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Abstract

For two vertices v and v in a connected graph G, the detour
distance D(u,v) from u to v is defined as the length of a longest
u — v path in G. The detour eccentricity ep(v) of a vertex v in
G is the maximum detour distance from v to a vertex of G. The
detour radius radp(G) of G is the minimum detour eccentricity
among the vertices of G, while the detour diameter diamp(G)
of G is the maximum detour eccentricity among the vertices of
G. Tt is shown that radp(G) < diamp(G) < 2radp(G) for every
connected graph G and that every pair a,b of positive integers
with @ < b < 2a is realizable as the detour radius and detour
diameter of some connected graph. The detour center of G is
the subgraph induced by these vertices of G having detour ec-
centricity radp(G). A connected graph G is detour self-centered
if G is its own detour center. The detour periphery of G is the
subgraph induced by the vertices of G having detour eccentric-
ity diamp(G). It is shown that every graph is the detour center
of some connected graph. Detour self-centered graphs are in-
vestigated. We present sufficient conditions for a graph to be
the detour periphery of some connected graph. Several classes
of graphs that are not the detour periphery of any connected
graph are determined.
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1 Introduction

The distance d(u,v) from a vertex u to a vertex v in a connected graph G
is the length of a shortest « — v path in G. A u — v geodesic is a u — v
path of length d(u,v). The diameter diam(G) of G is the largest distance
between two vertices in G. Although this is the standard definition of
distance between two vertices in a connected graph, it is by no means the
only definition that has been given of distance between two vertices. For
two vertices u and v in a connected graph G, the detour distance D(u,v)
from u to v is defined as the length of a longest u — v path in G (see
(3,4,5,6,7,8,9,11, 12, 13]). A u — v path of length D(u,v) is called a
u — v detour.

For example, in the graph G of Figure 1, d(u,v) = 3 while D(u,v) = 8.
A u — v detour (indicated by solid lines) is also shown in that figure.

Figure 1: The detour distance between two vertices

As with standard distance, detour distance is also a metric on the vertex
set of every connected graph.

Proposition 1.1 For the detour distance D on a connected graph G,
(V(G), D) is a metric space.

Proof. Let G be a connected graph. Since (1) D(u,v) > 0, (2) D(u,v) =0
if and only if v = v, and (3) D(u,v) = D(v,u) for every pair u, v of vertices
of G, it remains only to show that detour distance satisfies the triangle
inequality. Let u,v, and w be any three vertices of G. Since the inequality
D(u,w) < D(u,v)+ D(v, w) holds if any two of these three vertices are the
same vertex, we assume that u,v, and w are distinct. Let P be a u — w
detour in G of length k = D(u, w). We consider two cases.

Case 1. v lies on P. Let P; be the u — v subpath of P and let P, be
the v — w subpath of P. Suppose that the length of P; is s and the length
of P; is t. So s+t = k. Therefore,

D(u,w) = k= s+t < D(u,v) + D(v,w).
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Case 2. v does not lie on P. Since G is connected, there is a shortest
path Q from v to a vertex of P. Suppose that Q is a v—z path. Thus z lies
on P but no other vertex of Q lies on P. Let r be the length of @. Thus
r > 0. Let the u — z subpath P' of P have length @ and the z —w subpath
P" of P have length b. Then a > 0 and b > 0. Therefore, D(u,v) >a+r
and D(v,w) 2 b+7. So

Du,w)y=k=a+b< (a+7)+(b+7) < D(u,v) + D(v,w),
and so the triangle inequality holds. u
For vertices u and v in a connected graph G of order 7,
0 < d{u,v) £ D(u,v) <n—-1,

where D(u,v) = 0 if and only if d(u,v) = 0 if and only if u = v, D(u,v)=1
if and only if uv is a bridge of G, and D(u,v) = n—1if and only if G contains
a Hamiltonian v — v path. Furthermore, d(u,v) = D(u,v) for every two
vertices u and v of G if and only if G is a tree. It is possible, however, that
d(u,v) = D(u,v) for some pairs u,v of distinct vertices in a graph that
contains no bridges. For example, if u and v are antipodal vertices (that is,
d(u,v) = diam(G)) in the even cycle Cax, k > 2, then D(u,v) = d(u,v) = k.
Indeed, even more can be said.

Proposition 1.2 Let G be a 2-connected graph. Ifu and v are two vertices
of G for which D(u,v) = d(u,v), then u and v are antipodal vertices of G.

Proof. Assume, to the contrary, that there exists a 2-connected graph G
containing two vertices u and v with D(u,v) = d(u,v) = k but u and v are
not antipodal vertices of G. Consequently, 2 < k < diam(G). This implies
that every u — v path of G has length k. We consider two cases.

Case 1. At least one of u and v is a peripheral vertez of G, say u is a
peripheral vertez of G. Let z € V(G) such that d(u,z) = diam(G). Then
z # v. Since G is 2-connected, there exist internally disjoint z — u and
2 — v paths in G and so there is a v — v path P in G containing z. Since
every u — v path in G has length k, it follows that P is a u — v geodesic
containing z. However then, diam(G) = d(u, z) < d(u,v), a contradiction.

Case 2. Neither u nor v is a peripheral vertez of G. Let x and y be
two antipodal vertices of G. Thus {u,v} N {z,y} = 0. Then diam(G) =
d(z,y) > d(u,v) = k. Since G is 2-connected, there exist internally disjoint
z—u and = —v paths in G. Hence there is a u—v path P in G containing z.
Similarly, there exists a u — v path Q containing y. Since every u — v path
in G has length k, the paths P and Q have length k. The z — v subpath of
P followed by the v — u path by proceeding along Q in reverse order and
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then followed by the u — z subpath of P produces a closed walk at = of
length 2k containing y. Hence there exists an 2 — y walk of length at most
k in G, which implies that d(z,y) < k = d(u,v), a contradiction. =

The converse of Proposition 1.2 is false. For example, every two vertices
u and v of G = K, n > 3, are antipodal vertices of G and 1 = d(u,v) #
D(u,v) = n— 1. It is a simple observation that complete graphs are the
only graphs G for which there is a constant k such that d(u,v) = k for
every two distinct vertices u and v of G. Therefore, the only such constant
is k = 1. For detour distance, the corresponding result is stated next.

Proposition 1.3 Let G be a connected graph of order n > 2. Then there
exists an integer k such that D(u,v) = k for every pair u,v of distinct
vertices of G if and only if G is Hamiltonian-connected (and k =n — 1).

Proof. If G is a Hamiltonian-connected graph of order n > 2, then there
exists a u — v Hamiltonian path in G for every pair u, v of distinct vertices
of G and D(u,v) = n — 1. It remains to verify the converse. Assume,
to the contrary, that there exists a connected graph G of order n > 2
such that D(u,v) = k for every pair u,v of distinct vertices of G, but
k <n-1 Let uv € E(G). Since D(u,v) = k, there exists a u — v
detour P of length k in G. Then P together with the edge uv form a cycle
Ci+1 of length ¥ +1 in G. Since n > k+ 1 and G is connected, there
exists a vertex z € V(G) — V(Ci+1) such that z is adjacent to some vertex

w in Cry1. Assume that Cryq : w = vy,v2,-++,0k41,v1 = w. However
then z,w = v1,v3,++,v41 is an & — vg4y path of length & + 1 and so
D(z,vg41) > k + 1, which is a contradiction. m

2 Detour Eccentricity, Radius, and Diameter

The eccentricity e(v) of a vertex v in a connected graph G is
e(v) = max{d(v,z) : z € V(G)}.
The radius of a connected graph G is
rad(G) = min{e(v) : v € V(G)};
while the diameter of G is
diam(G) = max{e(v) : v € V(G)}.

The detour eccentricity is defined as expected, namely, the detour eccen-
tricity ep(v) of a vertex v in a connected graph G is

ep(v) = max{D(v,z) : z € V(G)}.

78



Recall that if u and v are distinct vertices in a connected graph G, then
le(u) — e(v)] < d(u,v).

In particular, |e(u) — e(v)] < 1 if v and v are adjacent. There is a corre-
sponding statement for detour distance.

Proposition 2.1 Ifu and v are distinct vertices in a connected graph G,
then
len(u) — ep(v)| £ D(u,v).

Proof. We may assume that ep(u) > ep(v). Let w be a vertex of G such
that D(u,w) = ep(u). Then ep(u) = D(u,w) < D(u,v) + D(v,w) <
D(u,v) + ep(v). Thus |ep(u) — ep(v)| £ D(u,v). "

To see that there are, in fact, connected graphs containing distinct ver-
tices u and v such that |ep(u) — ep(v)| = D(u,v), we construct a graph
G as follows. For each integer ¢ with 1 < 7 < 3, let F; be a copy of the
complete graph K, of order n > 2. Let u; and u; be two distinct vertices
of Fy and v; € V(F}4,) for j = 1,2. Let G be the graph obtained from the
graphs F; (1 < i < 3) by identifying each vertex u; (§ = 1,2) of F; with the
vertex v; of Fj;; and labeling the identified vertex by u; (see Figure 2).
Then ep(z) = 2(n — 1) for all z € V(F}) and ep(z) = 3(n — 1) for all
z € V(G) — V(F1). Let v = v, and let u be any vertex in V(F2) — {v }.
Since ep(v) = 2n~ 2, ep(u) = 3n — 3, and D(u,v) =n — 1, it follows that
lep(u) — ep(v)| = D(u,v).

FZ F3

& o’

31

Figure 2: A graph containing vertices « and v
with |ep(u) — ep(v)| = D(u,v)

The detour radius radp(G) of a connected graph G is then defined as
radp(G) = min{ep(v) : v € V(G)};
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while the detour diameter diamp(G) of G is
diamp(G) = max{ep(v) : v € V(G)}.

Since d(z,y) < D(z,y) for every two vertices z and y in a connected graph
G, it follows that e(v) < ep(v) for every vertex v in a connected graph G.
Therefore,

rad(G) < radp(G) and diam(G) < diamp(G)

for every connected graph G. Because the detour distance between two
vertices v and v in a tree is the same as the ordinary distance between u
and v, it follows that rad(T") = radp(T") and diam(T") = diamp(T') for every
tree T'. In any connected graph, the detour radius and detour diameter are
related by the following inequalities.

Theorem 2.2 For every connected graph G,
radp(G) < diamp(G) < 2radp(G).
Proof. The definitions of radp(G) and diamp(G) give the inequality
radp(G) < diamp(G).

Now let u and v be two vertices of G' such that D(u,v) = diamp(G) and
let w be a vertex of G such that ep(w) = radp(G). Since detour distance
is a metric on V(G), it follows that

diamp(G) = D(u,v) < D(u,w) + D(w,v) < 2radp(G),

as desired. n

The following result provides the detour radius and detour diameter of
some familiar graphs.

Proposition 2.3 Let n,r, and s be integers.
(@) Forn 22, radp(K,) = diamp(K,)=n—1.
(b) Forn >3, radp(C,) =diamp(Cr) =n - 1.
() Forn > 2, radp(Q,) = diamp(Q,) = 2" - 1.
(d) For2<s<t,radp(Kss) =25—1 and

. 28—1 ifs=t
diamp(Ko,) = {23 ij:s<t.
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Proposition 2.3(a)-(c) (and (d) for s = t) illustrates the fact that for a
Hamiltonian graph G of order n, radp(G) = diamp(G) = n — 1. Every
pair a, b of positive integers can be realized as the detour radius and detour
diameter, respectively, of some connected graph provided a < b < 2a.

Theorem 2.4 For each pair a,b of positive integers with a < b < 2a,
there erists a connected graph G with radp(G) = a and diamp(G) = b.

Proof. For ¢ = b = k > 1, the complete graph K41 has the desired
property. For a < b < 2a, let G be the graph of order b+ 1 obtained by
identifying a vertex v of K,41 and a vertex of Kp_q41. Since b < 2aq, it
follows that b—a+1 < a+1. Thus ep(v) = a. Since there is a Hamiltonian
path in G with initial vertex z for every vertex z € V(G) — {v}, it follows
that ep(z) = b. Hence radp(G) = @ and diamp(G) = b. n

For integers a and b with a < b < 2a, each vertex in the graph G in
the proof of Theorem 2.4 has detour eccentricity a or b. So unlike standard
eccentricity, if k is an integer such that radp(G) < k < diamp(G), there
may not be a vertex z of G such that ep(z) = k. Next we show that every
pair a,b of integers with 1 < a < b is realizable as the radius (diameter)
and detour radius (detour diameter) of some connected graph.

Theorem 2.5 For every pair a,b of integers with 1 < a < b,
(a) there is a connected graph F' such that

rad(F) = a and radp(F) = b,
(b) there is a connected graph H such that
diam(H) = a and diamp(H) = b.

Proof. If T is a tree, then rad(T) = radp(T") and diam(T") = diamp(T).
Hence rad(P2o41) = radp(Pae+1) = a and diam(Paq41) = diamp (Pogyy) =
a. So the result is true for ¢ = b.

Thus we may assume that 1 < a < b. We first verify (a). Let Fj :
Uy, Uz, ", U and Fy : vy, Vs, -+, Vs be two copies of the path P, of order
a and F3 = Kj_,4; be the complete graph of order b—a + 1. Let F be the
graph obtained from F; (1 < ¢ < 3) by joining every vertex in F3 to both
u; and v in F} and F3, respectively. Then rad(F) = a. Since ep(v) = b if
v € V(F3) and ep(v) > b if v € V(F) — V(F3), it follows that radp(F) = b
and so (a) holds.

To verify (b), let H be the graph obtained from the path P, : vy, v2,
-+, v, and the complete graph Kp_,41 by joining v; to every vertex in
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Ks—o41. Then e(v) = a for each v € V(Kp-g+1) U {va} and e(v) < a
for each v € V(P,) — {v;}. Thus diam(H) = a. On the other hand,
ep(v.) = (h—a)+a=bandep(v) < bforallv e V(H)— {v.}. Therefore,
diamp(H) = b and so (b) holds. "

3 Detour Center

The center C(G) of a connected graph G is the subgraph of G induced by
those vertices of G having eccentricity rad(G); while the periphery P(G)
of G is the subgraph of G induced by the vertices of G having eccentricity
diam(G). A vertex v in a connected graph G is called a detour central vertez
if ep(v) = radp(G); while the subgraph induced by the detour central
vertices of G is the detour center Cp(G) of G. A vertex v in a connected
graph G is called a detour peripheral vertez if ep(v) = diamp(G) and
the subgraph induced by the detour peripheral vertices of G is the detour
periphery Pp(G) of G. The following observation is useful.

Observation 3.1 No cut-vertex in a connected graph G is a detour pe-
ripheral vertez of G.

Harary and Norman [10] proved, for standard distance in graphs, that
the center of every connected graph G lies in a single block of G. This is
true for detour distance as well.

Proposition 3.2 The detour center Cp(G) of every connected graph G
lies in a single block of G.

Proof. Assume, to the contrary, that there is a connected graph G' whose
detour center does not lie in a single block of G. Then G contains a cut-
vertex v such that G —v has components G, and G2, each of which contains
vertices of Cp(G). Let u be a vertex of G such that ep(v) = D(u,v) and
let P; be a u — v detour in G. At least one of G; and Gs, say G2, contains
no vertex of P;. Let w be a vertex of Cp(G) belonging to G2 and let P,

be a w — v path in G. The paths P, and P, together form a ©u — w path P;
in G. Then

ep(w) > |V(B)| =1 > [V(P1)| - 1 =ep(v),
which is a contradiction. ]

Hedetniemi (see [2]) showed that every graph is the center of some
connected graph. We next show that this is true for detour centers as well.

Theorem 3.3 Every graph is the detour center of some connected graph.
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Proof. Let G be a graph of order n and let H = G + Kn41 be the join
of G and K,41. Since ep(v) = 2n —1if v € V(G) and ep(v) = 2n if
vE V('K",,H), it follows that G is the detour center of H. -

A connected graph G is called detour self-centered if
radp(G) = diamp(G),

that is, if G is its own detour center. For example, if G = K, or G = Cj,
then radp(G) = diamp(G) = n — 1 and so G is detour self-centered. We
made the following observation earlier.

Observation 3.4 IfG is a Hamiltonian graph of order n, then G is detour
self-centered having radp(G) = diamp(G) =n —1.

A graph need not be Hamiltonian to be detour self-centered, however.
For example, the Petersen graph is a non-Hamiltonian detour self-centered
graph. By Observation 3.1, we do have the following, however.

Lemma 3.5 IfG is a detour self-centered graph of order 3 or more, then
G is 2-connected.

The length of a longest cycle in a connected graph is called the cir-
cumference of G and is denoted by cir(G). If G is a tree, then we write
cir(G) = 0. If G is not a tree, then cir(G) > 3.

Lemma 3.6 IfG is a connected non-Hamiltonian graph, then
diamp(G) > cir(G).

Proof. The result is certainly true if G is a tree. Thus, we may assume
that G is not a tree and let C : v1,vs,---, vk, v be a longest cycle in G,
where cir(G) = k. Since G is not Hamiltonian and G is connected, there
exists v € V(G) — V(C) such that v is adjacent to some vertex on C, say
vv; € E(G). Then v,v1,vs,--+,v is a v — v path of length k£ and so
ep(v) > k. =

Next, we show that the detour eccentricity of a vertex in a detour self-
centered graph of sufficiently large order cannot be extremely small.

Theorem 3.7 Let G be a connected graph of order 6 or more. If G is
detour self-centered, then ep(v) > 5 for every vertez v in G.

Proof. Assume, to the contrary, that there is a detour self-centered graph
G of order n > 6 for which ep(v) = k < 4 for every vertex v in G. By
Lemma 3.5, G is 2-connected and so contains cycles. Moreover, G is not
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Hamiltonian by Observation 3.4. By Lemma 3.6, diamp(G) > cir(G) > 3.
Therefore, k = 3 or k = 4. We consider these two cases.

Case 1. k= 3. Let P: u = vp,v1,v2,v3 = v be a u — v detour in
G. Since the order of G is at least 6 and G is 2-connected, there exists
z € V(G) such that z is adjacent to some vertex of P. Since P is a longest
path in D, it follows that (1) z is adjacent neither u nor v and (2) z is not
adjacent to both v; and v,. Thus z is adjacent to exactly one vertex in P
and this vertex is either v; or vg, say z is adjacent to v;. By Lemma 3.5, =
must be adjacent to a vertex y that is not on P. However then y, z, vy, v2,v
is a path of length 4, which is a contradiction.

Case 2. k =4. Let P: u = vg,v1,v2,V3,v94 = v be a u— v detour in G
and let

X ={z € V(G) : z is adjacent to some vertex on P}.

Then X # 0. Since P is a longest path in G, no vertex in X is adjacent
to u or to v and no vertex of X is adjacent to consecutive vertices on P.
Thus each vertex in X is adjacent to at least one of v;,vs,v3. If no vertex
in X is adjacent to vy or vs, then every vertex in X is adjacent to exactly
one vertex of P, namely v.. However then, vs is a cut-vertex, which is
impossible by Lemma 3.5. Therefore, at least one vertex z € X is adjacent
to v; or vz, say the former. Then 2z is not adjacent to vo. If z is also
not adjacent to v3, then = must be adjacent to some vertex y ¢ V(P) by
Lemma 3.5. However then y, z,v;,v2,v3,v4 = u is a path of length 5, a
contradiction. Thus we may assume that zvg € E(G). Note that u is not
adjacent to any vertex in V(G) — V(P). Moreover, u is not adjacent to v
by Lemma 3.6. It then follows by Lemma 3.5 that u is adjacent to v or vs.

If uv, € E(G), then v,v3,z,v1,u,v2 is a path of length 5, which is a
contradiction. Therefore, uvy € E(G). Similarly, vv; € E(G). Thus G
contains K> 4 as an induced subgraph. Let k be the largest positive integer
such that K> ; is an induced subgraph of G. Since G is detour self-centered
and K3 52 is not, G # Kz 2 and so k < n — 2. Note that no vertex in
V(G)—V(K2,) can be adjacent to a vertex of degree 2 in K ;. Thus there
exists y € V(G) — V(K> ) such that y is adjacent one of the two vertices of
degree k in K5 . Since k is the largest positive integer such that K x is an
induced subgraph of G, it follows that y is not adjacent to'the other vertex
of degree k in K3 x. By Lemma 3.5, y must be adjacent to some vertex z in
G that is not in K> ;. However then ep(z) > k, which is a contradiction. m

We anticipate that there is a considerably stronger result than Theo-
rem 3.7, however.

Conjecture 3.8 If G is a detour self-centered graph of order n, then
ep(v) =n — 1 for every vertez v of G.



4 Detour Periphery

Bielak and Syslo [1] showed that a nontrivial graph G is the periphery of
some connected graph if and only if every vertex of G has eccentricity 1 or
no vertex of G has eccentricity 1. This suggests a natural question: Which
graphs are the detour periphery of some connected graph? There is one
obvious class of graphs with this property.

Observation 4.1 If G is a detour self-centered graph, then G is its own
detour periphery.

Of course, detour self-centered graphs are connected. This suggests
another question.

Problem 4.2 Is there an exemple of a connected graph G that is not
detour self-centered such that G is the detour periphery of some graph?

For connected graphs having radius 1, the answer to the question in
Problem 4.2 is no.

Theorem 4.3 A connected graph G of order n > 3 and radius 1 is the
detour periphery of some connected graph if and only if G is Hamiltonian.

Proof. If G is Hamiltonian, then G is its own detour periphery by Obser-
vation 3.4. For the converse, assume, to the contrary, that there exists a
connected graph G of order » > 3 and radius 1 that is not Hamiltonian
such that G is the detour periphery of some connected graph H. Let v be
a vertex in G such that e(v) = 1. Since v is a detour peripheral vertex of
H, it follows that D(v,w) = diamp(H) for some w € V(G). Let P be a
v — w detour in H. Since v is adjacent to every vertex in G, it follows that
P contains all vertices of G. However then, P together with the edge vw
forms a cycle C' in H and every vertex of C is then a detour peripheral
vertex of H. So C is a subgraph of Pp(H). Since no vertex of H — V(G)
is a detour peripheral vertex of H, it follows that V(C) = V(G) and so C
is a Hamiltonian cycle of G. This, however, contradicts the fact that G is
not Hamiltonian. ]

Of course, if the detour eccentricity of every vertex in a graph G of
order n is n — 1, then G is detour self-centered. Then every vertex of G is
the initial vertex of a Hamiltonian path in G. A graph G is called vertez-
traceable if every vertex of G is the initial vertex of a Hamiltonian path of
G. Although every Hamiltonian graph is vertex-traceable, the converse is
not true. For example, the Petersen graph is vertex-traceable.

Theorem 4.4 If G is a graph in which every component of G is vertez-
traceable, then G is the detour periphery of some connected graph.
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Proof. Let G be a graph with components G1, Gz, -+, G«, each of which
is vertex-traceable. If G is connected, then G is detour self-centered and so
Pp(G) = G. Hence we may assume that G is disconnected. We construct
a connected graph H such that Pp(H) = G. Let Kii be a star with
V(K1) = {u,ua,us, - -,ux}, where u is the central vertex of K1 We
first construct a graph F from G and K, x by joining u; to all vertices of
G, for 1 < i < k. Then the graph H is obtained from F' by subdividing the
edges uu; (1 < i < k) in such a way that the k components of H — u have
the same order. The graph H is shown in Figure 3 for k = 3.

Figure 3: A graph H in the proof of Theorem 4.4 for k¥ =3

Since each vertex in V(H) — V(G) is a cut-vertex of H, it follows by
Observation 3.1 that no vertex in V(H)—V/(G) is a detour peripheral vertex
of H. On the other hand, suppose that each component of H —u has order
n. Then ep(x) = 2n for each z € V(G) and so every vertex in G is a detour
peripheral vertex of H. Since G is an induced subgraph of H, it follows
that Pp(H) =G. n

We know of no counterexample to the converse of Theorem 4.4. For
graphs G of small order, however, the condition presented in Theorem 4.4
is both necessary and sufficient for G to be the detour periphery of some
graph.

Proposition 4.5 A graph G of order n, where 2 < n < 4, is the detour
periphery of some connected graph if and only if every component of G is
vertexs-traceable.

By Theorem 4.3, no star of order 3 or more is the the detour periphery
of a connected graph. We now show that no double star is the detour
periphery of any connected graph either. In order to do this, we first
present a lemma.
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Lemma 4.6 Let H be a connected graph of order at least 3. If u and v are
adjacent vertices of H with D(u,v) = diamp(H), then the detour periphery
of H contains a cycle of order 1 + diamp(H).

Proof. A u — v detour P together with the edge uv forms a cycle of order
1+ diamp(H) in H. Since every vertex of C is a detour peripheral vertex
of H, it follows that C is a subgraph of Pp(H). n

Proposition 4.7 No double star is the detour periphery of any connected
graph.

Proof. Let S, be a double star with central vertices « and v such that
degu =a+1 and degv = b+ 1, where a > b > 1. Suppose that N(u) =
{w1,uz,- -+, uq,v} and N(v) = {vy,v2,--,vp,u}. The graph S, is shown
in Figure 4.

Figure 4: The double star S, ;

Assume, to the contrary, that S, is the detour periphery of some
connected graph H. By Lemma 4.6, D(u,v) # diamp(H) for otherwise,
Pp(H) contains a cycle. Hence D(u,v;) = diamp(H) for some vertex v;
with 1 <7 < b, say D(u,v1) = diamp(H). Let P be a v — v; detour in H.
Then N(u) C V(P). Suppose that s is an ordering of the vertices of N(u)
that appears on P. Assume, without loss of generality, that s is one of the
three sequences:

81 U1,U2y 0y Up, U, Upt1, Up42,t* 5 Ug (1 Sp< a')1
82 1 U,U1,U2, ", Uy,
83: U, U2, -, Uq, V.

We consider these three cases. Let k = diamp (H) and V = {v,v1,v3,--,0}.

Case 1. s = s,. Suppose that
P:y= Loy 3 Upy -ty Uy, Bi—1, Xy = Upy1,: Tk = V1.

Since 2;_1up41 € E(H) and yup41 ¢ E(G) for each y € V, it follows that
2i—1 ¢ V(Sa,p). However then
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P g1, Ti2, 2 Z0 = Uy Ti = Upt1, Titl, - Tk = V1

is an ;_; —v; path of length k. This implies that z;_; is a detour peripheral
vertex of H, a contradiction.

Case 2. s = s3. Suppose that
Pru=mzg, -, ", Zi-1,Ti = U1, Tifl, " 1Tk = V1.

Since zi—1u1 € E(H) and yu; ¢ E(G) for each y € V, it follows that
zi—y ¢ V(Sa,). However then

P :zi1,Ti—2," ;%0 = U Ti = UL, Titl, 1 Tk = V1-

is an z;_; —v; path of length k. This implies that z; 1 is a detour peripheral
vertex of H, a contradiction.

Case 3. s = 83. Suppose that
P:u=20,21, ", Ti-1,Ti = Ua, Tit+1, " "1 Tj-1, %5 = U, Tj+1, "y Tk = V1-

Ifa=1,then b=1and Sep = S1,1 = Pyt uy, 4,0, 01 is 2 path of order
4. Since uiv ¢ E(H), it follows that z;-, # w1 and so zj_1 ¢ V(Sap)-
However then

P :xj_l,a:_,,-_g,---,:co =U,Zj =V, Ti+41,° " Tk = 1.

is an zj_, —v; path of length k. This implies that z;_; is a detour peripheral
vertex of H, a contradiction. If a > 2, then z;_; ¢ V(S,,) since zi_1uq €
E(H). However then,

' . — — —
P Ti—1,T5—2," ", Tp = U, T5s = Ug, Titl, "3 Tk = V1.

is an z;_; —v; path of length k. This implies that z;_, is a detour peripheral
vertex of H, a contradiction. ‘ n

As a consequence of Proposition 4.7, P4 is not the detour periphery of
any graph. This can be extended to Ps.

Proposition 4.8 The path P is not the detour periphery of any connected
graph.

Proof. Assume, to the contrary, that Ps : u,v,w,z,y is the detour periph-
ery of some connected graph H. By Lemma 4.6, D(w,u) = diamp (H) or
D(w,y) = diamp(H), say the former. Let diamp(H) = k and

P:w=wvg,v;,v2, ", 0k =1
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be a w — u detour in H. Then v,z € V(P). We consider two cases.

Case 1. y ¢ V(P). Suppose that {v,z} = {v;,v;}, where 0 < i <j <k.
Since v and z are not adjacent in Ps, it follows that j > i + 2 and so
vj—1 ¢ V(Ps). Since

Vj-1,V-2,""", V0 = W,V5,Vj41," ", Vk = U,

is a vj—1 — u path of length k. This implies that v;_; isa peripheral vertex
of H, a contradiction.

Case 2. y € V(P). Suppose that {v,z,y} = {v,,v,, v}, where 0 < r <
s <t<k Ify=uv,then {v,2} = {vy,v,}. An argument similar to that
in Case 1 shows that v,—; ¢ V(Ps) and v,_; is a peripheral vertex of H,
a contradiction. If y = vy, then then {v,2} = {v,,v,}. Similarly, v, ¢
V(Ps) and v, is a peripheral vertex of H, a contradiction. Therefore,
y = v,. If v = vy, then v, # z,y since v is not adjacent to y in P5. Thus
v;—1 ¢ V(Ps) and v, is a peripheral vertex of H, a contradiction. Hence
v =, y = ¥, and £ = v;. Since v is not adjacent to y in P, it follows
that v.41 ¢ V(P). However then,

Ur41,Ur42, "3 Uk = Uy Upr =V, Up—1,°*, U = W,

is a vp41 —w path of length k. This implies that v, is a peripheral vertex
of H, a contradiction. (]

We now show that another class of trees cannot be the detour periphery
of any graph.

Theorem 4.9 If T is a tree of order n > 3 with A(T) > n/2, then T is
not the detour periphery of any connected graph.

Proof. Assume, to the contrary, that there is a tree T of order n > 3 with
A(T) > n/2 such that T is the detour periphery of some connected graph
H. Let v € V(T) such that degv = A(T) = k¢ > n/2. Then n < 2k.
Let N(v) = {v1,v2,---,v}. By Lemma 4.6, D(v,v;) # diamp(H) for
each v;, for otherwise, Pp(H) contains a cycle. It follows that D(v,u) =
diamp(H) = d for some u € V(T') — Nv]. Let P be a v — u detour in H.
Then N[v] C V(P). Assume, without loss of generality, that

P:u=uxg,  +,2i_1,%i; = V1, ", Biy—1,Ti; =V2,""",
Lig=1Tip = Vky ", Td = U

where i) < iy < -+- < i;. Since T is a tree, N(v) is an independent set of
vertices in H. Thus i; —ij_y > 2for 2 < j < k. Let

W={xi,'—l: 253Sk}'
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Then |[W|=k—1and W C V(H) — (N(v) U {u,v}). Since
[V(T) = (N(v) U {u,v})| n—(k+2) <2k~ (k+2)
= k-2<|W|,

there exists w € W such that w ¢ V(T), say w = z;;—1, where 2< j < k.
However then,

1. T
Pz 1,%i02,0 0,55 = U5, Tig41,0 00, U
¢ ¢l

is an z;,~; — u path of length d and so z;;_, is a detour peripheral vertex
of H, a contradiction. ]

For a tree T of order n > 3, let

St={veV(T):degv > 2} and o7 = Z (degv — 2).
vEST

Lemma 4.10 Let T be a tree of order n > 3. Then
diam(T) <n—or — 1.

Proof. We proceed by induction, the result being true if n = 3. Assume
that the inequality holds for all trees of order n — 1 > 3. Let T be a tree
of order n, let v be a peripheral vertex of T, and let T = T — v. Then
diam(T") < diam(T’) + 1 and by the induction hypothesis,

diam(T') < (n— 2) —or =n—or — 2.

Observe that either o = o1+ or or = o + 1, according to whether v is
adjacent to a vertex of degree 2 in T or adjacent to a vertex of degree 3 or
more in T'.

If o7 = o, then

dia.m(T)_<_diam(T')+1$n—aT: —24+1=n-or—1.

So we may assume that o7 = o + 1 and so v is adjacent to a vertex v’
of degree 3 or more. We show, in this case, that diam(7") = diam(7T"). Let
P be a u — v path of length diamT in 7. Let v" be a vertex of T that is
adjacent to v’ and is not on P. Then the path obtained from P by replacing
v by v" is a u — v" path of length diam(T). Hence diam(T) = diam(T").
Therefore,

diam(T) diam(T") < n—or — 2

= n—(op+1l)—1l=n—-0or-1,

as desired. |

Using an argument similar to that employed in the proof of Lemma 4.10,
we have the following.
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Lemma 4.11 Let T' be a tree of order n' and diameter d' containing
exactly one vertez v with degpy v > 3. If T is a tree of order n containing
T' as a subtree, then

diam(T) < n—-n'+d' +degpv—2—or.
Theorem 4.12 Let T be a tree of order n > 3. If
A(T) + diam(T') + o1 > n + 3,
then T is not the detour periphery of any connected graph.

Proof. Assume, to the contrary, that there exists a tree T of order n > 3
for which

A(T) +diam(T) +or > n+3
and a connected graph H such that Pp(H) = T. Thus T is not a path and

so A(T) > 3.
Let v be a vertex of T such that

degrv=A(T)=k > n+3~diam(T) - or.

Let N(v) = {v1,v2,---,v}. Observe that Dy (v,v;) # diamp(H) for each
v;, for otherwise, by Lemma 4.6, Pp(H) contains a cycle. Consequently,
Dy (v,u) = diamp(H) = d for some u € V(T') — N[v]. Let Pbeav —u
detour in H. Since the length of P is d = diamp(H), it follows that
N[v] C V(P). We may assume that the vertices of N(v) are labeled so that

P:’U=$0,"',$,‘1_1,$il SULy 3 Tip-1, T4y = V2,
Tiy,-1,T4), =Vky***,Td = U,

where then i3 < i3 < -+ < %. Since T is a tree, N(v) is an independent
set of vertices in T’ and therefore in H. Thus ¢; —¢;_; > 2for2<j < k.
Let

W={:z;,-,._1: 25]Sk}
Then |W| = k-1 and WN(N(v)U{u,v}) = 0. We now consider two cases.

Case 1. There exists w € W such that w ¢ V(T), say w = Ti; -1, where
2<j<k. Then

t . : . so= Vs
P CZi;—1,Ti;-2, ,v,x.,.—v,,m;,-n,---,u

is an z;;_y — u path of length d, which implies that z;,_; is a detour
peripheral vertex of H. This, however, produces a contradiction since
zi;-1 € V(T).
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Tip—1 Tiz—-1

Ty, -1

Figure 5: The subtree T in Case 2

Case 2. Every vertex of W belongs to T. Hence T' contains a subtree
T of order 2k and diameter 4 shown in Figure 5.
By Lemma 4.11,

diam(T) < (n—2k)+4+(k—2—-or)=n—-k—or+2.
Since diam(T) > n — k — o7 + 3, a contradiction is produced. n

A caterpillar is a tree the removal of whose end-vertices produces a path.
In the case of caterpillars, Theorem 4.12 has the following consequence.

Corollary 4.13 If T is a caterpillar of order n > 3diam(T’) — 1, then T
is not the detour periphery of any connected graph.

Theorem 4.12 also has the following corollary.
Corollary 4.14 Let T be a tree of order n > 3. If
2A(T) + diam(T) > n + 5,
then T is not the detour periphery of any connected graph.

A result that is nearly analogous to Theorem 4.9 holds for graphs that
are not necessarily trees.

Proposition 4.15 Let G be a graph of order n > 3. If G contains a
verter u such that degu > (n+1)/2 and the neighborhood N(u) of u is an
independent set in G, then G is not the detour periphery of any connected
graph.

Proof. Assume, to the contrary, that G is the detour periphery of some con-
nected graph H. Suppose that degu = k, where Ng(u) = {v1,v2," -, vk}-
Then n < 2k — 1. Let v € V(G) such that D(u,v) = diamp(H) = d. Let
P be a u — v detour in H. Then Ng(u) C V(P). Assume, without loss of
generality, that



P1u=$0,"',zi1—l;xil = V1,0, Tip—1,Ti, = V2,7,
Zip—1:1Zi, =Vky" ", Td = V.

Since Ng(u) is an independent set of vertices in G as well as in H, it follows
that i; —ij_1 > 2for 2 < j < k. Let W= {z;;,_1: 2<j <k} Then
WNNg(u) =0, |W|=k-1,and W C V(H) — (Ng(u) U {u,v}). Since
|Ng(u) U {u,v}| >k +1, it follows that
V(G) - (No(@)U{u,v})] £ n—-(k+1)<(2k-1)—-(k+1)
= k-2<|W|

Hence there exists w € W such that w ¢ V(G), which implies that w €
V(H) - V(G). I w € E(G), then the path P together with vv forms a
cycle of length d + 1 that contains w. This implies that w lies on a cycle
of order d + 1. Hence ep(w) = d and so w is a detour peripheral vertex of

H, a contradiction. Thus, uv ¢ E(G) and so vx # v. Then w = z;;_; for
some j, where 2 < j < k. However then,

P’ X4 -1,Ti-2, 0 Uy Tiy = V5, Ti541,0 00,V
is an z;;-; — v path of length d, which implies that w = z;;_; is a detour

peripheral vertex of H, a contradiction. ]

Corollary 4.16 If G is a bipartite graph of order n > 3 with A(G) >
(n+1)/2, then G is not the detour periphery of any connected graph. In
particular, if G = Ky, where s # &, then G is not the detour periphery of
any connected graph.
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