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Abstract

In recent work, Corteel and Lovejoy extensively studied overpar-
titions as a means of better understanding and interpreting various
g-series identities. Our goal in this article is quite different. We wish
to prove a number of arithmetic relations satisfied by the overparti-
tion function. Employing elementary generating function dissection
techniques, we will prove identities such as

Y B(8n+7)q" = 64 (@)
56 (9%

and congruences such as
P(9n+6)=0 (mod 8)

where P(n) denotes the number of overpartitions of n.

1 Introduction and statement of results
In recent work, Corteel and Lovejoy [3] revisited the combinatorial objects

known as overpartitions. First studied by MacMahon (4], an overpartition
of the nonnegative integer n is a nonincreasing sequence of natural numbers
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whose sum is n, and where the first occurrence of parts of each size may be
overlined. For example, the eight overpartitions of the integer 3 are

3,32+1,2+1,2+71,2+7,14+1+1, T+1+1

We denote the number of overpartitions of n by B(n), and define $(0) to be
1.

As noted in [3], the generating function for B(r) is given by

1+g" (q2)°°
5(’”’)9ﬂ = el 2
,g) >l i- q (q)oo
where (@)oo = (1 — a)(1 —a?)(1 — a®)--- . This generating function, when

written as a power series in ¢, begins

> B(n)g™ =1+ 29+ 4q° + 8¢® + 14¢" + 24¢° + 40¢° + 649" + -
n>0

Thanks to MAPLE, we were able to expand this generating function to ob-
tain the first several hundred values of $(n) in order to search for arithmetic
relations. Our main goal in this article is to prove numerous arithmetic re-
lations satisfied by p(r) which we identified. These will take two forms: the
first will be generating function formulas for $(n) on certain arithmetic pro-
gressions, while the second will be congruences satisfied by H(n) on certain
arithmetic progressions. Both types of results are in the spirit of Ramanu-
jan’s results for the partition function p(n). The techniques we employ are
elementary, involving dissections of g-series.

We shall prove a number of results, beginning with the following 2-, 3~
and 4-dissections of the generating function for B(n).

Theorem 1
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From there we shall prove the following generating function identities (which

clearly imply various Ramanujan-like congruences):
Theorem 2

- n _ 0(8%)%(9%)5%
2 Pent " = A

613
;;:(3n+2)q —4( @ )(Gq Joo ,
5 n _ g(@)eolaY)o
,;_op(lln +3)¢g" =8 e

and (
Y B(8n + T)g" = 642 27))23 .
n>0

Lastly, we prove the following miscellaneous congruences:

Theorem 3 For alln > 0,
P(9n+3)=0 (mod 8),
F(9n +6)=0 (mod 8),
P2 +18) =0 (mod 4),
p(5n+2)=0 (mod 4),

and
P(n+3)=0 (mod 4).

2 Proofs

We require a few definitions and lemmas.
Let

(4)

(5)

(6)

(")

(8)

(9)
(10)
(11)

(12)

@)= > g, w@) =D g™+ 2and X(g)= Y ¢

n=—0o0 n20 n=-o00

Then we can prove the following identities which are invaluable in proving

Theorem 1.
Lemma 1
o [CoFS _ (892%(8%) 00 (9') oo
#g) = DL Y(g) = e X(q)
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#(q) = d(g")+20%(a%), 8(a)* = #(¢°)2+4q¥(e*)’, H(a)(~9) = $(~4°)?,
P(9)? = d(q)¥(q?), and  (q) = #(¢°) +2¢X (¢%).

Proof All of the above follow from Jacobi’s triple product identity [1,

Theorem 2.8 and straightforward g-series manipulations.

Before proving Theorems 1-3, we note one additional observation made
by George E. Andrews [2]. Namely,

> Bln)g™ = 1/¢(~q)
n>0

or

S B(n)(—a)" = 1/4(a).

n>0

We utilize this equality heavily in our proof of Theorem 1.
Proof (of Theorem 1) We see that

= n o_ 1
nz?-op(n)(_q) - ¢((J)
_ _9(=9)
#(q)$(—9)
= -‘% using Lemma 1
1

= =92 (6(g*) — 2q¥(¢®)) using Lemma 1 again.

This is equivalent to (1).
Next, we let w = ¢2™¥/3, Then we have

5 Ao 1

nzzop(n)(—Q) =
__ $wg)d(wiq)
#(9)p(wg)d(w?q)

$(q*)

= $(g%)" (¢(qg) + 2wgX (‘13)) (¢(qg) + 2w?qX (%))

using Lemma 1

P (40 - 206X ) + 42X

68



This is equivalent to (2).
Finally, we have

_ n 1

B(ig)p(—q)$(—iq)

#(q)d(iq)d(—q)d(—iq)
#(—q)$(q%)®

3(—q)?¢(q%)?
$(—q)#(¢*)?

$(—¢%)1
= z(—_%t? (8(g*) — 299(a%)) (8(¢*)* + 46°%(¢%)?)

= W—IT)‘ (#(a*)® — 296(g")(c®)
+4¢%¢(a* ) (q®)? — 8¢3¥(¢®)%) .

This is equivalent to (3), and Theorem 1 is now proven.

With Theorem 1 proved, we can now prove all portions of Theorem 2
in a straightforward manner.
Proof (of Theorem 2) First off, note that (4), (5), and (6) are obtained
by reading off the appropriate portions of the dissections (1), (2), and (3)
respectively. Next, we see that

_ n _ o ¥(@®)?
; P4n+3)¢" = 8 pramsT
¥(9%)34(q)*

= e
_ gH) (86 +4q0(a*)?)’

$(—¢%)8
Hence,
- n _ g ¥0@)°e(9)%%(g%)?
S = sty
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., $(g)”
o4 é(—q)®’

which is equivalent to (7). This completes the proof of Theorem 2.

We now turn our attention to the proof of Theorem 3, which also em-
ploys a number of elementary generating function manipulations.
Proof (of Theorem 3) We see from the above that

n o 8@
> _(3n)(—q) 50)°

n>0

4
= B ( ‘b(("s)),, (6(e)? - 208(¢°) X (¢°) +4qZX(q3>2))

j((qqts))ls (#(¢°)? — 206(¢°) X (¢°) + 44* X (¢*)?)"*
= "*E,%))w (6(e°)° — 8a8(e°) X (%) + 40q2$(¢°)° X (g°)?
—128¢°4(¢°)° X (*)* + 3044 $(¢°)* X (¢°)*
-512¢°9(q°)* X (¢°)° + 640¢%¢(¢°)2 X (°)°
-5129"¢(¢°) X (¢*)" + 2564° X (¢°)®) .

It follows that

S p(on) (—q)" = ‘”E")L ((%)® - 12806(6°)° X ()° + 640g%(¢)2X (9)°)
n>0

> B(9n +8)(=q)" = ¢§")23 (86(4°)" X (q) — 304¢4(¢%)* X (9)*
n>0

+512¢%6(¢*) X ()7),
and

> ron+6)(-" = 5 ‘“" ’3 (408(¢%)° X (g)? — 51206(a°)° X (q)°

n>0
+256q2X @)% .

The last two equalities above imply (8) and (9).
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where

D(q)= Z q5n’+2n and E(g) = Z q5n2+4n'

n=—00 n=-—0oQ

It follows that

S p(sn + 2)(-q)" ;fg;g (46(c°)*D(a)’*

n>0
~16¢D(q)*E(q) - 84°4(¢°) E(q)°)

and
S p(sn+3) (- = jﬁ‘;}! (84(¢°)D(a)° - 446(¢°)*E(@)?
i +16°D(g)E(@)°).

We thus obtain (11) and (12).

3 Closing Remarks

We close by noting that 7(n) appears to satisfy numerous other arithmetic
properties, including the following: For all n > 0,

P(27n+18) =0 (mod 12) (13)

and
7(40n + 35) =0 (mod 40) (14)

We further conjecture that if p is prime and » is a quadratic nonresidue
modulo p then

_ _f 0 (mod8) if p=+41 (mod 8),
p(pn+r)-—{ 0 (modd) if p=+3 (mod 8).

These conjectures are based on the calculation and subsequent analysis of
a large number of values of F(n) via MAPLE.
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