1

An m-cycle system of order v, denoted by mCS(v), is a decomposition of
the complete graph K, into m-cycles (i.e. cycles of length m). Necessary
conditions for the existence of such a decomposition are that » is odd and
that m divides (’5) When such a decomposition exists, there also arises the
possibility of partitioning the set of all m-~cycles on a common set of v points
into disjoint mCS(v)s. By “disjoint” we mean that the mCS(v)s have no
common cycles. Such a partition is known as a large set of mCS(v)s. For
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certain parameter sets (m,v), a variant of this partitioning problem is to
seek a set of disjoint mCS(v)s whose m-cycles, when viewed as copies of
K, cover exactly once all possible copies of Ky, on a set of v points. In
order to distinguish between these two partitioning problems, we will refer
to the first as a Cp-large set of mCS(v)s and to the second as a K-large
set of mCS(v)s.

In the case m = 3, the complete graph K, is also an m-cycle and so
there is no distinction between the two problems. A 3CS(v) is a Steiner
triple system of order v, usually denoted by STS(v), and it is well-known
that such systems exist if and only if v = 1 or 3 (mod 6). It was shown
by Lu and Teirlinck [8, 9, 10, 12] that a large set of STS(v)s exists for all
v =1 or 3 (mod 6), apart from v = 7. In general, for ¢-designs of index 1, a
partition of the set of all k-tuples taken from a set of v points into t-(v, k, 1)
designs is known as a large set and is denoted by LS(¢, k,v). Apart from
Steiner triple systems, i.e. LS(2, 3,v), very little is known. In fact, for¢ > 2
and k > 4, the only known large sets are LS(2,4,13) (3] and LS(2,4, 16)
[11]. The problem of constructing large sets of ¢-designs of index 1 seems
to be difficult.

Returning to the case of m-cycle systems with m > 3, the only known
result concerning large sets seems to be that given in [2], namely that for
every odd v > 3, there exists a C,-large set of vCS(v)s. Here m = v
and so the systems are actually Hamiltonian cycle decompositions of K.
The paper [2] also gives results concerning large sets of Hamiltonian path
decompositions of K,. Apart from these Hamiltonian cycle decompositions
and the results for Steiner triple systems, nothing else appears to be known
concerning large sets of mCS(v)s. Again, the problem of constructing large
sets appears to be difficult.

For v < 9, all mCS(v)s have m = 3 or m = v. In the case v = 9, as
well as 3CS(9)s and 9CS(9)s, we also have 4CS(9)s and 6CS(9)s. Sov =9
is the smallest v for which the existence problem for large sets of mCS(v)s
is unresolved. In this paper, we give a systematic account of the situation
for v = 9. In particular we construct C;- and Kj-large sets of 4CS(9)s and
a Kg-large set of 6CS(9)s.

2 Cycle systems of order 9

For m = 5,7 or 8, m does not divide (3) and so no mCS(9) exists. For
m = 3, as noted above, an mCS(9) is an STS(9) and the C3- and K3-large
sets problems coincide. It was originally shown by Kirkman [6] that the
(g) = 84 triples on 9 points may be partitioned into 7 copies of the unique
(up to isomorphism) STS(9). Bays (1] proved that there are precisely two
nonisomorphic large sets of STS(9)s. For m =9, it is shown in [2] that the
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8!1/2 9-cycles on 9 points may be partitioned into 7! copies of a Hamiltonian
cycle decomposition of Kg. In fact this decomposition is given by the
following four 9-cycles

(00,044, 7+4,1+4,6+4,2+4,5+4,3+4,4+14) (mod 8) fori=0,1,2,3,

and a Cyp-large set of 9CS(9)s is obtained from this by applying all per-
mutations of the 9 points which fix oo and 0. Clearly, no Kg-large set is
feasible because any single 9-cycle, when viewed as a Ky, covers the com-
plete graph on 9 points, and therefore any individual 9CS(9) already covers
(in this sense) Ky fourfold. Excluding the trivial values m =1 and m = 2,
the remaining values to be investigated are m =4 and m = 6.

3 Construction of Cy-large sets of 4CS(9)s

The construction is based on the unique cyclic 4CS(9)= C, say, which may
be represented on the points 0,1,...,8 by developing the starter (0,1, 5, 3)
cyclically modulo 9 [4]. However, the point set for our large sets will be
taken as V = {0,1,...,6,A4, B} = Z; U {A, B}, and we denote by G the
cyclic group of order 7 with generator g = (01 2 34 5 6)(A)(B).

The initial step in the construction is to find a copy, say C}, of C on
V whose nine 4-cycles lie in nine distinct G-orbits. This may be visualised
by placing the points of V' in some permuted order (zo,z1,...,zs) at the
vertices of a 9-gon, then taking a 4-cycle with edge “lengths” 1, 4, 2 and 3
corresponding to the cyclic starter given above, and rotating this through
its nine possible positions to generate Cj, and finally checking that the
resulting nine 4-cycles lie in distinct G-orbits (see Figure 1).

Figure 1: Generating a copy of a cyclic 4CS(9).

If a permutation p of the points of V' does indeed lead to nine distinct
G-orbits from the 4-cycles of the associated system Cj, then we say that p
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is suitable. We may then form six further copies of Cj, say C,,Cs,...,Cn,
as images of C; under g fori=1,2,...,6 respectively. In such a case, the
seven systems C; will form seven disjoint sets of 4CS(9)s, together making
a total of 63 distinct 4-cycles.

The second step in the construction is to note that there are 54 distinct
G-orbits of 4-cycles and so, if a collection of six suitable permutations can
be found which cover all of these, then the corresponding collection of 4-
cycles will form a large set of 6 x 7 = 42 copies of C covering all 6 x63 = 378
4-cycles on the nine points of V.

A small simplification in the search for suitable permutations p is that we
may assume that p(0) = 0. This may be seen by considering the rotational
symmetry of Figure 1. Computer enumeration gives precisely 3348 suitable
permutations having p(0) = 0, and an exhaustive search then gives 76
distinct solutions to the Cj-large sets problem, each of which is obtained
from six such permutations. It remains to determine possible isomorphisms
between these solutions, and the automorphism group of each solution. This
is done as follows.

Given a Cy-large set £ corresponding to six suitable permutations py, p2,
..., pe, there will be six sets each of seven disjoint copies of C' which we
will denote by {Cl, Cs,..., 07}, {Cs, Coy.vns C14}, veey {036, Cazy..., 042}.
These 42 systems cover all 42 x 9 = 378 4-cycles on the points of V; we
may write £ = {C1,Co,...,Cs2}.

Now suppose that the permutation p; assigns the elements of V' in the
cyclic order (zo, z1,. . .,Zs) to the nine vertices of Figure 1, so that C con-
tains (amongst others) the 4-cycles (o, z1, z5, 3), (0, Z5, T4, Z7), (To, T4, T2,
zg) and (z1,Z2, zs, z4). Note that these four 4-cycles span all nine points
of V. Next consider a Cy-large set £’ = {C{,C3,...,Cjp} which is formed
under G in a similar manner to £ by permutations p{,p5,...,ps. If there
is an isomorphism from £ to £’ then, without loss of generality, by consid-
ering the action of G, we may assume that there is a mapping taking the
four 4-cycles of C described above to four 4-cycles in one of the six systems

1,C§, Cls, Cha, Chg, Cig. To check whether such a mapping exists, and if
it does to determine it completely, we must take each of these six systems,
and assign one of its nine 4-cycles as the potential image of (zo, z1, zs5, z3),
an assignment which may be made in eight distinct ways corresponding
to the four vertices and two directions of this cycle. Having thus selected
potential images for o, z1, x5 and z3, the remaining images are determined
(if possible) by considering the other three specified cycles of C;.

Thus to determine isomorphisms, if any, from £ to £’ we need consider
at most 6 x 9 x 8 permutations ¢ of the points of V, and for each of these
to check whether it preserves the structure of £, i.e. whether ¢(C;) € £’
for i=1,2,...,42. In the case £ = £, the same procedure will determine
automorphisms.
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The result of this analysis is that the 76 large sets partition into 11
isomorphism classes. Representatives of the 11 classes are given below
by specifying in each case the six cyclic orders in which the points of
V are assigned to the vertices of Figure 1. Of these, four have just G
as their full automorphism group. The remaining seven have the group
H = (z—a?z+b, a,bz€ Z7, a# 0; A - A; B — B) as their full
automorphism group.

Number and aix cyclic ordora of verticos
automorphism group

012358B6A4 014838BA82 016AB2343 0165324BA 01A8B5243 016245A3B
0124B563A 01523A6B4 042465831 01B2436A8 01463AB52 01328BA64
012A5346B 032B5416A 03BA26541 0215463AB 031652AB4 018426A353
012A68354B 014362AB5 0168352443 0124568B3A 0241B6A35 02638 A314
012463845 0132A46B3 0153A4B62 01B35246A 014A68325 021A58643
012A68354 014263A5B 0158432AB 024A5B631 013642AB5 026514A B3
012AB3645 0152AB643 024461583 012A346BS5 0152A634B 024AB6513
012AB4365 043A26581 024AB1653 0152AB364 016A45382 025A136B4

LA O B o

012B4A653 0265431 BA 018425BA3 0203B4AS1 0136254BA 013582484
014AB3652 021A6B543 015346842 02153AB64 014A3B625 01465A B3a2

2
T % xxxxXaoaa

01B43265A 016A35842 015436482 025463814 01A436825 02A165B43

-
-

4 Construction of Ky-large sets of 4CS(9)s

The method is similar to that of the previous section. However, each 4-
cycle gives a K4 and the aim is to cover each copy of K4 on the nine points
precisely once. There are (g) = 126 such copies of K4 and so we seek
sets of two suitable permutations. The meaning of “suitable” here is more
restrictive than previously; we now require that the nine 4-cycle orbits under
G are not only distinct, but that they give nine distinct K, orbits under G.
Thus each suitable permutation gives 63 distinct copies of K, and again
we may assume that each suitable permutation has p(0) = 0. Computer
enumeration gives precisely 816 suitable permutations having 2(0) = 0, and
an exhaustive search then gives 96 distinct solutions to the Ky-large sets
problem, each of which is obtained from two such permutations.

The isomorphism classes of these 96 solutions may be established in a
similar manner to those of the Cy-large sets problem in the previous sec-
tion. The automorphism groups are also determined similarly. The result
of this analysis is that the 96 K-large sets partition into eight isomorphism
classes. Representatives of the eight classes are given below by specifying
in each case the two cyclic orders in which the points of V are assigned to
the vertices of Figure 1. All eight have G as their full automorphism group.
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Numbor and two cyclic orders of vortices
sutomorphiom group
1. [<] 012354884 04BA16532

012468A53 021B654A3
0124BA635 015326B4A
012546483 016B3A524
0126A5384 016B3A524
012A654B3 016AB4253

0132586A4 01B24A363

@ N @ o A W ®
Q00 aa

01346AB25 015328B4A

5 Construction of a Kg-large set of 6CS(9)s

The initial step is to take a large set of seven STS(9)s covering all (g) =84
triples on a set of nine points, see for example [4], page 267. Each STS(9)
is isomorphic to the following system which may be decomposed into four
parallel classes each consisting of three triples covering all nine points.
These parallel classes are shown as the four columns in Table 1.

{0,1,2} {0,3,6} {0,4,8} {0,5,7}
{3,4,5} {1,4,7} {1,5,6} {1,3,8}
{6,7,8} {2,5,8} {2,3,7} {2,4,6}

Table 1: STS(9) in four parallel classes.

For each of the seven STS(9)s forming the large set, combine the parallel
classes in pairs, say the first with the second and the third with the fourth,
giving 14 sets each of six triples. Next take the complement of each triple
so that we now have 14 sets, each of six 6-tuples. Regarded as copies of K,
these 84 6-tuples are distinct because the original 84 triples were distinct.
A Kg-large set of 6CS(9)s will result if each 6-tuple can be replaced by a
6-cycle on the same six points in such a manner that each of the 14 sets of
six 6-tuples is transformed into a 6CS(9). To do this it is sufficient to show
how the replacement may be effected for the two sets of six 6-tuples arising
from the STS(9) of Table 1. This is because the STS(9) is unique up to
isomorphism. In fact, the automorphism group of the STS(9) is sufficiently
rich to ensure that any pair of parallel classes is isomorphic to the remaining
pair. Consequently, we only need to demonstrate the replacement operation
for the set of six 6-tuples formed from the first two columns of Table 1. This
may be achieved by the following 6CS(9):

(0,3,2,5,4,1), (3,6,5,8,7,4), ( 1,7
(0!4)6’ 1’ 317)7 (1’5)7)2)418)? ( tHat Bt | !5’0 .

Thus we form a Ke-large set of 6CS(9)s.
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The success of this method naturally raises the question of whether a
similar approach might lead to the construction of further Kj,-large sets
of 4CS(9)s. Unfortunately, the answer is in the negative. There are two
known large sets of 2-(9,4, 3) designs, [7]. However, in neither case can the
seven designs in the large set each be partitioned into two collections of
nine 4-tuples which can be replaced by 4-cycles on the same points to form
a 4CS(9).

6 Concerning Cg-large sets of 6CS(9)s

We have tried a number of approaches both theoretical and computational.
There are 640 nonisomorphic 6CS(9)s and these are given in [5]. The largest
automorphism group of any of these is of order 36, but an exhaustive com-
puter search showed that there is no Cg-large set formed from copies of
the unique system having an automorphism group of this order. Searches
using copies of a single system having an automorphism group of order 6
(the next largest) and copies of a single system having an automorphism
group of order 1 were also tried. However the search spaces were too large
to complete an exhaustive search. Randomised packing of 6-cycles into
disjoint 6CS(9)s achieved a maximum total of 780 out of the 840 systems
required for a Ce-large set, but the search space here was even larger and,
perhaps consequently, we were unable to improve on this. Nevertheless,
that such a total can be achieved strongly suggests that a Cs-large set of
6CS(9)s does exist.
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