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Abstract

We provide tables which summarize various aspects of the finite
linear groups GL(n,2),n < 7, in their action upon the vector space
Va = V(n,2) and upon the associated projective space PG(n —1, 2).
It is intended that the tabulated results should be immediately acces-
sible to finite geometers, and to all others (design theorists, coding
theorists, ... ) who have occasional need of these groups. In the case
n = 4 attention is also paid to the maximal subgroup I L(2,4). In the
case n = 6 the maximal subgroups I' L(2, 8) and "' (3, 4) are treated,
as are class aspects of the tensor product structure Vg = V2 @ V3, and
of the exterior product structure Vg = AV;.

1 Introduction

We use V;, = V(n,F) to denote an n-dimensional vector space over a field
F. If F is a finitc ficld GF(q), and so Vi, = V(n, ¢), the gencral lincar group
GL(V,,) is a finite group, denoted GL(n, ¢). In fact, from section 3 onwards,
we specialize to the case g = 2. If one is investigating an area of finite geom-
etry, or of design or coding theory, where the base field is GF(2) then one is
quite likely to requirc particular facts concerning the clements of onc of the
finite groups GL(n,2). The main aim of the present paper is to make readily
accessible (even to the non-expert) such facts for the finite group GL(n,2),
acting upon V(n,2), or upon the associated projective space PG(n — 1,2),
in the cases 2 < n < 6. See especially the material displayed in tables 1 - 5§
in section 3. In these tables the rows refer to the different conjugacy classes
of the group, the number of distinct classes of GL(n,2) being 3, 6, 14, 27,
60 according as n = 2,3,4,5,6. The columns in these tables convey infor-
mation concerning such things as power maps, characteristic and minimal
polynomials, fixed points, cycle type and centralizers. For a description of
this information scc scction 3.
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In appendix A.2 we also provide information, see tables 6, 7, concerning
certain maximal subgroups of GL(n,2), namely the maximal subgroups
T'L(2,4) of GL(4,2), and I" ,(3,4), I'L(2,8) of GL(6, 2). In the cases n =4
and n = 6 we further provide, sce theorems 2, 3 and 4 in appendix A.1, class
information surrounding the tensor product and wedge product structures
Va=Ve@ Vo, V=12 ®@ V3 and Vs = Vg AV,

Concerning the tables in section 3, it seems to us that information about
fixed points and cycle types, for elements of GL(n,2) acting upon PG(n —
1,2), is especially useful. Such information was certainly needed at several
stages in the course of the classification, see [6], of all the partial spreads in
PG(4,2). For example, if a partial spread S, of r lines of PG(4,2) is cyclic
— that is if there exists A € GL(5,2) of order r such that S, is of the
form {A, A()), ... A""1())} for some line A of PG(4,2) — then it is clearly
necessary that A, in its action upon PG(4, 2), should have at least three
cycles of length r. Upon glancing at table 4 in section 3 we immediately
deduce that no cyclic Sy exists, and that in attempting to construct a cyclic
S one must use an element A € GL(5,2) of class 6B and not of class 6A.
Using such an element A one quickly checks that a cyclic Sg in fact exists,
see [13, equation (3.2)]; it is allocated to the GL(5,2)-orbit VIa.l in [6,
Table B.2].

As a second example, consider the problem of classifying the r- dimen-
sional normalized linear sections, denoted NLS,(n, g)’s, of GL(n, g). (Such
a section is, by definition, an r-dimensional subspace of the n2-dimensional
vector space End(n, g) which contains the identity element I, € GL(n,q)
and is such that every non-zero element lies in GL(n, g).) This classification
problem was posed in [5], but was solved, for n > 2, only in the cases of
GL(3,2) and GL(4,2). It is easy to see, [5, Lemma 2.1], that each element
A of an NLS,(n, q), other than the scalar multiples of I,,, must be fixed-
point-free upon the points of PG(n — 1, q). Thus, see table 3, the elements
of an NLS,(4,2) must be drawn solely from the classes 1A, 3A, 5A, 6A
and 15A,B of GL(4, 2) and, see table 4, the elements of an NLS,(5,2) must
be drawn solely from the classes 1A, 21A,B and 31A-31F of GL(5,2). See
section 4.2 below for a few more details.

We think of the present paper as one of the EBUM genre: papers which
contain Elementary But Useful Mathematics. It seems to us that, far from
being despised, certain EBUM papers should be welcomed!— namely those
which summarize material, albeit of an ‘elementary’ end ‘well-known’ na-
ture, which is nevertheless difficult and time-consuming to extract from the
research literature. For we believe that progress in a promising area of
advanced research is all too often delayed, because the authors have to
spend precious time digging out, or developing ab initio, certain not-readily-
accessible EBUM material.
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2 General considerations

Just for the moment we work over a general base field F, and for V,, =
V(n,F) we consider the n?-dimensional vector space End(Va) = L{(Va, Va)
consisting of all linear mappings of V,, into V,,. Take note that Erd(V},) is
in fact an associative algebra over F, of dimension n2.

Given A € End(V,), B € End(V;) we use {4, B] to denote the set of

linear maps T : V,, — Vi which intertwine A and B (in that order!):
[A,B] = {T € L(V,, Vi) | TA = BT}.

The intertwining space [A, B} is a vector subspace of the nk-dimensional
vector space L(V,, Vi.). Two elements A, B € End(V,,) are said to be similar
whenever [A, B] contains a nonsingular mapping T, in which case we write
A~ B. The commutant [A] of A € End(V,) is defined to be [4] := [4, A],
and we denote by 24 the subset of End(V;) consisting of all polynomials
in A over F. Observe that we have the subalgebra inclusions

A4 C [A] € End(V,). (1)

If the (monic) minimal polynomial p, € F(t} of A € End(V,) has degree m
then the subalgebra 4 has dimension m, with {1, 4, ..., A™~1} a basis.
Of course we have m < n = dimV,, = degx,, where x4 € F[t] is the
characteristic polynomial of A. (Recall that p, divides x 4; moreover p 4
and x 4 share the same irreducible factors, although in general with different
multiplicities.)

If A,B € GL(V,) then A ~ B if and only if they belong to the same
conjugacy class of GL(V;). The centralizer {X € GL{V,,) | XA = AX} in
GL(V,,) of an clement A € GL(V;,) is denoted C(A). Note that we have the
subgroup inclusions

(4) C C(4) € GL(Va), )

where (A) = Z,, r = order of A.

A subspace V, C V, is invariant under the action of A € End(V,)
if Av € V; for all v € V.. Given e € V the subspace W = 4e, which
is spanned by the vectors A%e, s > 0, is an example of an A-invariant
subspace; such an invariant subspace is termed the cyclic subspace for A
generated by the vector e. If A4e =V, then the vector e is termed a cyclic
vector for A.

If there exists a non-zero proper subspace V. C V,, which is invariant
under the action of A € End(V;,) then A is said to be reducible. If V,, admits
a non-trivial direct sum decomposition V;, = V,. @ V, where both V, and V,
are A-invariant, then A € End(V,,) is said to be decomposable, and we write
A=A, ® A, where A, and A, are the restrictions of A to the subspaces
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V, and V. Here, and often below, we use lower indices attached to a linear
mapping to indicate the dimension; thus A, By, Jp, Sy, ... € End(V;). The
identity mapping is denoted I,,. (However Z,, and D,, will denote the cyclic
and dihedral groups of the indicated order.)

Consider an element N,, € End(V,.) which is nilpotent of index n, sat-
isfying (N,)"™ = 0 and (N,)""! # 0. The minimal and characteristic poly-
nomials of N = N, are uy = xy = t". Choosing e; € V, such that
Nn—le;, #£0, then e, is a cyclic vector for N: ife; = N*~ley, i = 2,3, ...,n,
then {e, ...,en} is a basis for V,, upon which the effect of N, is ) — ey —

— e, — 0. Then J, := I, + Ny, is an element of GL(V;) which is
unipotent of index ». In matrix terms, relative to {ey, ...,e,} as basis, J,,
is a Jordan matrix of size n with 1’s down the main diagonal:

1 0

1 1 1 0
Jo = . . =I,+ Np,, where N,=

1 1 1 0
(3)
Throughout we will reserve the notations N, and Jy, = I, + J;, for elements
of End(V},) of the preceding kind.

See [4, Section 2.2] for a collection of relevant results for linear mappings
of V;, which hold for a general base field F. In particular it is there demon-
strated that one may adopt a somewhat unorthodox choice for the form of
the indecomposable “blocks” B which occur in the classical canonical form
for an element 4 € GL(V,), namely

B=J,®Cy4, satisfying up = xp = (xg,)"*s 4)

where J, = I, + N, € GL(V,) is as above and C; is an irreducible element
of GL(V;). Besides being economically expressed, the choice (4) has the
virtue of being matrix-free; moreover it is also helpful, cf. [4, Lemma 3.9],
in the calculation of centralizers.

We will have frequent recourse to [4] as the main fall-back reference for
material omitted from the present paper. In particular, suppose now that
the base field is finite: F = GF(q) for some prime power g; then consult
(4, Scction 3] for a collection of results relevant to the determination of
canonical forms for elements of GL(n, g). Of crucial importance is the fact
that the finite group GL(n,q) always possesses Singer elements, that is
elements S € GL(n, ¢) whose order o(S) is g* — 1. For any Singer element
S € GL(n, q) one can show that:

(i) Ag is a field = GF(¢"), with S a primitive element;

(ii) S is irreducible and xg is irreducible;

(iii) S permutes the ¢" — 1 nonzero vectors of V(n,q) in a single cycle;
(iv) if A = S" # I then A is fixed-point-frec on V(n,q) \ {0}.
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In each dimension k£ < n, let us choose a Singer element S; € GL(k,q)
and, for 2 < k < n, let us also choose a unipotent element Ji. € GL(k, g) of
index k. It is demonstrated in [4, Section 3] that:

representatives for each conjugacy class of GL(n, g) can be sim-
ply constructed solely from the 2n~1 elements {Sy, ..., Sp; Ja, ... Jn}.

The construction merely involves:
(i) forming ordinary powers, see [4, Section 3.1}, of the Si;
(ii) forming tensor products, cf. (4), of a J,, with ordinary powers of an S;
(iii) taking direct sums of elements of the kinds (i) and (i).

For the number of conjugacy classes of GL(n, q), and for material of a
more advanced nature, see [3], [7], [9], [14].

3 Tables for GL(n,2), n=2,3,4,5,6

From now on we specialize to the case ¢ = 2. In the following we summarize,
see tables 1. 2, 3, 4 and 5a,b, information concerning the groups GL(n, 2),
for n taking the values 2,3, 4,5 and 6, respectively. The rows of the tables
refer to the distinct conjugacy classes of the group, and for each class we
display a representative element of the kind described at the end of the last
section, and also the associated characteristic and minimal polynomials x
and p. The latter are given in terms of the following irreducible, see 8,
Ch.10], polynomials f4,g4, ... in GF(2)[t] of degree d < 6 :

d<2: fAi=t+l(=f); h=2+t+1(=f)
d=3: fi=t34t+1, fa=3+1>+1;
d=4: fo=t'+t+], a=s'+82+L =+ +2+t+1(=d);
d=5: fo=t"+12+1, fo=34+341 g=t"+t+3+¢+1,

G= 4+t P4t +]; R =+t P+ 2+, b =+ 12141
d=6: fo=t°+1"+1, fo=t"+t+1; ga=t*+ 3+ +1+1,

Go=t"+t°+t'+t+1; he=+1*+ 3 +141, he =10+ P+ 2 +82+1;

ko=t®+t' + 2+t 41, ke =t +®+ 0 4824+ 1 lg=18 + 3 +1 (=)
Here we have set fd(t) ;= t4f4(t™"). (If A € GL(d,2) has characteristic
polynomial f4 then A~! has characteristic polynomial fd.) In the tables, in
order to save space, we abbreviate a paired entry such as ()2 fs, (f1)2/s
by (f1)2fa & (").

For 2 < n < 6 the labels given to the classes are as in [2]. For a class in
GL(n, 2) with representative A, the length | GL(n, 2)|/|C(A,)| of the class
is found once the centralizer order |C(A,)| has been determined. (However
since the class 2A in each of our tables consists of transvections its length,
namely (2" — 1)(2"~! — 1), is more easily determined directly, as in [4,
Lemma 4.2].
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In the column headed “F.p.’s” we indicate the fixed points of a repre-
sentative A, of a class of GL(n,2) in projective language, that is in terms
of the natural action of GL(n,2) upon the projective space PG(n — 1,2)
(which last may be identified with V;, \ {0}). Thus if the vectors fixed by
A,, form a Vs, this is reported in the table as the existence of a line of fixed
points. If there are no fixed points, we indicate this by an entry f.p.f. (=
fixed-point-free).

The column headed “Cycle type” refers to the permutational action
of A, € GL(n,2) when acting upon PG(n — 1,2). (The cycle type is
readily computed and is of considerable use, see for example section 4.1.)
By way of illustration, consider the permutational action of the element
Ay = S, @ Jo, € GL(4,2) of class 6B (see table 3) upon the 15 points of
PG(3,2) = V4 \ {0}. In projective terms a decomposition V4 = Vo ® V;
determines two skew lines in PG(3,2), and S acts as a 3-cycle on one line,
and J» as a 2-cycle on the other line. It follows that A4 acts as the product
of one 6-cycle, two 3-cycles, one 2-cycle and one l-cycle (fixed point) on
PG(3,2). We will accordingly record the cycle type of A4 on PG(3,2) as
61322111, and use a similar notation for general elements of GL(n, 2).

In tables 3, 4 and 5a,b the column headed ‘(Class)?’ gives power map
information, see [2, Scction 7.3]. For an element A € GL(n, 2) of composite
order r it is of interest to know the class of AP for those primes p which
divide r. In many cases the required information is readily obtained from
the representative column of the tables. For example class 21B of GL(6, 2)
has, see [4, Eq. (5.11)], representative A = S, ®S; ", and so A® = L ® 5§ ~
I,®8S; is, see table 5a, of class 7A; thus (21B)3 = 7A, and similarly (21A)3 =
7B. In some cases such power maps may be obtained by using the cycle type
column. For example, class 8A of GL(6,2) has, see table 5b, representative
A with CT(A) = 8492213, whence CT(A?) = 482!%217, which cycle type
is peculiar to class 4B; thus (8A)? = 4B. However in the case of A € class
8B of GL(6,2) we have CT(A) = 854321}, and so CT(A?) = 4122513, but
this last cycle type is shared by classes 4C and 4E. The ambiguity is easily
resolved: for since pu, = (t +1)% = (t2 +1)?, it follows that u 42 = (¢t +1)3,
which is the minimal polynomial for class 4C, but not for 4D; so (8B)? =
4C. In the second columu of tables 3, 4 and 5a,b we provide the power map
information in all cases where the order is composite, the prime divisors of
the order being taken in the order p < ' < p” < ... Thus, in table 5b, the
entry BAC for class 30B conveys the power map information (30B)? = 15B,
(30B)® = 10A and (30B)° = 6C.

For information on the Singer elements of GL(5,2) and GL(6,2), and
on their powers, see [4, end of Section 4].

The centralizer information in the tables was obtained as in [4]. In this
connection it should be pointed out that the tables 1 - 5 in [4] contain an
extra ‘Notes’ column with specific references.
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Table 1. Aspects of the linear group GL(2, 2)
Class Reptve. x u F.p.’s Cycle type C(A) [C(A)] Length
1A I (1)? A line 13 GL(2,2) 6 1
2A Ja () (A)? point 2'1! (o) = 2, 2 3
3A S2 f2 f2 fpf 3 (S2) = 23 3 2

Table 2. Aspects of the linear group GL(3, 2)
Class Reptve. x M F.p.s Cycle type C(A) |C(A)] Length
1A Iz (hye A plane 17 GL(3,2) 168 1
2A Loh (A)P (A) lme 2218 Dy 8 21
3A S:®h  fife fifs point 31! Z3 3 56
A Js (1) (H)® point 4’217 A 4 42
7A S3 fs fs fpf 7 Zy 7 24
7B S;! f3 fs fpf. 7! Zq 7 24




0c

Table 3. Aspects of the linear group GL(4,2)
Class (Class)”? Reptve. X U F.p.’s Cycle type C(A) [C(A)] Length
1A I Hr A PG(3,2) 1% GL(4,2) 20,160 1
2A Lol ()Y (AP plane 2417 [4, Lemma 3.8] 192 105
2B Lol (H) (fr)? line 263 [4, Eq. (5.3)) 96 210
3A S208 ()} [ f.p.f. 3% GL(2,4) 180 112
3B S0 (A)f2 Hfe line 343 Z3 x GL(2,2) 18 1120
4A A JBoh (Hh) (H)? line 422213 {4, Eq. (3.19)] 16 1260
4B B Ja () (h)! point 432111 [4, Eq. (2.10)) 8 2520
5A (51)% 94 94 fp.f. 53 (S4) = Z1s 15 1344
6A AB J2 ® Sz (f2)? (f2)® f.p.f. 623! Z3 x (Z2)? 12 1680
6B BA Se@J.  (A)Yfa (fi)’f2 point 613221 Z3x Z2=12s 6 3360
7A Ss&h  fifs ffs point 7?1 Z7 7 2880
7B S;'enh ffs Afs point 721! Z7 7 2880
154  AA Sa fa fa fp.f. (15)* Z1s 15 1344
15B  AA S;1 fa fa f.p.f. (15)! Z1s 15 1344
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Table 4 Aspects of the linear group GL(5, 2)
Class  (Class)’ Representative x u F.p.'s Cycle type IC(A)|__Length |
1A Is (f)® fi PG(4,2) 1* 9,999,360 1
2A L@l (h)° (£1)? PG(3,2) 281 21,504 465
2B J®J2® 1 (fr)® ()2 plane 21217 1,536 6,510
3A S201s (1)%f2 Fife plane 3817 504 19,840
3B S:@S:05 f(f2)? fifa point 310y 180 55,552
4A A Js@ I (f2)® (h)? plane 442417 384 26,040
4B A J®J2 (f1)° (H)® line 449813 128 78,120
4C B Y (f)° (f) line 489213 32 312,480
5A (Sa*eh Ngs fi0s point 581} 15 666,624
6A AA S20h0h (f1)%f2 (f1)%f2 line 62342218 24 416,640
6B BB (2®82)®h  fi(f2)? fi(f2)? point 6*3%21! 12 833,280
7A.B Sf'en (1)2f2& (") fifs&() line 7413 42 238,080
8A B Js (f1)% (1)® point 824321 1! 16 624,960
12A AA S ®J; (f1)3f= (f1)3fa point 1216 41322 17 12 833,280
14A,.B AAAA SP'e s (f1)°f:&(7) (h)’f:&(") point 14} 7221 1! 14 714,240
15A,B  AB,AB Si’ ®h fifa& (%) ffi&() point 15%1! 15 666,624
21A,B BA,AA SP'e®S: fofs & (%) fofa& (%) f.p.f. 211 7' 3! 21 476,160
31A,B Ss, St fo, fs fs, Fs fp.f. 31! 31 322,560
31C,D (Ss)°, (Ss)™°  gs, 95 gs, 95 fp.f. 31! 31 322,560
31E,F (55)%, (S5)° ks, hs hs, hs f.p.f. 31! 31 322,560

Remark. In some cases the structure of the centralizer C(A) is immediately deduced from the Representative column.
Thus for classes 7TA,B we have C(A) =2 Z7 x GL(2,2), and for classes 21A,B we have C(A) & Zy X Z3 = Z7.
In other cases much more work has to be done. See [4, Table 4] for more information.
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Table 5a. Aspects of the linear group GL(6,2): elements of order < 8
Class (Class)” Representative X u F.p.’s Cycle type |C(A)] Length
1A Is (f)® h PG(5,2) 1% | GL(6,2)| 1
2A Li®J ()8 (h) PG(4,2) 2'°1% 10,321,920 1,953
2B Lokl (fH)® (f)? PG(3,2) 2*1%® 147,456 136,710
2C 06 J2 (f1)® (h)? plane 2%817 86,016 234,360
3A 52885085 (f2)? f2 f.p.f R 181,440 111,104
3B I.®S; (1) f2 Al PG(3,2) 311 60,480 333,312
3C I®S:8 85 (f1)%(f2)? fife line 3203 1,080 18,665,472
4A A L®Js (f1)® h)? PG(3,2) 4%2%1" 43,008 468,720
4B A LeJ2®Js (f1)® h)° plane 4821717 2,048 9,843,120
4C B J3®Js (f1)8 (f)® line 4122813 1,536 13,124,160
4D B I.®Js (f)® (f)* plane 4129417 768 26,248,320
4E B J2® Js (f1)® (f)? line 4122613 256 78,744,960
5A I, ®(Ss)? (f1)%94 frgs line 51213 90 223,985 ,664
6A  AB S2® (J2 ® S2) (f2)° (fa)? f.p.f. 68 3° 576 34,997,760
6B BA LO®L®S: (h)*f2 (h)2f2 plane 643%2¢17 576 34,997,760
6C CA OS85 (f1)2(f2)? (f1)%f2 point 6°3°2' 1! 360 55,996,416
6D BB @05 (f1)*f2 (f1)’f2 line 65342%13 288 69,995,520
6E CcB L®(®S:) ()2 (f2)? h(f2)? line 68341° 72 279,982,080
6F cc Jo & (J2®S2) (f1)2(f2)? (f1)*(f2)* point 69322'1? 24 839,946,240
7A.B S35, S5l @St ()% (R faufs fo.f. 7° 3,528 5,713,920
7CD 1508, 057" (h)°f (W)Fs fifs, fifs plene TV 1,176 17,141,760
7E S: @S5} f3fa fafs Lp.f. 7 49 411,402,240
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Table 5b. Aspects of the linear group GL(6, 2): elements of order > 8
Class (Class)? Representative X u F.p.’s Cycle type |C Length
8A B L oJs (7)Y (h) line  8°4%2%71% 64 314,979,840
8B c Js (f1)° (H)° point 8843211} 32 629,959,680
9A A (Se)” Is ls fpf 97 63 319,979,520
10A AA J2 @ (Ss)? (f1)*9s (f1)%gs point 10%5%2!1! 30 671,956,992
12A AC J3® Sa (f2) (2)? fp.f  12623! 48 419,976,960
12B BA LoS:dJs (f1)%f2 (f1)3f line 1226242342213 48 419,976,960
12C DD S20Je (f1)'f2 (fH)f2 point 12%6!'4%322'1' 24 839,946,240
14AB AC,BC /2®S3 J2®8;" ()% ()2 (f2)% (=) fpf 1487 56 359,976,960
14C.D CA,DA L& hoSH (1Y & () (f1)’f:&(7) line 14274221 56 359,976,960
15AB  AC,AC L5 ®S, LoSs;’ (1) fa& (") Afs&(") line  15%1° 90 223,985,664
15C AB S2 @ (S54)3 f294 Jaga fpf  15%5%3! 45 447,971,328
I5DE  AAAA  5: 05, 5:085;! S2fa& (%) fafi& (") fpf 1543 45 447,971,328
21A,B  BA,AA  (Ss)~3,(Se)® ks, ke ke, ke fpf  21° 63 319,979,520
21C,D DB,CB I ® 5@ S%! HFf&() fHf2fs&(7) point 21272321 21 959,938,560
28A.B CA,DA J308s, Js®S;! (F1)f&(C) (Hh)fs& (") point 28'14'724%2'1' 28 719,953,920
30A,B AAC,BACL:© S, J: ® 5! (A1) fe& (") (f1)%fa& (") point 30'15%22'1? 30 671,956,992
31A..F hoSs,....h®(Ss)° fazs, izs _ fzs, fids point 31217 31 650,280,960
(see table 4) (ws = fs.Gs,hs)
63A,.B  BA,AA S, S5t fo, fo fo. Jo fpf 63 63 319,979,520
63C.D  BAAA  (S6)>, (S6)° g6, Jo g6, go fpf 63 63 319,979,520
G63E,F BAAA  (Ss)', (Ss)~ " he, he he, hes fpf 63 63 319,979,520




4 Further remarks

4.1 Cycle type

The tables show that the following result holds: given A, B € GL(n,2), 2 <
n < 6, then

A~B <= CT(A)=CT(B)and p; = pg, (5)

where CT(A) denotes the cycle type of A € GL(n, 2) in its natural action on
PG(n—1,2). Indeed in many cases the cycle type alone suffices to distinguish
between the classes — which is useful since the cycle type of an element
is easily determined. For example, from table 5a, we see that the cycle
type alone distinguishes between the six classes of elements in GL(6,2)
which have order 6. In fact, with two exceptions, given only that CT(A) =
CT(B), where A,B € GL(n,2), 2 < n < 6, it follows that A is conjugate
to B", for some r. The two exceptions arise for n = 6 : (i) classes 4C and
4E of GL(6, 2) share the same cycle type 4'2261%; (ii) classes 7A,B and 7E
of GL(6,2) share the same cycle type 7°.

4.2 F.p.f. elements and linear sections of GL(n,2)

For certain purposes — see below for an example — it is of importance to
know the f.p.f. classes of GL(n, 2). Now, see [4, Theorem 3.5(iv)], any power
8" # I of a Singer element S € GL(n, 2) is fixed-point-free on PG(n—1,2).
In the case of GL(4,2), the f.p.f. classes 3A, 5A and 15A,B arise from the
Singer elements and their powers, and, see table 3, there is only one further
f.p.f. class, namely class 6A. In the case of GL(5,2), the Singer elements
give rise solely to the f.p.f. classes 31A-31F, and, see table 4, there are just
two further f.p.f. classes, namely classes 21A and 21B.

A far richer supply of f.p.f. elements is available in the case of GL(6, 2).
First of all the Singer elements and their powers provide us with twelve f.p.f.
classes, namely classes 3A, 7A,B, 9A, 21A,B and 63A-63F. Secondly, see
tables 5a and 5b, there exist cight further classes of f.p.f. clements, namely
classes 6A, 7E, 12A, 14A B, 15C and 15D,E.

In [5] the problem was posed of classifying the r-dimensional normalized
linear sections, denoted NLS,(n, g)’s, of GL(n,q). (Such a section is, by
definition, an r-dimensional subspace of the n?-dimensional vector space
End(n, ¢) which contains I, and is such that every non-zero element lies in
GL(n, q).) It is easy to see that r < n, and that r = n is achieved by use of
a Singer cyclic subgroup & Zg«_,. Also, [5, Lemma 2.1], each non-scalar
element A of a NLS,.(n,q) must be f.p.f. upon the points of PG(n — 1,q).
The classification problem was solved in the case of GL(4,2), and it was
found that, up to an appropriate notion of equivalence, there are just two
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classes M3, Mj of maximal NLS3(4,2)’s and three classes My, M}, MY,
of NLS4(4,2)’s. The existence of the class M3 is, see [12], related to the
existence of “7-clusters” in Alt(7), and any linear section § € M3 has the
property that all six clements of S \ {0, I} belong to the non-Singer £.p.f.
class 6A of GL(4,2).

Concerning GL(5, 2), observe that A € GL(5,2) is of class 21A (class
21B) according as I + A is of class 21B (class 21A). (This follows from
A = S3 ® Ss, since a corresponding property holds for elements S3 and
I3+ S; of the classes TA and 7B of GL(3, 2).) Consequently all NLS;(5, 2)’s
of the kind {0, I, A, B} with o(A) = o(B) = 21 are conjugate in GL(5, 2).
Such a NLS;(5,2) is not maximal. Indeed we have found, using MAGMA
[1], that for r = 3,4 and 5 there exist maximal NLS,.(5,2)’s whose elements
# 0, I all belong to the non-Singer f.p.f. classes 21A,B.

The classification problem for maximal NLS,(n,2)’s is still open for
dimension n > 5. In the case n = 6, granted the afore-mentioned rich
supply of f.p.f. elements present in GL(6,2), the existence of very many
inequivalent kinds of maximal NLS,.(6,2)’s seems likely.

Remark 1 In the case of the real field F =R, the marimal dimension r
for a linear section NLS,(n,R) of GL(n,R) is known for all values of n.
See e.g. {10, after Theorem 13.68]. Of course r = 1 when n is odd, since
then det(A + AB) = 0 always has a real root. A few sample values are:

n= 4 5 6 8 10 16 24 32 40 60 64 126 128 130 2048
r= 4 1 2 8 2 9 8 10 8 4 12 2 16 2 24

While the proof of mazimality is very tough, the attainment of these maxi-
mal values of m i3 easily achieved, granted a knowledge of the table of real
Clifford algebras, cf. [10, Table 13.26]. Incidentally finite geometers are not
always aware of the fact that the table of real Clifford algebras can be given
a finite geometry derivation! See (12, Section 2.1] and [11].

A Appendix: further aspects

A.1 Tensor product and exterior product aspects

We may view V; as a tensor product V2 ® Va, and we may view V; not only
as a tensor product V2 ® V3 but also as an exterior product A2Vj;. Class
aspects of these three product structures are described in the following three
theorems. See [4] for their proofs.

Theorem 2 An element A € GL(4,2) can be ezpressed in the form A =
B®C, for B, C € GL(V3), if and only if A belongs to one of the following
classes in table 8: 1A, 2B, 3A, 3B, 6A.

25



Theorem 3 An element A € GL(6,2) can be ezpressed in the form A =
B®C. for B € GL(V2), C € GL(V3), if and only if A belongs to one of the
following classes in tables 5a, 5b:

1A, 2B, 2C, 84, 3C, 4C, 4E, 6A, 6F, TA,B, 12A, 14A,B, 21A,B.

Theorem 4 Under the injective mapping GL(4,2) — GL(6,2) : A4 —
A2Ay the 14 classes of GL(4,2) in row 1 of the following table are mapped
into 11 of the classes of GL(6,2) as indicated in row 2:

1A 24 2B S3A 3B 4A 4B 5A 6A 6B 7A,B 15AB
1A 2B 2B 3B 3C 4C 4E 5A 6D 6F T7F 15C

A.2 Subgroups arising from field extensions

Choose a direct sum decomposition Vy = Vo @ V; and set W = 52 ® Sy,
Gy4 = C(W) and J = J ® Jo. Then, by [4, lemma 3.1}, we may identify
Ay with the field GF(4), V4 with a V(2,4) and Ga 4 with GL(2,4). Since
JWJ~t = W2 it follows that J is a o-semilinear map of V(2,4) with respect
to the automorphism o : X + X2 of GF(4). Consequently the subgroup
Fo4 =Gaa U JGoy = Gaa " (J) may be identified with I'L(2,4), and we
have a subgroup chain

SL(2,4) < GL(2,4) < TL(2,4) < GL(4,2) (6)

where SL(2,4)(2 Alt(5)) is the commutator subgroup G5 4 of G2 4. In fact
T'L(2,4) is a maximal subgroup of GL(4, 2). The groups SL(2,4), GL(2,4)
and T"L(2,4) have orders 60, 180 and 360, and possess 5, 15 and 12 conju-
gacy classes, respectively.

Information concerning the relation of these classes to those of GL(4, 2)
is provided in table 6. In particular the 4 classes 1A, 2B, 3A aud 5A
of GL(4,2) may be represented by elements of a SL(2,4) subgroup, the
further 4 classes 3B, 6A and 15A,B may be represented if we use elements
of GL(2,4) \ SL(2,4), and class 4B may be represented by an element of
I'L(2,4) ~ GL(2,4). (The notation in the final two columns of the table is
explained below, in the discussion of table 7.) The 5 classes 24, 4A, 6B
and 7A,B do not have representatives € I'L(2, 4).
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Table 6.  SL(2,4), GL(2,4) and 'L(2,4) classes inside GL{4,2)
GL(4,2) class Reptve. Cycle type SL(2,4) GL(2,4) TIL(2,4)
1A Is 18 1 140 140
2B Lol 2013 1 140 1+1
3A 98 3° 1 142 240
3B Sl 313 — 042 140
4B Js 432 12 —_ — 0+1
5A (S4)? 53 2 240 140
6A ®S: 623 — 0+2 141
15A,B S 15! — 0+2, 0+42 140, 140
Total number of classes 5 15 12

Similarly, choosing a direct sum decomposition Vg = Vo @ Vo & V, and
setting W = So @ S2 ® S2, G34 = C(W) and J = Jo & Jo ® Jo, we may
identify 2w with the field GF(4), Vg with a V/(3,4) and G5 4 with GL(3, 4),
and so arrive at a subgroup chain

SL(3,4) < GL(3,4) < I'L(3,4) < GL(6, 2). ()

Here SL(3,4) = G} 4 and I'L(3,4) = G34UJG34 & G3 4 » (J). The groups
SL(3,4), GL(3,4) and T'L(3,4) have orders 60,480, 181,440 and 362, 880,
and possess 28, 60 and 39 classes, respectively.

Finally, choose instead a direct sum decomposition Vg = V3 ® V3 and set
U = 83 ® 83 and Gag = C(U). Then, by [4, lemma 3.1}, we may identify
Ay with the field GF(8), V; with a V/(2,8) and Gy g with GL(2,8). Now the
normalizer N({S3)) of (S3) in GL(3,2) has structure (S3) ¥ Z3. Choosing
K3 in one of the Z3 subgroups of N((Ss)) to satisfy K3S3K;! = (S3)?,
and setting K = K3 @ K3, then KUK™! = U2, It follows that K is a 9-
semilinear map of V'(2,8) with respect to the automorphism 1 : X — X2
of GF(8). Consequently the subgroup I'2s = G2 3 ¥ (K) may be identified
with I'L(2, 8), and we have a subgroup chain

SL(2,8) < GL(2,8) < T'L(2,8) < GL(6,2) (8)

where SL(2,8) = G%g. The groups SL(2,8), GL(2,8) and I'L(2,8) have
orders 504, 3,528 and 10, 584, and possess 9, 63 and 29 classes, respectively.
It is known that both I'L(3,4) and I' (2, 8) are maximal subgroups of
GL(6,2). (For a list of the maximal subgroups of GL(6, 2) consult {15].)
In table 7 we provide information concerning the relation of the classes
of the foregoing subgroups of GL(6,2) to those of GL(6,2) itself. In the
column headed GL(2,8) an entry r + 3 against class nX of GL(6,2) means
that class nX contains r + s classes of GL(2, 8) of which r lic in SL(2, 8)
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and s lie in GL(2,8) ~ SL(2, 8). Similarly in the column headed T L(2,8) an
entry 7+ 8 against class n.X of GL(6,2) means that class nX contains r+s
classes of T' L(2, 8) of which r lie in GL(2,8) and s lie in T'L(2,8)~ GL(2,8).
Similarly for the GL(3,4) and T'L(3,4) columns. To save space, an entry
r+ s, 7 + 3 against paired classes nX,Y is abbreviated to (r + s).

In arriving at an understanding of table 7 it should be borne in mind
that the above antomorphisms o, ¢ of GF(4), GF(8) have periods 2, 3,
respectively. Hence the order of any element A € I'L(3,4) < GL(3,4) is
necessarily even, and that of A € T'L(2,8)~ GL(2,8) is a multiple of 3. In
fact, from the table, we have

gef (246814 fAETLE,0\GLEY
of (3.6.9}  if ATL(28)~CL(2,8).

Also, two distinct classes of GL(3,4) may well fuse to form a single class of
T'L(3,4), and three distinct classes of GL(2,8) may fuse to form a single
class of T'L(2,8). (Three classes of SL(3,4) may also coalesce to form a
single class of GL(3,4) — see the 4C and 12A entries of table 7.)

As an example, consider the elements of I'L(2,8) of order 7. Since 3} 7,
such elements lie in GL(2,8). In fact GL(2,8) has 27 classes of elements of
order 7, and these fuse in threes to form nine classes of I' L,(2, 8). First of all
there are the six singleton classes {U*}, i =1, ...,6, of GL(2,8) which fuse
to yield two classes of I'L(2,8), namely {U,U?,U*} and {U~},U~2,U~*}.
Since U = S3 ® Sa, the elements U?, i = 1,2,4, belong to class 7A of
GL(6,2) and the elements U*, i = 6,5,3, belong to class 7B of GL(6, 2).
The remaining 21 classes have representatives of the form Sio S3(~cL(2.8)
S} @ S%) with 0 < i < j < 6. Since in each case the centralizer is 2 Z7 X Zy,
each of these 21 classes of GL(2,8) has length 72. Belonging to class 7A
of GL(6,2) are the three classes with representatives S3 @ 53, S} ® S3
and Si @ S3. (Using Is ® K3, note that S3 @ 53 is similar to S5 @ Sy;
however Is ® K3' ¢ T'L(2,8).) The inverses of these last three GL(2, 8)
classes accordingly belong to class 7B of GL(6,2). The six elements I3 ®

4,4 =1, ...,6, represent six further classes of GL(2, 8) which fuse in threes,
i=1,2,4 and i = 6,5,3, to form two classes of T'L(2,8), with the first
three belonging to class 7C, and the second three belonging to class 7D, of
GL(6,2). Next there are the three classes of GL(2,8) with representatives
Si® 85t i = 1,2,3; these lie in the subgroup SL(2, 8), they belong to class
7E of GL(6, 2) and they fuse to form a single class of I' L(2, 8). Finally there
are six further classes of GL(2, 8) which also belong to class 7E of GL(6, 2);
three of these have representatives S3 ® S3, 5% @ S§, S ® S3, which fuse
to form a single class of I'L(2, 8), and the other three are obtained upon
taking inverses.

Observe from the table that the following 24 classes of GL{(6, 2) cannot
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be represented by an element of I' L(3,4) nor by an element of I' (2, 8):

2A,4A,4B,4D, 6B, 6C, 8B, 10A, 12B, 12C,
14C, 14D, 21C,D, 28A B, 30A,B, 31A...F

If A belongs to one of these classes and S34 is a set of generators for the
subgroup SL(3,4) of GL(6,2) it follows, since the normalizer T'L(3,4) of
SL(3,4) is maximal in GL(6,2), that (S34, A) = GL(6,2). Similarly, if Sz 3
is a set of generators for SL(2,8) < GL(6,2), then (S;s,A4) = GL(6,2).
In particular these last statements hold for A € class 2A, that is if A is
any transvection in GL(6,2). (Incidentally if A € GL(3,4) < GL(6,2) is
a transvection gua its action upon V(3,4) then A belongs to class 2B of
GL(6,2), and if A € GL(2,8) < GL(6,2) is a transvection qua its action
upon V(2,8) then A belongs to class 2C of GL(6,2).)

Incidentally it is worth noting that the subgroup Gg = {42® A3 | Ai €
GL(V;)} = GL(W2) x GL(V3) of GL(V), associated with a tensor product
structure V5 = Vo ® V3, is (unlike the situation for ¢ > 2) not a maximal
subgroup of GL(V;); indeed, see [4, Remark 7.1], Gg lies inside a T'L(3, 4)
subgroup. Recall from theorem 3 that the following 16 classes of GL(6, 2)
may be represented by elements belonging to a Gg subgroup of GL(6, 2):

1A, 2B, 2C, 3A, 3C, 4C, 4E, 6A, 6F, 7A,B, 12A, 14A,B, 21A,B.
From table 7 we see that these 16 classes are indeed a selection from the

33 classes represented by elements belonging to a T'L(3,4) subgroup of
GL(6,2).
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Table 7. SL(6/d,2%), GL(6/d,2°) and T'L(6/d,2°) classes inside GL(6,2), d = 2,3

0e

GL(6,2) class Representative Cycle type] SL(3,4) GL(3,4) TL(3,4) | SL(2,8) GL(2,8) I'L(2,8)
1A Ts 1% 1 1+0 1+0 1 1+0 1+0
2B O Lo 27T 1 1+0 1+0 — = =

2C Jo® 2@ J2 22817 — 0+1 1 140 1+0
3A S50 8: 3<! 2 242 240 1 1+0 140
3B I,®S: 316118 042 140 — —

3C IOS:® S 32018 1 1+2 240 — — 0+2
1C Ts © Ja 17215 [ 3 1+0 1+0 — — —

4E J2® Jy 4122813 | — 0+1 —

5A L& (S.) 51713 2 240 1+0 — = —

6A 520 (J2 ® S2) 6° 3 2 242 210 = — =

6D L@ 20852 66342513 | — 0+2 140 — — —

6E I.® (2®52) 6°3%13 - 0+2 140 — — -

6F J2 @ (J2 ® S2) 6°32211' | — — 0+1 — — 0+2
7A,B 5@ 85;, S5 1@ T 1,1 a+0y* (1+0)* | — (0+6)° (2+0)*
7C,D I3®Ss, Is®S;+ 1717 — — — - (0+3)*  (1+0)°
7E S; @ S} 7° — — — 3 3+6 3+0
8A I1® Js 894°2°1° | — — 0+1 —_ -—_ —_—

9A {Ss)’ 97 — 0+2 1+0 3 3+0 1+2
12A Js ® Sz 126 3* 6 240 140 — —_ —
14AB Jo® 93, 2®8,; . 1407 = — (0+1)? 0+3y% (1+0)*
15A,B L©S8s, L®s; 151 = 0+2)* (1+0)* | — — —

15C Sz @ (Sa)® 15°5%3! | — 0+4 240 — — —
15D,E S ® Sy, S2 057 153! 2,2 (2+2)2 (2+0)* | — — —
21A,B (S6)°, (Se) 2 218 2,2 2+0)F  (1+0)7 | — 0+3)F (+0)°
63A..F S6, - Sg 63" — 0+2)° (1+0)° | — (0+3)° (1+0)*
Total number of classes 28 60 39 9 63 20
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