type {B1,
B2, C} given in Lemma 4.29, and the 4-cycle decomposition of K, —
Ky, s for k > 2, with colouring type {B1, C}, given in Lemma 3.14. 0O

411 S§={B1,C, D}=S={B2, C, D}

Lemma 4.31 There evists a 4-cycle decomposition of Ky with colouring
type {B1, C, D}.

Proof. Let the vertex set of Ky be Zg. Colour the vertices 0,1,...,4
black and the vertices 5, 6, 7 and 8 white. A suitable decomposition is
given by: (0,1,7,8), (0,2,6,7), (1,2,5,8), (2,3,5,7), (2,4,6,8), (3,4,5,6),
(3,0,4,7), (3,1,4,8) and (0,5,1,6). ]

Theorem 4.32 There ezists a 4-cycle decomposition of K, with colouring
type {B1, C, D} if and only if v =1(mod8), v # 1.

Proof. We use the construction from Theorem 3.5, with the vertex oo

coloured black, four vertices coloured black and four coloured white in each
X;, and the designs given in Lemmas 4.31 and 3.11. a
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