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Abstract

We prove light estimates on the minimum weight of an edge decomposi-
tion of the complete graph into subgraphs of 3 or 4 edges, where the weight of
a subgraph is the number of its vertices. We conjecture that the weighted edge
decomposition problem on general graphs is NP-complete for every k > 2.
This conjecture is shown to be true for every k < 11 except k = 8. The
problem is motivated by the traffic grooming problem for optical networks.

1 Introduction and results

Let £ > 3 be a fixed integer. A k-decomposition of a graph G = (V, E) is a
collection of subgraphs G; C G (1 = 1,2,...,m) such that

o U, B(G:) = E(G)
e E(C;)NE(G;)=0foralll1 <i#j<m
o |E(G;)| = k for all but possibly one of the G;.
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Hence, by definition, the number m of subgraphs in a k-decomposition of G' is
precisely ['—E—(,?ﬂ‘l . For convenience, we shall assume that it is the last subgraph,

G, What has fewer than k edges in case if |[E(G)| is not a multiple of k. The
weight w(G;) of subgraph G; in the dccomposition is defined as the number of its
vertices, |V (G;)|.

Notation. We denote by sx(G) the smallest possible sum of the weights of the
subgraphs G;, taken over all k-decompositions {Gi, Ga,...,Gwm} of G. The
function s, (K, ) will be abbreviated as si(n).

Decomposition into prescribed graphs. Given a family H of graphs, we say
that G admits an H-decomposition if G is the edge-disjoint union of some graphs
each being isomorphic to some member of H. If H = {H} is a single graph, we
write H-decomposition instead of { H }-decomposition. In the above context, we
shall be mostly interested in the cases where H = H, consists of all graphs with
k edges and a minimum number of vertices.

1.1 Motivation

Weighted edge-decomposition of graphs is related to traffic grooming, an impor-
tant problem in optical nctworks research that has received significant attention
recently.

Much of today’s network infrastructure is based on Synchronous Optical Net-
work (SONET) rings, in which each fiber is able to carry multiple wavelengths
simultaneously. Due to the huge bandwidth of a wavelength, SONET allows each
wavelength Lo carry multiple unit circuits in a time division multiplexing fashion.
A SONET add/drop multiplexer (SADM) is an electronic device used to multi-
plex and demultiplex the unit circuits of the wavelength. An exclusive SADM
is required for each wavelength node pair such that a connection carried by the
wavelength starts or ends at this node. Since SADMs are expensive and domi-
nate cost of the systcm, minimizing the number of SADMs can greatly decrease
the overall network design cost. An illustrative example is shown in Figure 1.
Consider a ring network with 6 nodes and assume for the moment that the traffic
pattern is unidirectional (traffic flows only in one direction), that each node pair
has a connection between them and that the traffic of each connection is of unit
size. Then the traffic forms a total of (5) = 15 circuit rings (see the traffic matrix
of Figure 1). Suppose each wavelength can support 4 circuit rings. In Assignment
1, because each node is used as a start or end node for some connection under
each wavelength, four SADMs are required at each node, yielding a total of 24
SADMs required for this network (note that the number of SADMs required for
each wavelength cuqals the number of distinct nodes to which the wavelength is
assigned). However, in Assignment 2, only 15 SADM:s are required.
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Figure 1: Traffic grooming in SONET rings. 7 — j represents a traffic connection
from i (0 ; i < 7 represents two connections: ¢ — j and j + i.

In the above example, we assume uniform traffic model that means all node
pairs have similar traffic 1oads and thus the traffic matrix is symmetric. We want to
formulate the minimization of SADMs as a graph decomposition problem. Given
a ring network with n nodes under the uniform traffic model, if we treat node 7 in
K, as node 4 in the ring network and cdge (%, 7) in K, as the connection 7 « j,
then we can view a subgraph Sy, of a decompositon of K, as an assignment of
connections to wavelength A\n,,. Therefore, minimizing the number of SADM:s is
equivalent to finding a minimum weighted edge decomposition of K, (see Figure
2). More generally, minimizing SADMs with traffic between each of the node
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Figure 2: Reduction of a traffic assignment to an edge decomposition.

pairs equal to b circuit units is cquivalent to decomposing a multi-graph K, in
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which each pair of nodes has an edge of multiplicity b, into subgraphs with exactly
k edges.

1.2 Tight bounds

Regarding numerical estimates, thc main results of our paper are tight bounds on
the functions si(n) for k = 3 and k& = 4, as follows.

Theorem 1
(3) Forn odd,
n
s3(n) = (2) +Cn
wherec, =0if n=10r 3 (mod 6) and ¢, = 2 if n =5 (mod 6).
(i) For n even,
() = () +5+
s3(n) = 9 ; Cn
where ¢, = 0if n = 4 or 12 (mod 24), and ¢, < 8 for every n.

This result will be proved in Section 2, at the end of which a more precise
formulation will also be given for n even.

Somewhat unexpectedly, the exact solution for k = 4 can be determined with
much less effort; its proof is presented in Section 3.

Theorem 2 If n=0,1,3,6 (mod 8), then s4(n) = (3) ; and s4(n) = (3) +1
if n=2,4,5,7(mod 8).

For larger values of k, we only have some asymptotic estimates. To formulate
them, we need to introduce a notation. Forany k& > 3, let

where L is the smallest integer such that

bk
k< .
- ( 2)
The rclevance of this parameter is shown by the following simple observation.

Proposition 1 For every k > 3 and every graph G = (V, E),
sk(G) 2 ak|E].
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Proof In any k-decomposition G1, . .. ,Gm of G, each G; (1 £ i < m) has
precisely k edges and thus at least i vertices. Therefore, the relative weight of
an edge in a k-edge subgraph is at least c. Observing that oy is a decreasing
function of k, the same lower bound on the edge weights remains valid in Gn as

well, independently of whether its size is k or smaller. o
Theorem 3 Forevery k > 3,
su(n) = (3 on+o(1))n?.

Proof Consider the hypergraph whose vertex set is £(K’), and its edges cor-
respond to the subgraphs of K, with precisely k edges and t, vertices. In this
hypergraph, each vertex (representing an edge of K,) is contained in O(nt—2)
edges, while each pair of vertices belongs to O(nt+—3) edges only. On applying
a theorem of Frankl and Rodl [4], we obtain that the hypergraph has an almost
perfect packing of edges ; thus, all but o(n?) edges of K, can be partitioned into
mutually edge-disjoint subgraphs of ¢, vertices and k edges. In those subgraphs,
the average weight of an edge is tx/k = . Moreover, any |tx/2]) of the remain-
ing edges can be covered with a k-edge subgraphon ¢ vertices, hence the average
weight of those o(n?) edges is constant (less than 3). °

1.3 Complexity results

We also study the time complexity of determining sx(G) for general input graphs
G. Our results are summarized in the following assertion.

Theorem 4 For an unresiricted input graph G, it is NP-complete to find the value
of sk(G) for each 3 < k < 7, and more generally also for every k of the form
(4) =1, (%), and (3) + 1, where t > 4 is any integer. Moreover, for those values
of k it is NP-complete to decide whether si(G) = a |E|.

In this way, some range of small values of k is covered. The smallest missing
cases are k = 8, 12,13,17, 18, 19.

2 Tight bounds for k =3
In this section we prove the upper and lower bounds for Theorem 1.

Proof for n odd A Ks-decomposition for n = 1,3 (mod 6) is just a Steiner
Triple System. For n = 5 (mod 6), K, can be decomposed into triangles and one
cycle of length four [9], and we can partition the latter into a path of length 3 and
a K, with total weight 6. This proves the upper bounds.

The lower bounds follow by Proposition 1, because t3 = 3, ag = 1, and there
exists no Steiner Triple System for n = 5 (mod 6).
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Lower bound for n even Suppose that Gy, ...,Gp, is a 3-decomposition of
Ky with total weight s3(rn). The average weight of an edgein a G; is 1 if and
only if G; = K3. Let us re-number the G; (if necessary) so that, for some £,
the subgraphs G; = K3 if and only if £ < i < m. We denote by G the graph
GiU- - UG,

For n even, all vertex degrees of K, are odd. Once a vertex v; is involved in
some K3, two degrees will be reduced from d(v;). Since d(w;) is odd, at least one
edge ended at v; will be in G, which means each node occurs in G at least once.
Moreover, if G; has n; vertices and m; edges, then its weight is m; + [ni/4].
(Here the possible values of n; are 2, 3, and 4.) Thus,

sn) = (§)+§r% > (3)+ =2 2 (D) + 1.

Upper bound for neven If n is not too large, say n < 70, the estimate (3) +
7 -+ 8 follows from the asymptotically weaker inequality

n-—1

=1

n n-—1 n n
= _< -
(2)+c_1+r 3 ]_(2)+4+8

on applying the previous upper bounds for odd n — 1. This recursion is obtained
by taking a 3-decomposition of K,,_; and decomposing the star centercd at the
nth vertex into stars of at most three edges. If n is a multiple of 6, then the
decomposition of K, _; contains an edge, that can be completed to a K3 with the
nth vertex, and the cdges uncovered so far form a star of degree n — 3; hence
only %n — 1 stars will be necded 1o complete the 3-decomposition in this case.

For a construction with = large (say, n > 70), the basic ingredients are the
following configurations.

s3(n) < s3(n—1) + [4(

* A proper edgc coloring of the complete graph K, with s colors, s odd.

¢ A Steiner Triple System STS(v) or a Partial Triple System PTS(v) covering
all the pairs but the edges of a 4-cycle.

® A resolvable Group Divisible Design GDD(s, s, s) with three groups, each
of size s. We fix a resolution with parallel classes P, . .. , Ps.

Each of these is known to exist for all s, v > 3.

Given n, we choose s as the largest odd integer not exceeding n/4, and v =
n — 3s. Morcover, lct ¢ = %(v — 5).! We partition the vertex set V of K, as
V =AUBIUBUB3, |A|=vand |By| = |By| = |B3] = 5. A 3-decomposition
of K., is defined as follows.

'soo<t<3.
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1. Inside A, we take the decomposition as described above, derived from the
blocks of an STS(v) or PTS(v).

2. We specify ¢ (possibly zero) mutually vertex-disjoint blocks Ty,...,T: in
A. Denote by vg41, - - ., s the vertices not occurring in the T:.

3. If t > 0, then we also specify ¢ blocks Sy, ..., S in GDD(s, s, s), one for
each T;, in such a way that each S; belongs to a distinct parallel class (say,
S; € P,), and the S; are mutually vertex-disjoint.

4. Eachblock in P.yq U--- U P; defines a K3 in the 3-decomposition of K.

5. We partition the set (B UB2U B3)\ (S1U---US,) into triples Tey1 - ., Ts
sothat [T; N B;] = 1forallt <i< sand1 < j < 3,and then each 3-edge
star with center v; and leaf set T; (¢ < i < s) will be taken as a subgraph
in the 3-decomposition. Moreover, if zy is an edge in the unique color class
in the edge s-coloring of Bj that does not meet T;, then the K3 induced by
{vs, z,y} is also chosen for the 3-decomposition.

6. Inside each T; U S; we lake a decomposition into three K3's, one path of
length 3, and one star with 3 edges.

7. Forl1 <i<tand1 < j < 3,let C(4, ) be the color class disjoint from
S; in B;. We also denote the elements of S; by s(3,7) G = 1,2,3). In the
3-decomposition of K, each s(3,3) induces a K3 with T; \ B; and with
each edge in C(1, 7).

It is 2 matter of routine to check that if the sets S;, T; can be properly selected
for1 < 1 < ¢, then the subgraphs described above form a 3-decomposition of K.
What remains 1o show is that the S; and the T; can be selected properly for all
n > 70. This can be verified e.g. by the following rough estimates.

Having sclected any two blocks from a GDD(s, s, s), their six points are con-
tained in fewer than 6s blocks, and their parallel classes contain fewer than 2s
further blocks. Thus, if s > 8 — that means n > 9 by parity reasons and hence
n > 36 — somc of the s blocks are disjoint from those selected and also belong
to a third parallcl class.

On the other hand, in a (partial) triple system of order n, each point is con-
tained in (at most) | 2z | blocks, hence there are fewer than 3(v — 1) — 2 blocks
sitting on them altogether. If v > 18, this upper bound is smaller than the num-
ber of blocks in the triple system used above, which is at least § (() — 4). This
requires, again due to parity,v 2> 19and s > 17, hencen = v +3s 2 70 will
suffice. o

The above construction yields that s3(n) does not exceed (5) + 3 with more
than 2t + 2 < 8, and also the term “ 42 can be omitted unless v = 5 (mod 6).
Moreover, if v = s # 5 (mod 6),t = 0. And we have ¢, = 0 if n =
4 or 12 (mod 24).
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3 Complete solution for k = 4

In this section we prove Theorem 2. Observe first that there are two graphs on
4 vertices where the average edge weight is precisely 1, namely the 4-cycle C,
and the “paw” PW = K, — P3. We shall prove that every K,, admits a 4-
decomposition G\, . .., Gm where all the 4-vertex subgraphs (hence, by defini-
tion, all but possibly Gr) are 4-cycles or paws, and if (3) is not a multiple of 4
then G, is one of the graphs K3, P3, and K3. Note that also the edges of K3
have average weight 1.

Basic casesn = 2,3,4,6,8

Trivially, m = 1 and G; = K, forn = 2,3. It is also immediate that
K, is decomposable into PW and P;. For n = 6, obscrve that Kg — K3 is
decomposable into three paws. Indeed, we can distribute the three edges disjoint
from the deleted K3 among the three stars (of 3 edges each) incident to its vertices.

Finally, a PW-decomposition of K can be obtaincd by labeling the vertices
with 0, 1,2, 3,4, 5,6, 7and selecting the subgraphs G; with edge set {(7,9), (G, i+
1), (4,4 3), (z + 1,7 + 3)}, where addition is taken modulo 7.

A Cj-decomposition of K 2p,2q

This auxiliary decomposition of complete bipartite graphs will be needed for
recursive constructions below. We partition the two vertex classes into disjoint
pairs gi,...,gpand hy, ..., hy, respectively. Then the 4-cycles induced by g:Uh;
(1<i<p,1<j<q)decompose Kop oq.

The 2k — 2k + 8 construction

The following recursion settles all cases of n cven, by induction from n — 8
10 n. We view Kyi,s as the union of Kok, Kg, and Kak,g. Take any optimal
4-decomposition of K and of Kg, and decompose K2k, 8 into 4-cycles.

The 2k + 1 — 4k 4 1 construction

Assumc that an optimal 4-decomposition of Kokyi is available, where G,,
is onc of Cyq, PW, K>, P3, K3. Let V(Kge4y) = X UY U {z}. In either case,
we take a Cy-decomposition of the edge set joining X (o Y in the way described
above, with specified pairs g; and h,. Moreover, inside X U {z}and Y U {2}
we take optimal 4-decompositions. If G,, is one of C4 and PW, then an optimal
4-decomposition of K4k is already obtained. Otherwise some modifications in
the last graphs G, (X) and G, (Y') (the copies of G,,) are needed. In this case
we assume that G, (X)) and G, (Y') contain 2, and also that gy, b, are edges in
them if G,, = P;3.

If Gin = Ka, then G0 (X) U Gn(Y) = P3 that we can take as the last
subgraph in the 4-decomposition of Kqx4 ;. '
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If G,n = Ps, then G (X) U Gm(Y) together with the 4-cycle induced by
g1 U h, is isomorphic to Ks — P3, dccomposable into two paws.

If G, = Ka, then Gin(X) U Gm(Y') consists of two triangles incident to z,
decomposable into PW and Ps.

The 2k + 1 — 4k + 3 construction

Also here, let X and Y be 2k-element sets, now with three further vertices
z,y, z. Optimal 4-decompositions arc taken inside X U {2} and Y U {z}, and
C4-decompositions for the cdges joining X toY and also {z,y} to X UY. We
assume further that the copics Gm(X), Gm(Y) of Gm contain z, and that g1, hx
are edges in them unless G = K. The difference compared to the construction
for 4k + 1 is that now a triangle zyz is also auached (o z. Let F be the subgraph
formed by G (X) U Gm(Y) U zyz if G # P3,and if G, = P3 thenlet F' be
the same subgraph together with the 4-cycle induced by g1 U hi.

If G, = K>, then I is a triangle with two pendant edges, decomposable into
PW and Ps.

If G = Ka, then I consists of threc triangles incident to z, decomposable
into two paws and a K.

Finally, if G;n = P3, then F'is decomposable into two paws and the triangle
ZYz.

Starting from the basic cases, the thcorem follows by induction on n, applying
the recursive steps given above. o

4 NP-completeness

In this scction we prove Theorem 4.

The common property of all values k listed in Theorem 4, except for k =
(5) + 1, is that there is a unique k-edge graph Hj of minimum weight. In this
situation, a subproblem of finding sx(G) is to decide whether a graph G with
km edges admits an H-decomposition. This problem has been shown to be NP-
complete for every complete graph, by Holyer [6], settling the cases of k = BE
and for any graph containing a connected component with more than two edges,
by Dor and Tarsi [3], hence giving the solution for k = (5) — 1.

What remains 1o prove is NP-completeness for k = () + 1. An important
tool will be Holyer’s theorem that we recall here :

Lemma 1 [t is NP-complete lo decide whether a graph has a K -decomposition,
for everyt > 3.

We shall need the following stronger variant of this result.
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Lemma 2 The K,-decomposition problem remains NP-complete when restricted
lo regular graphs whose vertex degree is a multiple of t(t - 1).

Proof Let G = (V, E) be a general input graph, V = {v,,.. ., Un}. We may
assume without loss of generality that every vertex degree d(v;) is a multiple of
¢t — 1, because in graphs violating this divisibility condition the non-existence of
a K-decomposition is decidable in linear time. Let us choose a multiple D of
¢(t — 1), such that D > d(v;) forall 1 < i < n. We denote

D; = D —d(v), k,-=i.

t—-1

Let k£ = max k;.

We choose the smallest prime number p > k. Nole that p = k + o(k) as
k — co. jFrom the affine Galois plane AG(p, 2) we delete the p lines of a parallel
class, and also all the points of p — ¢ of those lines. The configuration obtained
is a resolvable Group Divisible Design with ¢ groups of size p each. A resolution
HiU---UH, is obtained from the parallel classes of AG(p,2).

(From the input graph G with n vertices, we are going to construct a larger
graph G* with ptn vertices v(3,5) 1 < i < n, 1 < J < pt). For each j,
let the vertex set {v(1,),...,v(n,j} induce a graph G(3) = G, where v(4, 5)
corresponds 10 v; under the isomorphism. On the other hand, to obtain the sub-
graphs [°(3) induced by {v(3,1),...,v(,pt)} for each i, we consider HGE) =
Hy U --- U Hy, and join two vertices v(4,5) and v(3, £) if and only if the jth
and Zth vertices of H(3) are contained in some block of H(?). Hence, F(3) is
D;-regular, and thus G+ is D-regular.

If G has a K,-decomposition, then so does G+, because the blocks of H(%)
decompose F'(z) while the G(5) inherit their decompositions from G. Also con-
versely, every K-deccomposition of G+ decomposes G, since any complete sub-
graph of G'* is entirely contained in some F. (2) or some G(3). Finally, the number
of vertices in G* is ptn < (1 + o(1))ktn < n3 + o(n?), and also AG(p, 2) has
an explicit polynomial-time construction, therefore G+ can be obtained from G
in polynomial time. (Instcad of searching for a prime, one may as well choose P
10 be the smallest power of 2 exceeding k.) °

Proof of Theorem 4 for k = (}) + 1. Let G = (V, E) be any input graph for
Lemma 2, with n vertices, regular of degree d, where d is a multiple of ¢(¢t — 1).
We construct a graph G+ = (V+, E*) by joining Rti—li pendant vertices of
degree 1 to each v € V. This G+ has R%F +n < n? vertices, i.e. its size is
polynomial in the size of G. The proof will be done by showing that G admits a
K-decomposition if and only if s, (G*) = ay |E*|.

Suppose first that sx(G¥) = ax |5*| holds. Then, in any k-decomposition
Gy,...,Gmof G*, cach pendant edge belongs to a distinct subgraph G; because
te =t+1,and (*;') +2 < kfort > 3. Conscquently, each G; containing a
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pendant edge is a K, plus onc edge. In those G, the number of edges of the initial
graph G is preciscly
nd t nd
—— /= e— = E
t(t—1)<2) 2 |21,

i.e. the entire edge sct of G is partitioned into complcte subgraphs of order ¢.
Suppose next that G has a K-decomposition. Consider any number h of the
K, in such a decomposition. Assuming that they span n’ vertices, the d-regularity

of G implies
¢ dn’
& —_—
h(Z) - 2

' t(t — l)
n 2 h——d—— N
therefore the total number of pendant edges attached to them is not smaller than h.
On applying Hall’s theorem we obtain that G* admits a H{-decomposition where
H is obtaincd from K, by autaching a pendant edge. Consequently, sx(G*) =
(¢77 |E+l <

5 Open problems

Below we mention some problems that remain open.

1. Determinc the time complexity of finding s,(n) where both n and k are part
of the input.

2. Prove that it is NP-complete to determine s,(G) for general input graphs G,
for every fixed intcger k > 3.

3. Find an asymptotically tight upper bound on the function

Rie(n) = max (sk(G’) - -12-akn2> .

IV(Cli=n

4. Describe a k-decomposition of K, constructively, such that the total weight
is asymptotically se(Kp).
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