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Abstract

We show that Z-cyclic ordered triplewhist and directed triplewhist
tournaments on p elements exist when p =9 (mod 16) is prime.

1 Introduction

A whist tournament Wh(4m +1) for 4m + 1 players is a schedule of games
(or tables) (a, b, ¢, d) involving two players a, ¢ opposing two other players
b, d such that »

i. the games are arranged into 4m -+ 1 rounds each of m games;
ii. each player plays in exactly one game in all but one round;
iii. each player partners every other player exactly once;
iv. each player opposes every other player exactly twice.

We shall be concerned with three refinements of the structure, called triple-
whist tournaments, directed whist tournaments and ordered whist tourna-
ments. Call the pairs {a,b} and {c, d} pairs of opponents of the first kind,
and call the pairs {a,d} and {b, c} pairs of opponents of the second kind.
We further say that b is a’s left hand opponent and ¢’s right hand opponent,
and make similar definitions for each of @, ¢ and d. In addition, we also say
that a and c are partners of the first kind while b and d are partners of the
second kind. Then a triplewhist tournament TWh({4m+1) is a Wh(dm+1)
in which every player is an opponent of the first (resp., second) kind exactly
once with every other player; a directed whist lournament DWh(4m + 1)
is a Wh(4dm + 1) in which each player is a left (resp., right) hand oppo-
nent of every other player exactly once; and an ordered whist tournament
OWh(4m + 1) is a Wh(4m + 1) in which each player opposes every other
player exactly once while being a partner of the first (resp., second) kind.
If the players are elements of Z4y,+1, and if the ith round is obtained from
the initial (first) round by adding ¢ — 1 to each element (mod 4m + 1), then
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we say that the tournament is Z-cyclic. By convention we always take the
initial round to be the round from which 0 is absent. The games (tables)

(ala bl) €1, dl): ey (am.’ bm, Cm, dm)

form the initial round of a Z-cyclic triplewhist tournament if

Q{ai,bi,ci,di} = Zgm41 — {0}, (A)
Q{i(a,- — ci), £(b; — i)} = Zams1 ~ {0}, (B)
Q{i(a,- — bi), (e — di)} = Zam1 — {0}, ©)
Q{i(ai —di), £(bi — &)} = Zam+1 - {0}. (D)

(A) and (B) show that the partner pairs form a starter [2, p. 136]. Similarly
for (A) and (C) with the first kind opponent pairs, and (A) and (D) with
the second kind opponent pairs. These games form a Z-cyclic directed
whist tournament if, in addition to satisfying (A) and (B),

U{(bt - a'i)l (C; - bt)’(dt - ci)a (at - dt)} = Z4m-i-1 - {0} (E)

i=1

Alternatively, they form a Z-cyclic ordered whist tournament if, in addition
to satisfying (A) and (B),

U{(ai —b;), (a;i — di), (c; — by), (ci — di)} = Zygmqr — {0} (F)
i=1

Abel, Costa and Finizio [1] have dealt with whist tournaments which are
simultaneously directed and ordered. We shall be looking at whist tourna-
ments which are simultaneously either both triplewhist and directed tour-
naments, or triplewhist and ordered tournaments. Such designs will be
called directed triplewhist tournaments and ordered triplewhist tournaments
respecively, and will be denoted by DTWh(v) and OTWh(v). First of all
though, it should be noted that it is not possible for a Z-cyclic tournament
to be triplewhist, ordered and directed at the same time.

Theorem 1.1 [t is not possible for a Z-cyclic tournament to be triplewhist,
ordered and directed simultaneously.
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Proof

Firstly we will assume that such a tournament does exist. The fact that
it is an ordered and directed tournament means that from (E) and (F) we
can deduce that

() os =), (e — )} = Ui = b, (s — ) ©)
i=1 i=1

and that both sides of the equation (G) give the same half of the nonzero
elements of Z,. Since the tournament is also triplewhist, (C) tells us that

m

U {ECa: = b:), (e — d)} = Zamsr — {0}

i=1
This contradicts (G). o
We shall now show that both Z-cyclic DTWh(v) and Z-cyclic OTWh(v)
exist for all v whenever v is a prime p = 9 (mod 16). For p = 5 (mod 8),
the directed case has been dealt with in [6] while the ordered case has been
dealt with in [4].

The original proof by Anderson, Cohen and Finizio, which dealt with the
existence of Z-cyclic TWh(p) with p = 8n + 5 prime [3], contained a re-
quirement that certain elements be primitive roots of Z,. This requirement
was shown by Buratti in [7] to be an additional, but not necessary one. The
elements in question need only be nonsquare over Z,, and a less compli-
cated proof is the result. That is also the case when it comes to this work
which deals with p = 9 (mod 16). The theorem of Weil on multiplicative
character sums [10, Theorem 5.41] is used in the proof which follows. Here
is the statement of Weil’s theorem, in which the convention is understood
that if ¥ is a multiplicative character of GF(g), then ¥(0) = 0. Adopting
this convention we have ¥(zy) = ¥(z)¥(y) for all (z,y) € GF(g) x GF(q).

Theorem 1.2 Let ¢ be a character of order m > 1 of the finite GF(q).
Let f be a polynomial of GF(q)[z] which is nol of the form kg™ for some
k € GF(q) and some g € GF(q)[z]. Then we have

Y w(@)| < (@-1)va

z€CF(q)
where d is the number of distinct roots of fin its splitting field over GF(q).

Notation. Any nonzero element k of Z, can be expressed as ™ where 0 is
a primitive root of p. 1f b | p — 1 and if m = a (mod b), we say that k € ct.
Furthermore, if k € C2, we will say that k= 0.
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2 The Existence Theorem

We now take a closer look at two constructions and find the conditions
which must be satisfied in order for them to produce a Z-cyclic DTW h(p)
and a Z-cyclic OTWh(p) for primes p = 9 (mod 16).

So let p = 16t + 9 be prime, let z be a nonsquare element of Zy, and let
0 be a primitive root of p. We now present two constructions, the first of
which is a variation of a construction found in [8, p. 222).

Construction 1 (1,z,2%,—z) x 08+%, 0<i<2,0<j<1

It can be seen that this is a suitable construction since if 1, z, z* and —z
are expressed in terms of @, we have two square terms whose indices differ
by 4 (mod 8), and two nonsquare terms whose indices differ by 4 (mod 8).
This means that when they are multiplied by #%+% for appropriate values
of i and j, we get all of the nonzero elements of Z, as required. First we find
the conditions under which this forms a TWh(p). The partner differences
are pairs 2z, +(z* — 1) x 0%+2/ and so the partner pairs form a starter
provided 2z(z* — 1) # O. Similarly the first kind opponent pairs form a
starter provided z(z — 1)(z® + 1) # O, and the second kind opponent pairs
form a starter provided z(z+1)(z® — 1) £ 0. We now use the fact that 2 is
a square since p = 9 (mod 16). So Construction 1 yields the initial round
tables of a Z-cyclic TWh(p) provided z! —1 = O, (z - 1)(z® + 1) = O,
(z+1)(z*-1)=0D.

Now we find the conditions under which this also forms a DWh(p). Here,
the differences we are interested in are

-1, (H)

' —z=z(z® — 1) =2(z - 1)(z® + z + 1), (1)
—z—z'=-z(z* +1) = —z(z + 1)z -z + 1), (J)
z+ 1. (K)

We now make the assumption that z2 — 1 # 0. It follows from such an
assumption that one of z — 1 and z + 1 is a square, while the other is non-
square. Using this information together with the conditions for TWh(p),
it can be seen that (/) and (I) are both square (nonsquare), while (J) and
(K) are both nonsquare (square). For the construction to work, the indices
of the two square (nonsquare) values must also differ by 4 (working mod 8).
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Thus, we obtain a DW h(p) using this construction when

z(z —1)(z® +z +1)

eCd ie z(z’+z+1)eCs

(z-1)
ie 8@ +z+1)eC§
—z(z+1){(z? -z +1 .
and, ( (:22. ) )ec§ ie —z(z®—z+1)eCd

ie z(z?—z+1)eCh.

So, using all of the above information we can say that Construction 1 gives
the initial round tables of a Z-cyclic DTWh(p) when z # O, z% -1 # 0O,
22+1#£0, 252 +z+1)eC§, z(z? —z+1) € C§.

Now we go back and find the conditions under which Construction 1 gives
the initial round tables of what is also an OWh(p). Here, the differences
we are interested in are

l-z=—(z-1), (L)

z+]1, (M)

=z 1) =z -1)(z?+z+1), (N)
P +r=z(z+1) =z(+1)z? -z +1). (0)

Again we assume that z2 — 1 # 0. Using the same process as above it is
scen that (M) and (O) are both square (nonsquare) elements of Z, while
(L) and (N) are nonsquare (square). Again, the indices of the two square
(nonsquare) values must differ by 4 (working mod 8), so it can be seen that
we obtain an OW h(p) using this construction when

_ 2
z(z—D(z*+z+1) eCd e —z(x?+z+1)€C

—(z-1)
ie z(z?+z+1)eC§
.’L‘(Z+l)($2—l‘+l) 8 . 2 8
d, 1) ey e z(z*~-z+1) ey

ie r8(z% -z 1) eC§.
So, using all of the above information we can say that Construction 1 gives

us the initial round tables of a Z-cyclic OTWh(p) when z # O, z2 -1 # 0O,
22 +1#£0,2%z2—z+1)eC§, z(z? +z+1) € C§.
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Construction 2 (1,z3,z%, —2%) x 08+%, 0<i<2, 0<j <1

It can be seen that this is a suitable construction since if 1, 23, z* and —z3
are expressed in terms of 8, we have two square terms whose indices differ
by 4 (mod 8), and two nonsquare terms whose indices differ by 4 (mod 8).
This means that when they are multiplied by §%+2% for appropriate values
of i and j, we get all of the nonzero elements of Z, as required. These
are the initial round tables of a Z-cyclic TWh(p) provided z* — 1 = O,
(x - 1)(x3+1) =0, (x+1)(x* - 1) = O. Combining this with the
assumption that 22 ~ 1 # O we see that Construction 2 gives the initial
round tables of a Z-cyclic DTWh(p) when z # D, 22 —1# 0, z2+1 #£ 0O,
25(z? —z +1) € C§, z(z? + z + 1) € C§. It is also the case that it gives a
Z-cyclic OTWh(p) whenz # O, 22 -1 # 0, z2+1 # O, 25(z®+z+1) € C§,
z(z? -z + 1) eC§.

Theorem 2.1 Lelp = 16t4+9 be prime. If there exists a nonsquare element
T of Z, such that z? £ 1 are both nonsquares and either

z(z?+z+1) € C§ and z5(z% —x + 1) € C§, or

z(z? —z+1)€C§ and 25(z* + 2 + 1) € C5,
then a Z-cyclic DTW h(p) (Z-cyclic OTWh(p)) ezists.

Proof
Suppose there exists such a nonsquare z. If z(z2 — 24 1) € C§ and z5(z? +
x+1) € C§ then use Construction 1 (Construction 2). If z(z?+z+1) € C8

and z5(z% — z + 1) € C§ then use Construction 2 (Construction 1).
0 (m]

It therefore remains to show that a nonsquare z satisfying the conditions
of Theorem 2.1 can be obtained.

It can be seen that this task is assisted by the fact that working with
Construction 1 and Construction 2 results in the same conditions being
required in order to show that a suitable x exists in order for a directed
triplewhist and an ordered triplewhist tournament to be built. Thus, if
z#0,22+£1#0,z(z? +z+1) €C§ and 22(z2 +z +1)(z2 ~z + 1) € C8
then a suitable value of z exists such that a Z-cyclic DTWh(p) and a
Z-cyclic OTWh(p) can be constructed using either Construction 1 or Con-
struction 2.

Let A denote the quadratic character mod p, so that

(1 ifyecy
)‘(y)_{—l ifyeC?.



L.et ¢ be the character of order 4 exactly whick is defined by

1 ifyeC§;

) -1 ifyecs;
YW= iryecs
-1 ifyec].

Let x be the character of order 8 exactly which is defined by
x(y) =w’ ify € C§,

i
where w = e

1t follows from these definitions that
[ 2 ifyec?
1-My) = { 0 otherwise,

4 ifyeCf;
1+ 9@) + 9% + ¥°) = { 0 otgerwige

and 8 il c8
N _ 1 yelp;
T+ x(y) + .. +x(y") = { 0 otherwise.

Thus, we let f(z) = z(z? +z + 1), g(z) = 28(z? + z + 1)(z? — 2 + 1) and

S= Y (1=A@)(1 - Mz - 1)1 = Mz® +1)) x

z€CF(p)
1+ ([ (@) + .. + (2N + x(9(2)) + ... + x(¢" ().

Substituting in the fact that A(z) = ¥(z?) = x(z*) it is seen that

S= > (1-xE"))1-x(=® -1 -x(=* +1)*) x
z€GF(p)

1+ x(2 (@) + - + xS @2N) A + x(g(2)) + ... + x(97(2)))-

After multiplying this out and making the appropriate substitutions (using
Theorem 1.2), it can be seen that,

$>p—1453./p.

It is also clearly the case that,
S = 256 A/,
where clements in A are of the form given in Theorem 2.1.
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Thus,

S = 256{A| > p—1453,/p > 0
ilp>1453,/p
i.e. il \/p > 1453
ie. if p > 2,111,209,

It was then checked by computer that appropriate values of z existed for
all primes p < 2,111, 209 where p = 9 (mod 16), excluding p = 41, 73, 89,
137, 233, 281, 313, 521, 569, 617, 809, 1097, 2729, 2953, 3001. Here, we list
(p,'zp) where p is the prime and z,, is a suitable value of z for that prime
for all relevant primes p < 10, 000.

(109, 79), (457, 10), (601, 142), (761, 142), (857, 268), (937, 132), (953, 344),
(1033,103), (1049,82), (1129,119), (1193,27), (1289, 208), (1321, 76),
(1433, 605), (1481,29), (1609,479), (1657,164), (1721,12), (1753, 89),

(1801,130), (1913,171), (1993, 542), (2089, 194), (2137, 157), (2153, 888),

(2281,402), (2297,520), (2377,454), (2393,259), (2441,411), (2473, 812),
(2521, 34), (2617,19), (2633, 5), (2713,163), (2777, 659), (2857, 106),
(2969, 505), (3049, 153), (3209, 383), (3257, 68), (3433, 14), (3449, 350),
(3529, 115), (3593, 84), (3673, 115), (3769, 1344), (3833, 38), (3881, 24),

(3929,375), (4057, 111), (4073,871), (4153,71), (4201, 130), (4217, 329),

(4297, 193), (4409, 709), (4441,467), (4457,377), (4649, 102), (4729, 218),

(1793, 218), (4889, 1197), (4937, 21), (4969, 21), (5081, 164), (5113, 79),
(5209, 218), (5273, 606), (5117, 56), (5449, 570), (5641, 616), (5657, 496),
(5689,190), (5737, 173), (5801, 165), (5849, 24), (5881, 351), (5897, 104),
(6073, 60), (6089,381), (6121, 29), (6217, 383), (6329, 651), (6361, 272),
(6473,173), (6521, 124), (6553, 88), (6569, 953), (6761, 243), (6793, 181),
(68411,164), (6857, 111), (7001, 108), (7129,332), (7177, 805), (7193, 39),
(7321,138), (7369, 127), (7417,335), (7433, 10), (7481, 295), (7529, 528),
(7561,52), (7577,117), (7673,996), (7753,519), (7817,113), (7993,114)
(8009, 328), (8089, 61), (8233, 245), (8297,443), (8329, 88), (8377, 233),
(8521,109), (8537,258), (8681, 29), (8713,59), (8761, 344), (8969, 583)
(9001, 29), (9049, 656), (9161,473), (9209, 54), (9241, 174), (9257, 57),
(9337,207), (9433, 77), (9497, 888), (9689, 803), (9721, 688), (9769, 426),
(9817,515), (9833,14), (9929, 603)

It has been already been shown in {5] that for all primes p = 1 (mod 4),
29 < p <10,000, p # 97, 193, 257, 449, 641, 769, 1153, 1409, 7681, there
exist. Z-cyclic DTW h(p). This takes care of the 15 values for which a suit-
able value of z was not found by the computer (as listed above).

Thus the following theorem is established.
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Theorem 2.2 A Z-cyclic DTWh(p) ezists for all primes p =9 (mod 16).

In order to have proved a similar theorem for Z-cyclic OTWh(p) where
p = 9 (mod 16) is prime, all that is left to do is show that a Z-cyclic
OTWh(p) exists for cach of the 15 values listed above. To assist in this
task, the following construction (as given in [8, p. 224]) is used.

Construction 3  Let p = 250 + 1 be prime, k£ > 3, t odd and let 8 be
a primitive root of p . For the purposes of working with this construction,
we write d = 2%, n = 252 and a = 257! — 1 (mod d). Then we consider
the following initial round games

(1,0,-0,00%1) x %44, 0<i<n-1,0<j<t~1

For 13 of the 15 values that we are interested in, it is now possible to
list (p, 0,a) where p is the prime, 0 is a suitable primitive root and a is a
suitable value which, when substituted into Construction 3, give the initial
round games of a Z-cyclic OTWh(p).

(89,35,51), (137,45, 11), (233, 138,11), (281,178, 11), (313,268, 19),
(521,85, 3), (569,96,3), (617,337, 3), (809, 396, 3), (1097, 382,3),
(2729, 27,3), (2953,1264, 3), (3001, 1305, 3)

Thus it has now been shown that a Z-cyclic OTWh(p) exists for all p =
9 (mod 16) where p is prime, with the possible exception of p = 41 and
p="T3.

Using two constructions given in (9], the following initial round games were
found which generate Z-cyclic OTWh(p) for p = 41 and 73.

Iozample 2.1. A 7-cyclic OTWh(41) is given by the initial round
{{1,27, 40,28}, {20, 30, 39,19} } x {1,268, ...,26%2}.

Erample 2.2. A Z-cyclic OTWh(73) is given by the initial round
{{1,18,59,43}, {50, 6, 30,5} } x {1,598, ..., 5954}.

Thus the following theorem is established.

Theorem 2.3 A Z-cyclic OTWh(p) exists for all primes p =9 (mod 16).
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