Some 2-coloured 4-cycle decompositions

Mary Waterhouse
Department of Mathematics
The University of Queensland
Qld 4072
Australia

Abstract

There are six distinct ways in which the vertices of a 4-cycle may be coloured with two colours, called colouring types. Let C be the set of these colouring types and let S be a non-empty subset of C. Suppose we colour the vertices of K_v with two colours. If D is a 4-cycle decomposition of K_v such that the colouring type of each 4-cycle is in S, then D is said to have a colouring of type S. Furthermore, the colouring is said to be proper if every colouring type in S is represented in D. For all possible S of size one, two or three, excluding three cases already settled, we completely settle the existence question for 4-cycle decompositions of K_v with a colouring of type S.

1 Introduction

Let G and H be graphs. A G-decomposition of H is a set $\mathcal{G} = \{G_1, G_2, \ldots, G_p\}$ such that G_i is isomorphic to G for $1 \leq i \leq p$ and G partitions the edge set of H. Most commonly, $H = K_v$, the complete graph on v vertices. Another popular choice for H is $K_v - F$, the complete graph with the edges of a 1-factor removed. The problem of determining all values of v for which there exists a G-decomposition of K_v is called the spectrum problem for G.

An *m*-cycle, denoted by $(x_1, x_2, ..., x_m)$, is the graph with vertex set $\{x_1, x_2, ..., x_m\}$ and edge set $\{\{x_1, x_2\}, \{x_2, x_3\}, ..., \{x_m, x_1\}\}$. The spectrum problem for *m*-cycles has recently been solved; see [3] and [7].

A variant of the spectrum problem for m-cycles arises when the vertices of K_v have been coloured and there are demands on how each m-cycle in

the decomposition must be coloured. An m-cycle is said to be monochromatic if all m vertices are the same colour. Conversely, an m-cycle with m distinctly coloured vertices is said to be polychromatic. A weak colouring results in no m-cycle of the decomposition being monochromatic. A strong colouring requires that each m-cycle of the decomposition be polychromatic. Many existing papers have considered coloured 3-cycle decompositions of K_v (Steiner triple systems) and a fine survey can be found in [5].

While most work has considered weak colourings, new colouring systems are emerging. If the vertices of H have been coloured with k colours and each m-cycle in a decomposition of H has n_i vertices of colour c_i , for $1 \le i \le k$, and $|n_i - n_j| \le 1$, for all $i, j \in \{1, 2, ..., k\}$, then the decomposition is said to be equitably k-coloured. A decomposition that can be equitably k-coloured is said to be equitably k-colourable. Thus far, only equitably 2 and 3-colourable m-cycle decompositions of K_v , $K_v - F$ and certain multipartite graphs have been considered for small values of m; see [1], [2], [6] and [10].

In this paper we consider coloured 4-cycle decompositions of K_v . As such, we often use the following well-known theorem.

Theorem 1.1 A 4-cycle decomposition of K_v exists if and only if $v \equiv 1 \pmod{8}$.

There are clearly six distinct ways in which a 4-cycle may be coloured with two colours, say black and white (denoted by B and W respectively). Let $C_1C_2C_3C_4$ denote the colouring of the 4-cycle (x_1, x_2, x_3, x_4) which assigns the colour C_i to the vertex x_i , where $C_i \in \{B, W\}$ for $i = 1, \ldots, 4$,

Definition 1.2 Let the colouring BBBB be denoted Type A1, WWWW be denoted Type A2, BBBW be denoted Type B1, WWWB be denoted Type B2, BBWW be denoted Type C and BWBW be denoted Type D.

Let S be a subset of $C = \{A1, A2, B1, B2, C, D\}$. (For the sake of brevity we omit the word Type). Supposing that the vertices of K_v have been coloured with two colours, then a 4-cycle decomposition of this graph is said to be of colouring Type S if the colouring type of every 4-cycle in the decomposition is in S. Furthermore, the colouring is said to be *proper* if every colouring type in S is represented in the decomposition. Within this paper, every colouring is proper.

The cases $S = \{B1, B2\}$ and $S = \{B1, B2, D\}$ were solved by Quattrocchi in [8]. The case $S = \{C, D\}$ involves finding an equitably 2-coloured 4-cycle decomposition of K_v and this was solved in [2]. Here, we consider the remaining cases where $|S| \in \{1, 2, 3\}$. Note that some colouring types can be trivially obtained from other types by simply interchanging the colours of all vertices. If S_1 and S_2 are sets of such colouring types then in Table 1 and the constructions we write $S_1 \equiv S_2$.

Main Theorem There exist 2-coloured 4-cycle decompositions of K_v with colouring Type S with $|S| \in \{1,2,3\}$ if and only if the conditions in Table 1 are satisfied. Note that in every case, no decomposition with a proper colouring of Type S exists for v = 1.

S.	permissible v	reference
$\{A1\} \equiv \{A2\}$	$v \equiv 1 \pmod{8}, v \neq 1$	Thm 2.1
$\{B1\} \equiv \{B2\}$	none	Thm 2.2
{C}, {D}	none	Thm 2.3
{A1, A2}	none	Thm 3.1
$\{A1, B1\} \equiv \{A2, B2\}$	$v \equiv 1 \pmod{8}, v \neq 1$	Thm 3.5
$\{A1, B2\} \equiv \{A2, B1\}$	none	Thm 3.6
$\{A1, C\} \equiv \{A2, C\}$	none	Thm 3.7
$\{A1, D\} \equiv \{A2, D\}$	none	Thm 3.8
$\{B1, C\} \equiv \{B2, C\}$	$v \equiv 1 \pmod{8}, \ v \neq 1,$ $\sqrt{v} \in \mathbb{Z}$	Thm 3.15
$\{B1, D\} \equiv \{B2, D\}$	none	Thm 3.16
{B1, B2}	$v = 49 + 112\mu + 64\mu^2,$	[8]
	$\mu \geq 0$	• •
	$v = 1 + 16\mu + 64\mu^2,$	
	$\mu \geq 1$	
{C, D}	none	[2]
$\{A1, A2, B1\} \equiv \{A1, A2, B2\}$	$v \equiv 1 \pmod{8}, \ v \neq 1, 9,$ $17, 25$	Thm 4.6
{A1, A2, C}	none	Thm 4.7
{A1, A2, D}	none	Thm 4.8
$\{A1, B1, B2\} \equiv \{A2, B1, B2\}$	$v \equiv 1 \pmod{8}, v \neq 1,9$	Thm 4.12
$\{A1, B1, C\} \equiv \{A2, B2, C\}$	$v \equiv 1 \pmod{8}, v \neq 1$	Thm 4.15
$\{A1, B1, D\} \equiv \{A2, B2, D\}$	none	Thm 4.16
$\{A1, B2, C\} \equiv \{A2, B1, C\}$	$v \equiv 1 \pmod{8}, v \neq 1, 9$	Thm 4.21
$\{A1, B2, D\} \equiv \{A2, B1, D\}$	$v \equiv 1 \pmod{8}, v \neq 1, 9$	Thm 4.25
$\{A1, C, D\} \equiv \{A2, C, D\}$	$v \equiv 1 \pmod{8}, v \neq 1$	Thm 4.28
{B1, B2, C}	$v \equiv 1 \pmod{8}, v \neq 1,$	Thm 4.30
	$\sqrt{v}\in\mathbb{Z}$	
$\{B1, C, D\} \equiv \{B2, C, D\}$	$v \equiv 1 \pmod{8}, v \neq 1$	Thm 4.32
{B1, B2, D}	$v \equiv 1 \pmod{8}, v \neq 1$	

Table 1. The spectrum problem for 4-cycles with proper colouring type S, $|S| \in \{1, 2, 3\}$.

We now introduce some terminology and notation to be used throughout this paper. We say that an edge is *pure-coloured* if it connects two vertices of the same colour. Alternately, an edge is said to be *mixed-coloured* if it connects two vertices of different colours. We let the lower case letters b and w denote the number of black and white vertices in K_v respectively. We let G - H denote the graph G with the edges of the graph H removed.

In Section 2 we consider the case |S| = 1, in Section 3 we have |S| = 2 and in Section 4 we deal with the case |S| = 3.

2
$$|S| = 1$$

2.1
$$S = \{A1\} \equiv S = \{A2\}$$

Theorem 2.1 There exists a 4-cycle decomposition of K_v with colouring type $\{A1\}$ if and only if $v \equiv 1 \pmod{8}$, $v \neq 1$.

Proof. The result follows immediately from Theorem 1.1 (colour every vertex black).

2.2
$$S = {B1} \equiv S = {B2}$$

Theorem 2.2 There exist no 4-cycle decompositions of K_v with colouring type $\{B1\}$.

Proof. Let v > 1 and suppose that the decomposition exists. A 4-cycle of Type B1 has two pure-coloured edges between black vertices, two mixed-coloured edges and no pure-coloured edges between white vertices. Hence w = 1 and, since bw = b(b-1)/2, v = 4. However, by Theorem 1.1, K_4 cannot be decomposed into 4-cycles.

2.3
$$S = \{C\} \text{ and } S = \{D\}$$

Theorem 2.3 There exist no 4-cycle decompositions of K_v with colouring type $\{C\}$ or $\{D\}$.

Proof. Suppose a decomposition exists. Each 4-cycle has two black vertices and two white vertices. Hence, b = w and so v is even. However, a cycle decomposition of K_v is possible only if v is odd.

$$|S| = 2$$

3.1
$$S = \{A1, A2\}$$

Theorem 3.1 There exist no 4-cycle decompositions of K_v with colouring type $\{A1, A2\}$.

Proof. This follows immediately as neither a 4-cycle of either Type A1 nor Type A2 have any mixed-coloured edges.

3.2
$$S = \{A1, B1\} \equiv S = \{A2, B2\}$$

We begin with some useful results.

Theorem 3.2 [9] There exists an uncoloured 4-cycle decomposition of $K_{m,n}$ if and only if m and n are both even, $m \geq 2$, $n \geq 2$ and 4|mn.

Corollary 3.3 There exists a 4-cycle decomposition of $K_{m,n}$ with colouring type $\{A1\}$ if and only if m and n are both even, $m \geq 2$, $n \geq 2$ and 4|mn.

Lemma 3.4 There exists a 4-cycle decomposition of K_9 with colouring type $\{A1, B1\}$.

Proof. Let the vertex set of K_9 be \mathbb{Z}_9 . Colour the vertices 1, 2, ..., 8 black and colour the vertex 0 white. A suitable decomposition is given by: (3, 4, 1, 5), (3, 7, 2, 8), (1, 2, 5, 6), (2, 4, 8, 6), (4, 5, 8, 7), (1, 3, 2, 0), (3, 6, 4, 0), (5, 7, 6, 0) and <math>(7, 1, 8, 0).

Theorem 3.5 There exists a 4-cycle decomposition of K_v with colouring type $\{A1, B1\}$ if and only if $v \equiv 1 \pmod{8}$, $v \neq 1$.

Proof. The necessary conditions follow from Theorem 1.1 and the fact that the colouring is proper.

Let v = 8x + 1, for $x \ge 1$. Let the vertex set of K_v be $(\bigcup_{i=1}^x X_i) \cup \{\infty\}$, where $|X_i| = 8$ for i = 1, 2, ..., x. Colour all vertices in X_i black, for i = 1, 2, ..., x, and colour the vertex ∞ white.

By Lemma 3.4, we can place a copy of the decomposition of K_9 with colouring type $\{A1, B1\}$ on $X_i \cup \{\infty\}$. By Corollary 3.3, we can place a copy of the decomposition of $K_{8,8}$ with colouring type $\{A1\}$ on $X_i \cup X_j$, for $1 \le i < j \le x$. The result is a 4-cycle decomposition of K_v with colouring type $\{A1, B1\}$.

3.3
$$S = \{A1, B2\} \equiv S = \{A2, B1\}$$

We begin with some observations. A 4-cycle of Type A1 has four pure-coloured edges, each of which connects two black vertices. A 4-cycle of Type B2 has two pure-coloured edges, each of which connects two white vertices, and two mixed-coloured edges.

Theorem 3.6 There exist no 4-cycle decompositions of K_v with colouring type $\{A1, B2\}$.

Proof. Let v > 1 and suppose that the decomposition exists. We now look for a contradiction. From the above observations, w(w-1)/2 = bw, so w = 2b + 1 is odd. Now consider a black vertex x in K_v . Edges in K_v connecting x and any white vertices can only be accounted for in the decomposition using 4-cycles of Type B2 and, within each such cycle, x is adjacent to two white vertices. Hence, w is even. Thus we have a contradiction.

3.4
$$S = \{A1, C\} \equiv S = \{A2, C\}$$

Theorem 3.7 There exist no 4-cycle decompositions of K_v with colouring type $\{A1, C\}$.

Proof. Suppose v > 1 and that the decomposition exists. Pure-coloured edges between two white vertices and mixed-coloured edges occur only in 4-cycles of Type C, so bw = w(w-1) and hence b = w-1. Furthermore, as v = b + w, then b = (v-1)/2 and w = (v+1)/2. Also, as the colouring is proper, the number of mixed-coloured edges must be less than twice the number of 4-cycles in the decomposition. Thus bw < v(v-1)/4. However, substituting for b and w gives bw = (v-1)(v+1)/4 > v(v-1)/4, a contradiction.

3.5
$$S = \{A1, D\} \equiv S = \{A2, D\}$$

Theorem 3.8 There exist no 4-cycle decompositions of K_v with colouring type $\{A1, D\}$.

Proof. Let v > 1 and suppose the decomposition exists. There can be no pure-coloured edges between white vertices, so $w \le 1$. However, at least one 4-cycle in the decomposition must be of Type D, which contains two white vertices.

3.6
$$S = \{B1, C\} \equiv S = \{B2, C\}$$

This case is the most involved thus far. We begin with a number of existence results.

Lemma 3.9 There exists a 4-cycle decomposition of K_9 with colouring type $\{B1, C\}$.

Proof. Let the vertex set of K_9 be \mathbb{Z}_9 . Colour the vertices $0, 1, \ldots, 5$ black and the vertices 6, 7 and 8 white. A suitable decomposition is given by: (2,3,1,6), (3,0,4,6), (2,4,3,7), (5,1,4,7), (0,2,1,8), (3,5,2,8), (1,0,6,7), (5,0,7,8) and (5,4,8,6).

Lemma 3.10 There exists a 4-cycle decomposition of $K_9 - K_{2,2}$ with colouring type {B1, C}.

Proof. Let the vertex set of K_9 be \mathbb{Z}_9 . Colour the vertices 0, 1, 2, 3 and 8 black and the vertices 4, 5, 6, 7 white. Let the edges of the copy of $K_{2,2}$, be $\{0,4\}, \{0,5\}, \{1,4\}$ and $\{1,5\}$. A suitable decomposition is given by: (0,1,7,6), (0,8,5,7), (1,2,4,6), (8,2,7,4), (3,8,6,5), (2,3,4,5), (2,0,3,6) and (8,1,3,7).

Lemma 3.11 There exists a 4-cycle decomposition of $K_{8,8}$ with colouring type $\{C\}$.

Proof. Let the vertex set of $K_{8,8}$ be $\bigcup_{i=1,2} \{0_i, 1_i, \ldots, 7_i\}$. Colour the vertices 0_i , 1_i , 2_i and 3_i black for $i \in \{1,2\}$. Colour the remaining vertices white. A suitable decomposition is given by: $(0_1, i_2, 4_1, (i+4)_2), (1_1, i_2, 5_1, (i+4)_2), (2_1, i_2, 6_1, (i+4)_2)$ and $(3_1, i_2, 7_1, (i+4)_2)$, where i = 0, 1, 2, 3.

Lemma 3.12 There exists a 4-cycle decomposition of $K_{8,8}$ with colouring type $\{B1, C\}$.

Proof. Let the vertex set of $K_{8,8}$ be $\bigcup_{i=1,2}\{0_i, 1_i, \ldots, 7_i\}$. Colour the vertices $0_1, 1_1, 2_1, 3_1, 0_2, 1_2, \ldots, 4_2$ black and the remaining vertices white. A suitable decomposition is given by: $(0_1, i_2, 4_1, (i+3)_2), (1_1, i_2, 5_1, (i+3)_2), (2_1, i_2, 6_1, (i+3)_2)$ and $(3_1, i_2, 7_1, (i+3)_2)$ for $i \in \{2, 3, 4\}$, along with $(0_2, i_1, 1_2, (i+4)_1)$ for $i \in \{0, 1, 2, 3\}$.

Lemma 3.13 Let G be the graph $K_{8,8,8}$ with vertex set $\bigcup_{i=1,2,3} \{0_i, 1_i, \ldots, 7_i\}$. Colour the vertices $0_i, 1_i, \ldots 4_i$ black for i=1, 2. In the third part, colour the vertices $0_3, 1_3, 2_3$ and 3_3 black. All remaining vertices are coloured white. Let H be the graph formed by adding four edges to G, so $H = G \cup \{\{0_3, 4_3\}, \{0_3, 5_3\}, \{1_3, 4_3\}, \{1_3, 5_3\}\}$. There exists a 4-cycle decomposition of H with colouring type $\{B1, C\}$.

Proof. A suitable decomposition is given by:

```
(2_1, 2_2, 4_3, 6_2),
                                                                                             (2_1,4_2,6_3,5_2),
                                              (3_1,0_2,5_3,5_2),
                                                                     (4_1, 1_2, 5_3, 6_2),
                       (0_1,3_2,4_3,5_2),
                                                                                             (2_1,3_3,7_2,7_3),
(3_1,2_3,6_2,6_3),
                       (4_1, 2_3, 7_2, 6_3),
                                              (0_1,3_3,5_2,7_3),
                                                                     (1_1, 3_3, 6_2, 7_3),
                                                                                             (1_2, 1_1, 6_3, 7_1),
                                              (3_2, 2_1, 5_3, 7_1),
                                                                     (0_2,4_1,5_3,5_1),
(2_2,0_1,4_3,7_1),
                       (4_2,1_1,4_3,5_1),
                                                                                             (4_2,3_3,6_1,7_3),
                       (1_2, 2_3, 6_1, 6_3),
                                              (0_2, 3_3, 7_1, 7_3),
                                                                     (1_2,3_3,5_1,7_3),
(0_2, 2_3, 5_1, 6_3),
                                              (1_3,0_1,6_2,5_1),
                                                                     (1_3, 1_1, 5_2, 6_1),
                                                                                             (2_3,1_1,7_2,7_1),
                       (0_3, 3_1, 6_2, 6_1),
(0_3, 2_1, 7_2, 5_1),
                                                                                             (0_1, 1_2, 6_1, 5_3),
                       (0_3, 0_2, 7_1, 6_2),
                                               (0_3, 1_2, 5_1, 5_2),
                                                                      (1_3, 4_2, 7_1, 5_2),
(0_3, 4_2, 6_1, 7_2),
                                                                      (0_2, 0_1, 0_3, 4_3),
                                                                                             (3_2, 1_1, 0_3, 5_3),
(2_1,0_2,6_1,4_3),
                       (4_2,0_1,7_2,4_3),
                                               (2_2, 4_1, 7_2, 5_3),
                                                                                             (2_3,4_2,4_1,5_2),
(1_2, 2_1, 1_3, 4_3),
                       (4_2,3_1,1_3,5_3),
                                               (1_3,0_2,1_1,6_2),
                                                                      (1_3, 1_2, 3_1, 7_2),
                                                                                             (2_2,0_3,3_2,6_3),
                                                                      (3_1,3_3,4_1,7_3),
                                               (0_1, 2_3, 2_1, 6_3),
(3_1,3_2,4_1,4_3),
                       (3_1, 2_2, 1_1, 5_3),
                                                                     (0_3,4_1,1_3,7_1).
(2_2,1_3,3_2,7_3),
                       (2_2, 2_3, 3_2, 5_1),
                                              (2_2,3_3,3_2,6_1),
```

Lemma 3.14 Let $v_k = (2k+1)^2$, $k \ge 2$. There exists a 4-cycle decomposition of $K_{v_k} - K_{v_{(k-1)}}$ with colouring type {B1, C}.

Proof. Arrange the vertices into one group of 8k vertices, of which 4k+1 are coloured black and 4k-1 are coloured white, and one group of $(2k-1)^2$ vertices, of which k(2k-1) are coloured black and (k-1)(2k-1) are coloured white. The hole will be placed on the second group of vertices.

Consider the group of 8k vertices. Divide these vertices into k subgroups of eight vertices each: one group, labelled W, with five black and three white vertices, and (k-1) groups, labelled $X_1, X_2, \ldots, X_{(k-1)}$, each containing four black and four white vertices.

Now consider the group of $(2k-1)^2$ vertices. Divide these vertices into a single vertex and k(k-1)/2 subgroups of eight vertices each. Let the single vertex be labelled ∞ and coloured black. Let k-1 subgroups, labelled $Y_1, Y_2, \ldots, Y_{(k-1)}$, each contain five black and three white vertices, and the remaining (k-1)(k-2)/2 subgroups of eight vertices, labelled $Z_1, Z_2, \ldots, Z_{(k-1)(k-2)/2}$, each contain four black and four white vertices; see Figure 1.

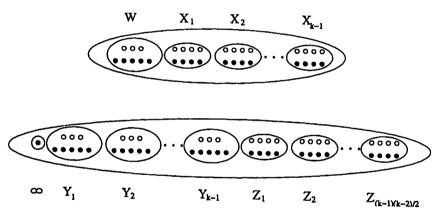


Figure 1: The vertex set of the graph $K_{v_k} - K_{v_{(k-1)}}$, where $v_k = (2k+1)^2$, $k \ge 2$.

By Lemma 3.9, we can place a 4-cycle decomposition of K_9 and colouring type $\{B1, C\}$ on $W \cup \{\infty\}$. By Lemma 3.10, we can place a 4-cycle decomposition of $K_9 - K_{2,2}$ with colouring type $\{B1, C\}$ on $X_i \cup \{\infty\}$, for $1 \le i \le k-1$. Here the edges of each copy of $K_{2,2}$ are entirely within X_i , for $1 \le i \le k-1$. By Lemma 3.13, we can also place a 4-cycle decomposition of H, as defined in Lemma 3.13, with colouring type $\{B1, C\}$ on $W \cup Y_i \cup X_i$, for $1 \le i \le k-1$. Place a copy of the decomposition of $K_{8,8}$ given in Lemma 3.11 on $X_i \cup X_j$, for $1 \le i < j \le k-1$, and on $X_i \cup Z_j$, for $1 \le i \le k-1$ and

 $1 \leq j \leq (k-1)(k-2)/2$. Place a copy of the decomposition of $K_{8,8}$ given in Lemma 3.12 on $W \cup Z_i$, for $1 \leq i \leq (k-1)(k-2)/2$, and on $X_i \cup Y_j$, for $1 \leq i, j \leq k-1$, excluding the case i = j.

Theorem 3.15 There exists a 4-cycle decomposition of K_v with colouring type $\{B1, C\}$ if and only if $v \equiv 1 \pmod{8}$, $v \neq 1$ and $\sqrt{v} \in \mathbb{Z}$.

Proof. Let there be b black and w white vertices in K_v . As a 4-cycle of colouring Type B1 or C always contains two mixed-coloured edges, then a decomposition is possible only if the number of mixed-coloured edges in K_v is twice the number of 4-cycles in the decomposition. Consequently, bw = b(v-b) = v(v-1)/4. From this, we can obtain a quadratic expression in b, the solution of which is $b = (v \pm \sqrt{v})/2$. Without loss of generality let $b = (v + \sqrt{v})/2$, so $w = (v - \sqrt{v})/2$. For b and w to be integers, we require that $\sqrt{v} \in \mathbb{Z}$. This fact, combined with Theorem 1.1, provides the necessary conditions for a 4-cycle decomposition of K_v with colouring type $\{B1, C\}$.

To prove sufficiency, we use an inductive method. Let $v_k = (2k+1)^2$, for $k \geq 2$. The appropriate 4-cycle decomposition exists for K_9 , by Lemma 3.9. By Lemma 3.14, there exists a 4-cycle decomposition of $K_{v_k} - K_{v_{(k-1)}}$, with colouring type $\{B1, C\}$. Thus, the decomposition exists for all $v = v_k$, $k \geq 1$.

3.7
$$S = \{B1, D\} \equiv S = \{B2, D\}$$

Theorem 3.16 There exist no 4-cycle decompositions of K_v with colouring type $\{B1, D\}$.

0

Proof. The proof mirrors that for Theorem 3.8.

4
$$|S| = 3$$

4.1
$$S = \{A1, A2, B1\} \equiv S = \{A1, A2, B2\}$$

Lemma 4.1 There exists a 4-cycle decomposition of $K_{33} - K_9$ with colouring type $\{A1, A2, B1\}$.

Proof. Let the vertex set of $K_{33} - K_9$ be $\{\infty_1, 0_1, 1_1, \ldots, 7_1\} \cup (\bigcup_{i=1,2,3} \{0_{2i}, 1_{2i}, \ldots, 7_{2i}\})$. The hole is on the vertices with subscript 1. Colour the vertices in the hole white and all other vertices black. Let the vertices $0_{2i}, 1_{2i}, \ldots, 7_{2i}$ be contained in the set Y_i , i = 1, 2, 3.

By Lemma 3.4 we can place a 4-cycle decomposition of K_9 with colouring type $\{A1, B1\}$ on $\{\infty_1\} \cup Y_i$, for i = 1, 2, 3. The remaining 4-cycles in the decomposition are: $(0_{2i}, j_{2(i+1)}, 1_{2i}, j_1), (2_{2i}, j_{2(i+1)}, 3_{2i}, j_1), (4_{2i}, j_{2(i+1)}, 5_{2i}, j_1)$ and $(6_{2i}, j_{2(i+1)}, 7_{2i}, j_1)$, where i = 1, 2, 3 and $j = 0, 1, \ldots, 7$.

Lemma 4.2 There exists a 4-cycle decomposition of K_{33} with colouring type $\{A1, A2, B1\}$.

Proof. Let the vertex set of K_{33} be $X \cup Y$, where |X| = 24 and |Y| = 9. Colour all the vertices in X black and all the vertices in Y white. By Theorem 2.1, we can place a 4-cycle decomposition of K_9 with colouring type $\{A2\}$ on Y. By Lemma 4.1, we can place a 4-cycle decomposition of $K_{33} - K_9$ with colouring type $\{A1, A2, B1\}$ on $X \cup Y$, where the hole is on the vertices in Y.

Lemma 4.3 There exists a 4-cycle decomposition of $K_{8,8}$ with colouring type {B1}.

Proof. Let the vertex set of $K_{8,8}$ be $\bigcup_{i=1,2} \{0_i, 1_i, \ldots, 7_i\}$. Colour the vertices $4_1, 5_1, 6_1$ and 7_1 white and the remaining vertices black. A suitable decomposition is given by: $(i_2, 0_1, (i+1)_2, 4_1), (i_2, 1_1, (i+1)_2, 5_1), (i_2, 2_1, (i+1)_2, 6_1)$ and $(i_2, 3_1, (i+1)_2, 7_1)$, where $i \in \{0, 2, 4, 6\}$.

Lemma 4.4 There exists a 4-cycle decomposition of $K_{41}-K_{33}$ with colouring type $\{A1, B1\}$.

Proof. Let the vertex set of $K_{41}-K_{33}$ be $(\{\infty\} \cup X_1 \cup X_2 \cup Y_1 \cup Y_2) \cup Z$, where $|X_i|=|Y_i|=8$ for i=1,2 and |Z|=8. Let the hole be on the vertices $\{\infty\} \cup X_1 \cup X_2 \cup Y_1 \cup Y_2$. Colour the vertex ∞ white. Colour all vertices in X_1 , X_2 and Z black. Colour four vertices of Y_i black and four white, for i=1,2.

By Lemma 3.4, we can place a 4-cycle decomposition of K_9 with colouring type $\{A1, B1\}$ on $\{\infty\} \cup Z$. By Corollary 3.3, we can place a 4-cycle decomposition of $K_{8,8}$ with colouring type $\{A1\}$ on $X_i \cup Z$, for i = 1, 2. Finally, by Lemma 4.3, we can place a 4-cycle decomposition of $K_{8,8}$ with colouring type $\{B1\}$ on $Y_i \cup Z$, for i = 1, 2.

Lemma 4.5 There do not exist 4-cycle decompositions of K_9 , K_{17} and K_{25} with colouring type $\{A1, A2, B1\}$.

Proof. Each 4-cycle of Type A1 (Type A2) contains four pure-coloured edges between two black (white) vertices. Each 4-cycle of Type B1 contains two mixed-coloured edges and two edges connecting two black vertices.

Consequently, the number of edges connecting two black vertices must exceed the number of mixed-coloured edges, so b > 2w + 1. Furthermore, the number of pure-coloured edges between white vertices in K_v must be a multiple of four. Hence, $w \equiv 0, 1 \pmod{8}$. However, as every white vertex in a 4-cycle of Type A1, A2 or B1, is adjacent to either two black vertices or two white vertices, w is odd. Hence, $w \equiv 1 \pmod{8}$, $w \geq 9$. Clearly, for each of K_9 , K_{17} and K_{25} it is not possible to have both $w \equiv 1 \pmod{8}$, $w \geq 9$ and b > 2w + 1.

Theorem 4.6 There exists a 4-cycle decomposition of K_v with colouring type $\{A1, A2, B1\}$ if and only if $v \equiv 1 \pmod{8}$, $v \neq 1, 9, 17, 25$.

Proof. The necessary conditions arise from Theorem 1.1 and Lemma 4.5. Now, suppose $v \geq 33$. Let v = 8x + 33, where $x \geq 0$. The case x = 0 is covered in Lemma 4.2. Let the vertex set of K_v be $(\bigcup_{i=1}^x X_i) \cup Y$, where $|X_i| = 8$ for i = 1, 2, ..., x and |Y| = 33. Colour all the vertices in X_i black, for i = 1, 2, ..., x and colour twenty-four vertices in Y black and nine white.

By Corollary 3.3, we can place a 4-cycle decomposition of $K_{8,8}$ with colouring type $\{A1\}$ on $X_i \cup X_j$, for $1 \le i < j \le x$. By Lemma 4.2, we can place a 4-cycle decomposition of K_{33} with colouring type $\{A1, A2, B1\}$ on Y. Finally, by Lemma 4.4, we can place a 4-cycle decomposition of $K_{41} - K_{33}$ with colouring type $\{A1, B1\}$ on $Y \cup X_i$, for i = 1, 2, ..., x, where the hole is on the vertices in Y.

4.2
$$S = \{A1, A2, C\}$$

Theorem 4.7 There exist no 4-cycle decompositions of K_v with colouring type $\{A1, A2, C\}$.

Proof. Let v > 1 and suppose the decomposition exists. Without loss of generality let b > w. Mixed-coloured edges only occur in 4-cycles of Type C, each of which contains two such edges. Suppose that within the decomposition there are n 4-cycles of Type C, then n = bw/2. Furthermore, there must be more than n pure-coloured edges between two white vertices and so w(w-1) > 2n = bw. Simplifying this we find that b < w-1, which is a contradiction.

4.3
$$S = \{A1, A2, D\}$$

Theorem 4.8 There exist no 4-cycle decompositions of K_v with colouring type $\{A1, A2, D\}$.

Proof. Suppose that v > 1 and that the decomposition exists. Without loss of generality, let b be odd and w be even, as v is odd. Consider a white vertex x, say. Then x is adjacent to an odd number of white vertices in K_v . However, x can only be adjacent to an even number of white vertices in the decomposition.

4.4
$$S = \{A1, B1, B2\} \equiv S = \{A2, B1, B2\}$$

Lemma 4.9 There does not exist a 4-cycle decomposition of K_9 with colouring type $\{A1, B1, B2\}$.

Proof. Suppose the decomposition exists. There are nine 4-cycles in a 4-cycle decomposition of K_9 , at least one of which is of Type A1. Hence, $b \geq 4$. By similar reasoning $w \geq 3$. Combining these two inequalities, $w \in \{3,4,5\}$. Only 4-cycles of Types B1 and B2 contain mixed-coloured edges. Indeed, each of these 4-cycles contain two such edges and so the number of mixed-coloured edges in K_v is less than twice the number of 4-cycles in the decomposition. Hence, bw < 18. However, this condition is not satisfied when $w \in \{3,4,5\}$.

Lemma 4.10 There exists a 4-cycle decomposition of K_{17} with colouring type $\{A1, B1, B2\}$.

Proof. Let the vertex set of K_{17} be \mathbb{Z}_{17} . Colour the vertices $4, 5, \ldots, 16$ black and the vertices 0, 1, 2 and 3 white. A suitable decomposition is given by:

```
(0, 1, 2, 4),
                    (0, 2, 3, 5),
                                         (0,3,1,6),
                                                             (15, 6, 13, 9),
                                                                                 (6, 14, 13, 12),
(14, 5, 8, 12),
                    (16, 4, 10, 5),
                                         (12, 4, 5, 7),
                                                             (8, 7, 10, 16),
                                                                                 (14, 15, 13, 8),
(12, 16, 7, 9),
                    (0, 7, 4, 8),
                                         (0, 9, 4, 11),
                                                             (0, 10, 6, 16),
                                                                                 (0, 12, 5, 13),
(0, 14, 4, 15),
                    (1, 4, 6, 5),
                                         (1, 7, 6, 8),
                                                             (1, 9, 5, 11),
                                                                                 (1, 10, 8, 15),
(1, 12, 10, 13),
                    (1, 14, 9, 16),
                                        (2, 5, 15, 7),
                                                             (2, 6, 9, 8),
                                                                                 (2, 9, 10, 11),
(2, 10, 14, 16),
                    (2, 12, 11, 13),
                                        (2, 14, 11, 15),
                                                             (3, 4, 13, 7),
                                                                                 (3, 6, 11, 8),
(3, 9, 11, 16),
                    (3, 10, 15, 12),
                                        (3, 11, 7, 14),
                                                             (3, 13, 16, 15).
```

Lemma 4.11 There exists a 4-cycle decomposition of $K_{25} - K_{17}$ with colouring type $\{A1, B1\}$.

Proof. Let the vertex set of $K_{25} - K_{17}$ be $\{0_1, 1_1, \ldots, 16_1\} \cup \{0_2, 1_2, \ldots, 7_2\}$, where the hole is on the vertices with subscript 1. Colour the vertices $13_1, 14_1, 15_1$ and 16_1 white and the remaining vertices black. A suitable decomposition is given by:

```
(13_1, 0_2, 0_1, 1_2),
                         (13_1, 2_2, 0_1, 3_2),
                                                   (14_1, 0_2, 1_1, 1_2),
                                                                               (14_1, 2_2, 1_1, 3_2),
(15_1,0_2,2_1,1_2),
                         (15_1, 2_2, 2_1, 3_2),
                                                   (16_1, 0_2, 9_1, 4_2),
                                                                               (16_1, 1_2, 9_1, 5_2),
(13_1, 4_2, 0_2, 5_2),
                         (13_1, 6_2, 4_2, 7_2),
                                                   (14_1, 4_2, 5_2, 6_2),
                                                                               (14_1, 5_2, 3_2, 7_2),
(15_1, 4_2, 2_2, 7_2),
                         (15_1, 5_2, 7_2, 6_2),
                                                   (16_1, 6_2, 1_2, 2_2),
                                                                               (16_1, 7_2, 1_2, 3_2),
(10_1, 0_2, 6_2, 2_2),
                         (10_1, 1_2, 4_2, 3_2),
                                                   (11_1, 6_2, 3_2, 0_2),
                                                                               (11_1, 7_2, 0_2, 1_2),
(12_1,0_2,2_2,3_2),
                         (12_1, 1_2, 5_2, 2_2),
                                                   (3_1,0_2,6_1,1_2),
                                                                               (4_1,0_2,7_1,1_2),
(5_1,0_2,8_1,1_2),
                         (3_1, 2_2, 4_1, 3_2),
                                                   (5_1, 2_2, 6_1, 3_2),
                                                                               (7_1, 2_2, 8_1, 3_2),
(9_1, 2_2, 11_1, 3_2),
                         (0_1,4_2,1_1,5_2),
                                                   (2_1, 4_2, 3_1, 5_2),
                                                                               (4_1, 4_2, 5_1, 5_2),
(6_1, 4_2, 7_1, 5_2),
                         (8_1, 4_2, 10_1, 5_2),
                                                   (12_1, 4_2, 11_1, 5_2),
                                                                               (0_1, 6_2, 1_1, 7_2),
(2_1,6_2,3_1,7_2),
                         (4_1,6_2,5_1,7_2),
                                                   (6_1, 6_2, 7_1, 7_2),
                                                                               (8_1, 6_2, 10_1, 7_2),
(12_1,6_2,9_1,7_2).
```

Theorem 4.12 There exists a 4-cycle decomposition of K_v with colouring type $\{A1, B1, B2\}$ if and only if $v \equiv 1 \pmod{8}$, $v \neq 1, 9$.

Proof. The necessary conditions follow from Theorem 1.1, Lemma 4.9 and the fact that the colouring is proper.

Let v=8x+17, for $x\geq 0$. By Lemma 4.10 we know that the decomposition exists when x=0, so suppose $x\geq 1$. Let the vertex set of K_v be $(\bigcup_{i=1}^x X_i) \cup Y$, where $|X_i|=8$ for $i=1,2,\ldots,x$, and |Y|=17. Colour all vertices in X_i black, for $i=1,2,\ldots,x$, and colour thirteen vertices of Y black and four white.

By Lemma 4.10, we can place a copy of the 4-cycle decomposition of K_{17} with colouring type $\{A1, B1, B2\}$ on Y. By Lemma 4.11, we can place a copy of the 4-cycle decomposition of $K_{25} - K_{17}$ with colouring type $\{A1, B1\}$ on $Y \cup X_i$, for i = 1, 2, ..., x, where the hole is on the vertices in Y. Finally, by Corollary 3.3, we can place a copy of the 4-cycle decomposition of $K_{8,8}$ with colouring type $\{A1\}$ on $X_i \cup X_j$, for $1 \le i < j \le x$. The result is a 4-cycle decomposition of K_v with colouring type $\{A1, B1, B2\}$.

4.5
$$S = \{A1, B1, C\} \equiv S = \{A2, B2, C\}$$

Lemma 4.13 There exists a 4-cycle decomposition of K_9 with colouring type $\{A1, B1, C\}$.

Proof. Let the vertex set of K_9 be \mathbb{Z}_9 . Colour the vertices $0, 1, \ldots, 6$ black and the vertices 7 and 8 white. A suitable decomposition is given by: (0, 1, 7, 8), (2, 3, 0, 7), (3, 5, 4, 7), (5, 2, 6, 7), (4, 2, 1, 8), (5, 0, 2, 8), (6, 1, 3, 8), (0, 4, 3, 6) and <math>(1, 4, 6, 5).

Lemma 4.14 There exists a 4-cycle decomposition of $K_{8,8}$ with colouring type $\{A1, B1, C\}$.

Proof. Let the vertex set of $K_{8,8}$ be $\bigcup_{i=1,2} \{0_i, 1_i, \ldots, 7_i\}$. Colour the vertices $0_i, 1_i, \ldots, 5_i$ black and the vertices 6_i and 7_i white, for i = 1, 2. A suitable decomposition is given by:

Theorem 4.15 There exists a 4-cycle decomposition of K_v with colouring type $\{A1, B1, C\}$ if and only if $v \equiv 1 \pmod{8}$, $v \neq 1$.

Proof. We use the construction from Theorem 3.5, with the vertex ∞ coloured black, six vertices coloured black and two coloured white in each X_i , and the designs given in Lemmas 4.13 and 4.14.

4.6
$$S = \{A1, B1, D\} \equiv S = \{A2, B2, D\}$$

Theorem 4.16 There exist no 4-cycle decompositions of K_v with colouring type $\{A1, B1, D\}$.

Proof. Let v > 1 and suppose that the decomposition exists. No 4-cycle contains a pure-coloured edge between two white vertices, so w < 2. However, there is at least one 4-cycle of Type D in the decomposition, and so w > 2.

4.7
$$S = \{A1, B2, C\} \equiv S = \{A2, B1, C\}$$

Lemma 4.17 There does not exist a 4-cycle decomposition of K_9 with colouring type $\{A1, B2, C\}$.

Proof. The proof mirrors that provided for Lemma 4.9.

Lemma 4.18 There exists a 4-cycle decomposition of K_{17} with colouring type $\{A1, B2, C\}$.

Proof. Let the vertex set of K_{17} be \mathbb{Z}_{17} . Colour the vertices $0, 1, \ldots, 5$ black and the vertices $6, 7, \ldots, 16$ white. A suitable decomposition is given by:

```
(0, 1, 2, 3),
                    (0, 2, 6, 7),
                                        (0, 4, 6, 8),
                                                             (0, 5, 6, 9),
                                                                                 (1, 3, 6, 10),
(1, 4, 7, 8),
                    (1, 5, 7, 9),
                                        (2, 4, 8, 9),
                                                             (2, 5, 8, 10),
                                                                                 (3, 4, 9, 10),
(3, 5, 9, 11),
                    (4, 5, 10, 11),
                                        (0, 6, 11, 12),
                                                             (0, 10, 7, 11),
                                                                                 (0, 13, 6, 14),
(0, 15, 6, 16),
                    (1,6,12,7),
                                        (1, 11, 8, 12),
                                                             (1, 13, 7, 14),
                                                                                 (1, 15, 8, 16),
(2, 7, 15, 11),
                    (2, 8, 13, 12),
                                        (2, 13, 9, 14),
                                                             (2, 15, 9, 16),
                                                                                 (3, 7, 16, 12),
(3, 8, 14, 13),
                    (3, 9, 12, 14),
                                        (3, 15, 10, 16),
                                                            (4, 10, 13, 15),
                                                                                 (4, 12, 10, 14),
(4, 13, 11, 16),
                    (5, 11, 14, 15),
                                        (5, 12, 15, 16),
                                                            (5, 13, 16, 14).
```

Lemma 4.19 There exists a 4-cycle decomposition of $K_{25} - K_{17}$ with colouring type $\{A1, B2, C\}$.

Proof. Let the vertex set of $K_{25} - K_{17}$ be $\{0_1, 2_1, \ldots, 16_1\} \cup \{0_2, 1_2, \ldots, 7_2\}$, where the hole is on the vertices with subscript 1. Colour the vertices $0_1, 1_1, \ldots, 5_1$ and $0_2, 1_2$ and 2_2 black and the remaining vertices white. A suitable decomposition is given by:

```
(2_1, 0_2, 3_1, 2_2),
(0_1, 0_2, 1_1, 1_2),
                                                       (0_2, 1_2, 4_2, 6_1),
                                                                                   (1_2, 2_2, 5_2, 6_1),
(2_2,0_2,3_2,6_1),
                            (4_1,0_2,4_2,5_2),
                                                       (5_1,0_2,5_2,6_2),
                                                                                   (2_1, 1_2, 3_2, 5_2),
(3_1, 1_2, 5_2, 7_2),
                            (4_1, 1_2, 6_2, 3_2),
                                                       (5_1, 1_2, 7_2, 4_2),
                                                                                   (0_1, 2_2, 3_2, 4_2),
(1_1, 2_2, 4_2, 6_2),
                            (4_1, 2_2, 6_2, 7_2),
                                                       (5_1, 2_2, 7_2, 3_2),
                                                                                   (6_2, 6_1, 7_2, 0_2),
(7_1, 5_2, 8_1, 0_2),
                            (9_1, 5_2, 10_1, 0_2),
                                                       (11_1, 4_2, 12_1, 0_2),
                                                                                   (13_1, 4_2, 14_1, 0_2),
(15_1, 4_2, 16_1, 0_2),
                            (7_1, 6_2, 8_1, 1_2),
                                                       (9_1, 6_2, 14_1, 1_2),
                                                                                   (10_1, 3_2, 13_1, 1_2),
(11_1, 3_2, 15_1, 1_2),
                            (12_1, 3_2, 16_1, 1_2),
                                                       (7_1, 7_2, 8_1, 2_2),
                                                                                   (9_1,7_2,14_1,2_2),
(10_1,7_2,13_1,2_2),
                            (11_1, 5_2, 15_1, 2_2),
                                                       (12_1,6_2,16_1,2_2),
                                                                                   (3_2, 14_1, 5_2, 0_1),
(6_2, 15_1, 7_2, 0_1),
                            (3_2,7_1,4_2,1_1),
                                                       (5_2, 16_1, 7_2, 1_1),
                                                                                   (3_2, 8_1, 4_2, 2_1),
(6_2, 11_1, 7_2, 2_1),
                           (3_2, 9_1, 4_2, 3_1),
                                                       (5_2, 13_1, 6_2, 3_1),
                                                                                   (4_2, 10_1, 6_2, 4_1),
(5_2, 12_1, 7_2, 5_1).
```

Lemma 4.20 There exists a 4-cycle decomposition of $K_{8,8}$ with colouring type $\{A1, B2, C\}$.

Proof. Let the vertex set of $K_{8,8}$ be $\bigcup_{i=1,2} \{0_i, 1_i, \ldots, 7_i\}$. Colour the vertices 0_i , 1_i and 2_i black, for i=1,2. Colour the remaining vertices white. A suitable decomposition is given by:

```
(2_1,0_2,6_1,6_2),
                                                                   (2_1, 1_2, 7_1, 3_2),
                                                                                          (2_1, 2_2, 5_1, 4_2),
                      (1_1, 2_2, 4_1, 3_2),
(0_1, 2_2, 3_1, 4_2),
                                                                   (4_2,4_1,5_2,1_1),
                                                                                          (5_2,6_1,7_2,2_1),
                      (5_2,3_1,7_2,0_1),
                                             (6_2,7_1,7_2,1_1),
(3_2,5_1,6_2,0_1),
                                                                                          (6_1,4_2,7_1,2_2),
                      (5_1, 5_2, 7_1, 0_2),
                                            (3_1,3_2,6_1,1_2),
                                                                   (4_1,7_2,5_1,1_2),
(3_1,6_2,4_1,0_2),
(0_1,0_2,1_1,1_2).
```

Theorem 4.21 There exists a 4-cycle decomposition of K_v with colouring type $\{A1, B2, C\}$ if and only if $v \equiv 1 \pmod{8}$, $v \neq 1, 9$.

П

Proof. We use the construction from Theorem 4.12, with three vertices coloured black and five coloured white in each X_i , six vertices coloured black and eleven coloured white in Y, and with the designs given in Lemmas 4.18, 4.19 and 4.20.

4.8
$$S = \{A1, B2, D\} \equiv S = \{A2, B1, D\}$$

Lemma 4.22 There does not exist a 4-cycle decomposition of K_9 with colouring type $\{A1, B2, D\}$.

Proof. Only 4-cycles of Type A1 contain edges connecting two black vertices, so the number of pure-coloured edges between two black vertices in K_v must be a multiple of four. Hence $b \equiv 0, 1 \pmod{8}$. However, as $b \geq 4$ and $w \geq 3$, then $b \in \{4, 5, 6\}$. Thus we have a contradiction.

Lemma 4.23 There exists a 4-cycle decomposition of K_{17} with colouring type $\{A1, B2, D\}$.

Proof. Let the vertex set of K_{17} be \mathbb{Z}_{17} . Let the vertices $0, 1, \ldots, 8$ be coloured black and let the vertices $9, 10, \ldots, 16$ be coloured white. A suitable decomposition is given by developing the starter cycle (0, 1, 8, 5) modulo 9 and including the following cycles:

```
(0, 13, 1, 14),
                                                                               (2, 9, 3, 10),
(0,9,1,10),
                    (0, 11, 1, 12),
                                                           (0, 15, 1, 16),
                                                                               (4, 11, 5, 12),
(2, 11, 3, 12),
                    (2, 13, 3, 14),
                                       (2, 15, 3, 16),
                                                           (4, 9, 5, 10),
                    (4, 15, 9, 16),
                                       (5, 15, 10, 16),
                                                           (6, 9, 14, 12),
                                                                               (6, 10, 9, 11),
(4, 13, 5, 14),
                                                           (7, 11, 10, 14),
                                                                               (7, 12, 13, 15),
                                       (7, 9, 13, 10),
(6, 13, 16, 15),
                    (6, 14, 11, 16),
(7, 13, 14, 16),
                   (8, 9, 12, 10),
                                       (8, 11, 15, 14),
                                                           (8, 12, 11, 13),
                                                                               (8, 15, 12, 16).
```

Lemma 4.24 There exists a 4-cycle decomposition of $K_{25} - K_{17}$ with colouring type $\{A1, D\}$.

Proof. Let the vertex set of $K_{25} - K_{17}$ be $\{0_1, 2_1, \ldots, 16_1\} \cup \{0_2, 1_2, \ldots, 7_2\}$, where the hole is on the vertices with subscript 1. Colour the vertices $9_1, 10_1, \ldots, 16_1$ white and the remaining vertices black. A suitable decomposition is given by:

```
(0_2, 9_1, 1_2, 10_1),
                            (2_2, 9_1, 3_2, 10_1),
                                                       (4_2, 9_1, 5_2, 10_1),
                                                                                   (6_2, 9_1, 7_2, 10_1),
(0_2, 11_1, 1_2, 12_1),
                           (2_2, 11_1, 3_2, 12_1),
                                                       (4_2, 11_1, 5_2, 12_1),
                                                                                   (6_2, 11_1, 7_2, 12_1),
(0_2, 13_1, 1_2, 14_1),
                           (2_2, 13_1, 3_2, 14_1),
                                                       (4_2, 13_1, 5_2, 14_1),
                                                                                   (6_2, 13_1, 7_2, 14_1),
(0_2, 15_1, 1_2, 16_1),
                            (2_2, 15_1, 3_2, 16_1),
                                                       (4_2, 15_1, 5_2, 16_1),
                                                                                   (6_2, 15_1, 7_2, 16_1),
(3_1,0_2,4_1,2_2),
                            (5_1, 0_2, 6_1, 1_2),
                                                       (7_1,0_2,8_1,1_2),
                                                                                   (3_1, 1_2, 4_1, 3_2),
(0_1, 2_2, 1_1, 3_2),
                            (0_1, 4_2, 1_1, 5_2),
                                                                                   (3_1, 6_2, 4_1, 7_2),
                                                        (3_1, 4_2, 4_1, 5_2),
(7_1, 2_2, 8_1, 3_2),
                            (7_1, 4_2, 8_1, 5_2),
                                                        (7_1, 6_2, 8_1, 7_2),
                                                                                   (0_1, 0_2, 7_2, 6_2),
(0_1, 1_2, 2_2, 7_2),
                            (2_1, 2_2, 4_2, 0_2),
                                                        (2_1, 3_2, 0_2, 1_2),
                                                                                   (6_1, 4_2, 6_2, 2_2),
(5_1, 5_2, 2_2, 3_2),
                            (2_1, 6_2, 3_2, 4_2),
                                                                                   (1_1, 0_2, 5_2, 6_2),
                                                       (6_1,7_2,4_2,5_2),
(1_1, 1_2, 5_2, 7_2),
                           (5_1, 2_2, 0_2, 6_2),
                                                       (6_1, 3_2, 1_2, 6_2),
                                                                                   (5_1,4_2,1_2,7_2),
(2_1, 5_2, 3_2, 7_2).
```

Theorem 4.25 There exists a 4-cycle decomposition of K_v with colouring type $\{A1, B2, D\}$ if and only if $v \equiv 1 \pmod{8}$, $v \neq 1, 9$.

Proof. We use the construction from Theorem 4.12, with all vertices coloured black in each X_i , nine vertices coloured black and eight coloured white in Y and with the designs given in Lemmas 4.23, 4.24 and Corollary 3.3.

4.9
$$S = \{A1, C, D\} \equiv S = \{A2, C, D\}$$

Lemma 4.26 There exists a 4-cycle decomposition of K_9 with colouring type $\{A1, C, D\}$.

Proof. Let the vertex set of K_9 be \mathbb{Z}_9 . Colour the vertices $0, 1, \ldots, 5$ black and the vertices 6, 7 and 8 white. A suitable decomposition is given by: (0,1,6,7), (2,5,6,8), (3,4,7,8), (0,2,1,3), (0,4,1,5), (2,3,5,4), (2,6,3,7), (0,6,4,8) and (1,7,5,8).

Lemma 4.27 There exists a 4-cycle decomposition of $K_{8,8}$ with colouring type $\{A1, C, D\}$.

Proof. Let the vertex set of $K_{8,8}$ be $\bigcup_{i=1,2} \{0_i, 1_i, \ldots, 7_i\}$. Colour the vertices $0_i, 1_i, \ldots, 5_i$ black and the vertices 6_i and 7_i white, for $i \in \{1, 2\}$. A suitable decomposition is given by:

```
(0_1,0_2,6_1,6_2),
                       (0_1, 1_2, 6_1, 7_2),
                                             (1_1, 0_2, 7_1, 6_2),
                                                                    (1_1, 1_2, 7_1, 7_2),
                                                                                          (2_1,6_2,3_1,7_2),
(4_1,6_2,5_1,7_2),
                      (2_2,6_1,3_2,7_1),
                                             (4_2,6_1,5_2,7_1),
                                                                    (0_1, 2_2, 1_1, 3_2),
                                                                                          (0_1,4_2,1_1,5_2),
(2_1,0_2,3_1,1_2),
                      (2_1, 2_2, 3_1, 3_2),
                                             (2_1,4_2,3_1,5_2),
                                                                   (4_1,0_2,5_1,1_2),
                                                                                          (4_1,2_2,5_1,3_2),
(4_1,4_2,5_1,5_2).
                                                                                                             0
```

Theorem 4.28 There exists a 4-cycle decomposition of K_v with colouring type $\{A1, C, D\}$ if and only if $v \equiv 1 \pmod{8}$, $v \neq 1$.

Proof. We use the construction from Theorem 3.5, with the vertex ∞ coloured white, six vertices coloured black and two coloured white in each X_i , and the designs given in Lemmas 4.26 and 4.27.

4.10
$$S = \{B1, B2, C\}$$

Lemma 4.29 There exists a 4-cycle decomposition of K_9 with colouring type $\{B1, B2, C\}$.

Proof. Let the vertex set of K_9 be \mathbb{Z}_9 . Colour the vertices 0, 1, ..., 5 black and the vertices 6, 7 and 8 white. A suitable decomposition is given by: (7,6,8,0), (4,1,7,8), (2,0,3,6), (4,0,5,7), (1,2,4,6), (1,3,2,8), (0,1,5,6), (3,4,5,8) and (2,5,3,7).

Theorem 4.30 There exists a 4-cycle decomposition of K_v with colouring type $\{B1, B2, C\}$ if and only if $v \equiv 1 \pmod{8}$, $v \neq 1$ and $\sqrt{v} \in \mathbb{Z}$.

Proof. The proof mirrors that given for Theorem 3.15. In this case, however, we use the 4-cycle decomposition of K_9 with colouring type {B1, B2, C} given in Lemma 4.29, and the 4-cycle decomposition of $K_{v_k} - K_{v_{(k-1)}}$, for $k \geq 2$, with colouring type {B1, C}, given in Lemma 3.14. \square

4.11
$$S = \{B1, C, D\} \equiv S = \{B2, C, D\}$$

Lemma 4.31 There exists a 4-cycle decomposition of K_9 with colouring type $\{B1, C, D\}$.

Proof. Let the vertex set of K_9 be \mathbb{Z}_9 . Colour the vertices $0,1,\ldots,4$ black and the vertices 5, 6, 7 and 8 white. A suitable decomposition is given by: (0,1,7,8), (0,2,6,7), (1,2,5,8), (2,3,5,7), (2,4,6,8), (3,4,5,6), (3,0,4,7), (3,1,4,8) and (0,5,1,6).

Theorem 4.32 There exists a 4-cycle decomposition of K_v with colouring type $\{B1, C, D\}$ if and only if $v \equiv 1 \pmod{8}$, $v \neq 1$.

Proof. We use the construction from Theorem 3.5, with the vertex ∞ coloured black, four vertices coloured black and four coloured white in each X_i , and the designs given in Lemmas 4.31 and 3.11.

References

- [1] P. Adams, D. Bryant J. Lefevre and M. Waterhouse, Some Equitably 3-coloured Cycle Decompositions, *Discrete Math.*, (to appear).
- [2] P. Adams, D. Bryant and M. Waterhouse, Some Equitably 2-coloured Cycle Decompositions, (submitted).
- [3] B. Alspach and H. Gavlas, Cycle decompositions of K_n and $K_n I$, J. Combin. Theory Ser. B, 81 (2001) no. 1, 77-99.
- [4] C. J. Colbourn, J. H. Dinitz and A. Rosa, Bicoloring Steiner triple systems, *Electron. J. Combin.*, 6 (1999) R25.
- [5] C. J. Colbourn and A. Rosa, Triple Systems, Clarendon Press, Oxford (1999).
- [6] J. Lefevre and M. Waterhouse, Some Equitably 3-coloured Cycle Decompositions of Multipartite Graphs, (submitted).
- [7] M. Šajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combin Des., 10 (2002) no. 1, 27-78.
- [8] G. Quattrocchi, Colouring 4-cycle systems with specified block colour patterns: the case of embedding P₃-designs, Electron. J. Combin., 8 (2001) R24.
- [9] D. Sotteau, Decomposition of $K_{m,n}$ ($K_{m,n}^*$) into Cycles (Circuits) of Length 2k, Combin. Theory Ser. B, 30 (1981), 75-81.
- [10] M. Waterhouse, Some Equitably 2-coloured Cycle Decompositions of Multipartite Graphs, *Utnil. Math.*, (to appear).