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Abstract

The graph resulting from contracting edge e is de-
noted G/e. An edge e is radius-essential if rad(G/e) <
rad(G). Let ¢ (G) denote the number of radius-essential

. edges in graph G. In this paper, we study realizabil-
ity questions relating to the number of radius-essential
edges, give bounds on ¢-(G) in terms of radius, and or-
der, and we characterize various classes of graphs achiev-
ing extreme values of ¢.(G).
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1 Introduction

Let G be a connected graph with vertex set V(G) and edge set
E(G).The distance d(u, v) between vertices u and v is the length
of a shortest path (geodesic) joining u and v. The eccentricity
e(v) of v is the distance to a farthest vertex from v. Vertex u is
an eccentric vertez of v if d(u, v) = e(v). The diameter diam(G)
is the maximum eccentricity and the radius rad(G) is the min-
imum eccentricity among the vertices of G. The center C(G)
and periphery P(G) of graph G consist of the sets of vertices of
minimum and maximum eccentricity, respectively. Vertices of
C(G) are called central vertices, and those of P(G) are called
are called peripheral vertices. A radial path is a geodesic from
a central vertex to one of its eccentric vertices. An elementary
contraction of edge e = uv in G is obtained by removing u and
v, inserting a new vertex w, and inserting an edge between w
and any vertex to which either u or v (or both) were adjacent.
The graph resulting from such contraction is denoted G/e.

Definition 1 An edge e is called radius-essential (r-essential)
if rad(G/e) < rad(G); otherwise edge e is r-contractible.

In previous works, researchers have studied radius alteration
from the perspective of deleting edges (Gliviak [5,6 ], Dutton,
Medidi, and Brigham [4], Walikar, Buckley, and Itagi [12]),
adding edges (Dutton, Medidi, and Brigham [4] and Gliviak
[7]) and deleting vertices (Gliviak [5], and Dutton, Medidi, and
Brigham [4]; also see the excellent survey by Gliviak [8] for ad-
ditional references on vertex deletion problems).

Let c.(G) denote the number of radius-essential edges in
graph G, that is, ¢.(G) = {e € E(G) : rad(G/e) < rad(G)}.
It is clear from the definition that 0 < ¢.(G) < ¢, where ¢ is
the number of edges in G. In this paper, we study realizability
questions relating to the number of radius-essential edges, give
bounds on ¢,(G) in terms of radius and order, and characterize
various classes of graphs achieving extreme values of c.(G). An
analogous study was done by Walikar, Buckley, and Itagi [11]
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for diameter-essential edges, that is, edges whose contraction
decreases the diameter of a graph.

2 Existence and Bounds

In this section, we determine precisely when there exists a graph
G with given number of edges and given value of ¢.(G) .We
then obtain a tight upper bound for ¢,.(G) in terms of order and
radius.

First we need two definitions. Suppose that A and B are
graphs with u € V(A) and v € V(B). Then the coalition of u
with v is an identification of those two vertices so as to produce
a new graph G consisting of (A — u) U (B — v) together with
a new vertex w that is adjacent to all of the former neighbors
of u and of v. The most common instances of this operation
are the attachment of a pendant edge or, more generally, a pen-
dant path where one endvertex of the path is identified with
a specific vertex in some graph. As described in Buckley and
Lewinter [ ,p.75], the sequential join G1+Ga+- - -+Gy, of graphs
G1,Ga,. .., Gy is the graph formed by taking one copy of each
of the graphs Gy, Ga,...,G\ and adding additional edges from
each vertex of G; to each vertex of Gy, for 1 <i<k-1. Of
ten with sequential joins, one graph is repeated numerous times
at the beginning of a sum, at the end of a sum, or at both the
beginning and end of a sum. We need a shorthand notation for
these. Thus let G+* H be the sequential join G+G+- - -+G+H
where G appears k consecutive times; let H +; G be the sequen-
tial join H + G+ G + - -- + G where G appears k consecutive
times; and so G+*H+,Gis G+G+---+G+H+G+G+-- -+G
where G appears k times on each side of H. Let G, denote a
graph with ¢ edges, precisely n of which are r-essential.

To determine precisely when there exists a graph G with a
given number of edges and given value of ¢.(G), we need to be
able to quickly determine the value of ¢.(G).We also need to
construct infinite classes of graphs with ¢ edges and ¢.(G) = n
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where n is bounded by some function of ¢g. For small values of
g, graph tables as well as the following lemma will aid us.

Lemma 1 For any nontrivial connected graph G, if diam(G) =
2 rad(G) then ¢.(G) = 0.

Proof. Let G be a nontrivial connected graph with diam(G) =
2 rad(G). Then each central vertex v in G is on a diametral
path composed of two edge-disjoint paths of length rad(G). In
order to decrease the radius by edge contraction, an edge e must
be on a radial path. For any central vertex v let e be on a radial
path P and let P’ be an edge disjoint path such that P and P’
together comprise a diametral path whose endvertices are u and
w. By contracting e, the distance from v to one of u or w will
decrease by one, but its distance to the other vertex will remain
‘the same. Thus the eccentricity of any central vertex of G will
remain unchanged. Hence no edge of G is r-essential, that is,

cr(G) = 0. i

Theorem 1 For any pair of integers n and q where 0 <n < g,

. there exists a graph G having q edges such that c.(G) = n, except
forq=1,n=0,g=2,n=10r2,q=3,n=10r2;,q=4,
n=1or 8 andqg=6,n=3.

Proof. First, for each ¢ < 2, the connected graph is unique and
a path: ¢.(P) =c¢(P;)=0,and ¢,(P,) =1. Sog=1,n=0
and ¢ = 2, n = 1 or 2 are impossible. For the three connected
graphs when ¢ = 3: ¢ (K3) = ¢(Ki3) = 0 and ¢.(Py) = 3.
Thus ¢ = 3, n = 1 or 2 are impossible. For the five connected
graphs when ¢ = 4: ¢,(B5) = ¢.(K14) = ¢ (K, + K; + K,) = 0,
cr(Ky +2 K3) = 2, and ¢.(Cy) =4. Thusq=4,n=1or 3 are
impossible. When g > 5, we shall focus on the parity of n.
Case 1 (n is even, ¢ > 5). For n =0, use G40 = K, 4; for n =g,
use Ggq = Cy; for n = q — 1, let Ggq-1 be Cy_; with a pendant
edge; and for all other pairs g,n where n is even, ¢ > 5, let
Gq,n = K1 +n+1 I_{q_n.

212



Case 2 (nisodd, ¢ >5). Forn =1, use G, = Ko+ K, + K, +
K —y; for n = 3, let G5 3 be the graph having a pendent edge at
two distinct vertices of K3. Using a table of graphs, such as in
Buckley and Harary [1] or Read and Wilson [9], one can verify
that none of the twenty connected graphs with six edges has
precisely three r-essential edges. Thus Gg 3 does not exist, that
is, ¢ =6, n = 3 is impossible. Forn =3 and ¢ > 7, let G,3 be
the graph in Figure 1(a) if q is odd and Figure 1(b) if ¢ is even.

For n odd, ¢ > 5, and n > 5, use Ggq = Pyy4y; and for n < ¢,
let G, consist of the graph formed from the coalition of the
("one of the”, when n = ¢ — 1) center vertex of K, ,_, with a
vertex at distance two from an endvertex of P,.;. (See Figure

I(c).) 1

(n L2 (n=3) 5
(ax7) vertices (927) veftices
(g odd) (q even)

(a )

/_/R (n25)
:SI---: (HSQ)

e o o 0O—O
\W-—/

n+1 vertices

(¢
Figure 1

Theorem 2 FEvery graph G can be embedded in a graph H of
radius T such that ¢, (H) = 0.
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Proof. If G = K, then already ¢.(H) = 0 and there is nothing
to prove. For rad(G) =1, let H = K; + G. Then rad(H) =1
and no edge of H is r-essential, so ¢.(H) = 0. For rad(G) > 1,
let H = K, +" H +, K, the sequential join with K, appearing
r times on each side of G. Then diam(H) = 2rad(H), so by
Lemma 1, ¢,.(H) = 0. 1

Theorem 3 For any graph G, if ¢.(G) = 0, then each central
vertez v of G has at least two eccentric vertices that are joined
to v by edge-disjoint radial paths..

Proof. Suppose some central vertex v of a graph G with ¢,.(G) =
0 has only one eccentric vertex, say v". Then contraction of
any edge on a radial v — v'-path reduces the eccentricity of v
by one and therefore rad(G) by one, contradicting ¢.(G) = 0.
- Thus suppose that each central vertex has at least two eccentric
vertices. If some central vertex w has the property that no
two of its eccentric vertices are joined to w by edge-disjoint
radial paths, then for two of its eccentric vertices w' and w”,
all w — w' and w — w” geodesics have an edge e in common.
Then the eccentricity of w in G/e is one less than in G, so
rad(G/e) < rad(G), contradicting ¢.(G) = 0. Thus each central
vertex v has at least two eccentric vertices that are joined to v
by edge-disjoint radial paths. i

Note that the converse to Theorem 3 does not hold. For
example, the cartesian product G = P; x P, depicted in Figure
2(a) has central vertices u and v with eccentric vertices u; and
ug for u and v, and v, for v. There are edge- disjoint u —u; and
u—1uy radial paths and edge-disjoint v—v; and v—v, radial paths.
Nevertheless, ¢,(G) > 0. Indeed, rad(G/uv) = 2 < rad(G) = 3.
So edge e is r-essential. See Figure 2(b).

Theorem 4 For a tree T, ¢.(T) = 0 if and only if T has just
one central vertex.
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Proof. It is well known that a tree has either one or two central
vertices and if two, they are adjacent. Suppose that T has two
central vertices, say u and v. Then wuv is on every radial path in
T, r(T/uv) < 7(T), and ¢.(T) > 0. On the other hand, if T has
just one central vertex, then diam(T) = 2rad(T), so by Lemma
1, ¢(T)=0. |

U 1 "[2

uv

[ e = 4
’—?r—l
.——T’l-‘——?

G=P;x P, | G /uwv
Figure 2

~ What about the value of ¢.(T) for a bicentral tree? It is easy
to show that for a bicentral tree T' with g edges, ¢, (T) = q if
and only if T is a path. Furthermore, 1 < ¢.(T) < ¢, with all
integer values in the range achievable except that c.(T') # q—1
when rad(T') = 3. In fact, we have the following result.

Theorem 5 For a bicentral tree T, edge f is r-essential if and
only if f is on every diametral path.

Proof. Let T be a bicentral tree with central vertices u, and
up. We know that diam(T) = 2rad(T) — 1.

(=) Let edge f be r-essential in T. Then suppose that some
diametral path P with end-vertices z and y in T does not contain
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f. Since every diametral path contains the center, the distances
from u; and uy to x and y are unchanged in T/f. Thus f is
not r-essential, a contradiction. Hence every diametral path in
T contains each r-essential edge.

(«) Suppose that edge f is on every diametral path in bicen-
tral tree T. Then diam(T/f) = diam(T) — 1 = 2rad(T) - 2. So
T/ f is unicentral, and in a unicentral tree the diameter is twice
the radius. Thus diam(T/ f) = 2rad(T/ f) = 2rad(T")—2, which
implies that rad(T/f) < rad(T). Hence edge f is r-essential. 1

Note that Theorem 5 cannot be extended to graphs in gen-
eral. For example, in the cycle Cg, every edge is r-essential, but
no edge is on every diametral path. We now proceed toward
obtaining a bound on ¢.(G) in terms of its order and radius.
A composition of a positive integer n is an ordered partition
(ay,a,...,a;) where a; € N and a; + a2 + -+ + a; = n. Note
that (2,5,6) and (6,2, 5) are distinct compositions of 13. The
terms a; are called parts. In [11], we proved the following.

Lemma 2 Letn be a positive integer wheren > 2. Then among
all compositions of n into at least two parts, the one that mazxi-

mizes S = Y51 a; - a;4, is the composition ([n/2], |n/2]).

Theorem 6 For any nontrivial graph G of order p and radius
r, the number of r-essential edges is bounded as follows:

(1) e(Q) =1 G =K,

(2) ¢+(G)=0ifr =1 and G # K,

(3) e(G) = 2[p/21|(p — 2)/2| if r =2, and

(4) c(G) = [(p—2r +2)/2)[(p— 2r +2)/2] +p—1 if r > 3.

Proof. When r = 1, an edge e is r-essential if its contraction
makes rad(G/e) = 0. This only occurs when G = K,. So for
r=1, ¢,(G) =1 if G = Ky, and ¢,(G) = 0 otherwise.

Now suppose that r = 2. When p is even, we maximize ¢.(G)
with K, — (p/2)K>, that is, K, minus a pefect matching. All
edges are r-essential. We can do no better since if any vertex had
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an additional adjacency. then rad(G) would be 1 not 2. Graph
K, — (p/2)K2 has (§) — p/2 = p(p — 2)/2 edges, s0 ¢:(G) =
p(p — 2)/2. When p is odd, we use H = K, — ((p — 1)/2) K
together with an additional vertex v joined to all but one of
the vertices of H. Call the resulting graph G. Graph G has
the maximum possible number of edges among graphs of radius
2 when p is odd. All edges except the edge joining the two
vertices at distance two from the vertex of degree p —3 in G
are r-essential. Graph G has (’2’) —(p+1)/2=(p*-2p—1)/2
edges, so

er(G) = (P’ —2p-1)/2-1=(p+1)(p—3)/2.
Since both p(p — 2)/2 (when p is even) and (p + 1)(p — 3)/2
(when p is odd) equal 2[p/2][(p — 2)/2], we can consolidate the
two cases.

Finally suppose that r > 3. As in the even case of r = 2,
we maximize c¢.(G) with each central vertex having a unique
eccentric vertex. Then by contraction of an edge f on any radial
path from a central vertex v, e(v) will decrease, rad(G/f) <
rad(G) and f is r-essential. However, here the graph needed is
more complex. Start with the sequential join

H = K1+ K(p-ars2)/2) + K|p-2r+2)2) Ti-1 K1.

By Lemma 2, this construction will maximize the number of
diametral paths (see [11]). To maximize the number of radial
path, we add one additional edge, which does not change the
radius. Let G be the graph formed from H by joining the two
vertices of degree 1 by an edge. Then rad(G) = r, each edge of
G is r-essential and for all e € E(G) either e is not r-essential
in G+eorrad(G+e)#r.
Thus
e(G) = [(p—2r+2)/2]l(p—2r +2)/2]
+{(p—2r+2)/21 + [(p—2r+2)/2[ +2r -3
= [(p—2r +2)/2]l(p—2r +2)/2]
+p—2r+2+4+2r-3
= [(p—2r+2)/2lp—2r+2)/2) +p—1. |
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Graph G is displayed in Figure 3 for r = 4 and p = 13.

G = K, +3 +K, + K3 +3 K, with an extra edge.
Figure 3

Finally, we close with a result that shows that there are
graphs for which ¢,(G) = 0 whose periphery does not inter-
sect the set of eccentric vertices of central vertices. Let EC(G)
denote the set of eccentric vertices of the central vertices. Thus
EC(G) = {v € V(G) : d(v,u) = r(G) for some u € C(G)}.

Theorem 7 Forr > 4, there exists a graph G of radius r where
¢(G) =0 and P(G)N EC(G) = 0.

Proof. Let G be the graph displayed in Figure 4. Then C(G) =
z, P(G) = {21,2}, and EC(G) = {y,y2}. Contraction of an
edge on a radial  — y; path does not alter e(z), nor does the
contraction of an edge on a radial z — y, path. Since those paths
are the only ones that could decrease the radius, ¢.(G) =0. |
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