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Abstract

Many different approaches exist in studying graphs with high
connectivity and small diameter. We consider the effect of deleting
vertices and edges from a graph while maintaining a small diameter.
The following property is introduced: A graph G has property Bag, 3
if and only if after the removal of at most i vertices and at most
J edges, the resulting graph has diameter at most d and is not the
trivial graph on one vertex. The central theme of this paper is to
investigate the structure of graphs that have property Ba; ; and to
investigate the structure that is needed to imply that a graph has
property Ba;,;. Lower bounds on minimum degree and connectivity
that imply property Bg,,; for specific values of d are found. These
bounds are also shown to be sharp in all but one case.

1 Introduction and Preliminaries

In any communication network, it is imperative that any two nodes are
able to communicate with each other. Thus, the underlying graph G of the
network is connected. For reliability or routing purposes, we wish to have
multiple independent paths (vertex or edge disjoint) between every pair of
vertices in the graph. This implies that the graph has high connectivity.
Menger’s Theorem [11] answers the questions dealing with the existence
of such independent paths. In addition to high connectivity, it is also
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important to keep these independent paths short in length due to speed
considerations. So, we also require that the diameter of the graph be small.
Note that Menger’s Theorem does not help us here in that it does not tell us
anything about the lengths of our paths. Many different approaches exist
concerning the study of graphs with small diameter. We mention only a
few here. Readers who wish to view a more comprehensive overview of
graph theoretic problems related to the design of communication networks
are encouraged to consult Bermond, Homobono, and Peyrat [1]. Chung
and Garey [5] studied the effects of deleting k edges from a (k + 1) edge-
connected graph G with respect to the diameter of the altered graph. They
found upper bounds on the diameter of the altered graph as a function of k
and the diameter of G. They also found an upper bound for the analogous
vertex deletion problem.

Now, we suppose processors or links fail or are sabotaged. One ap-
proach to ensure a correct message is received quickly is to require that
there are many short paths between each pair of vertices in the original
graph. This motivated the concept of a Menger Path System which was
introduced by Ordman [12] in 1987. For positive integers d and m, let Py,
denote the graph property that between each pair of vertices of G, there
are at least m internally vertex disjoint paths of length at most d. Faudree,
Jacobson, Ordman, Schelp, and Tuza (8] investigated minimal conditions
involving various combinations of the connectivity, minimum degree, edge
density, and size of G that are sufficient to insure that property Pa is
satisfied. Lower bounds for other Hamiltonian-type conditions that imply
that G has property P4 were investigated by Faudree, Gould, and Schelp
[7]; Faudree, Gould, and Lesniak [6]; and Faudree and Tuza [9]. The com-
puter science community is particularly interested in the fault tolerance
(node failure) and maximum transmission delay of networks. Menger Path
Systems have been applied in this context and are typically referred to as
containers of width m and length d. Hsu [10] compiled a survey of connec-
tivity and diameter results as they relate to computer networks. Included
in this survey are results involving containers of width m and length 4.

Requiring at least m paths of length at most d between each pair of
vertices in G creates more structure in G than what may be needed. A
weaker graph property was then considered. A graph G has property Dy m
if and only if after the deletion of any set of m — 1 vertices, the remaining
graph has diameter at most d. It is easy to see that Py, implies Dy .
An edge analogue to property Dg m also exists. Questions related to Dg
and its edge analogue have been studied by Bond and Peyrat [2]; Chung
and Garey [5]; Schoone, Bodlaender, and van Leeuwen [13]; and Chung [4].
Up to this point, researchers have studied the diameter of graphs after the
deletion of only vertices or edges. In this paper, we consider the effects of
deleting both vertices and edges. We say a graph G has property By, i

104



if and only if after the deletion of at most 4 vertices and at most j edges
from G, the remaining graph has diameter at most d and is not the trivial
graph on one vertex. We examine lower bounds for minimum degree and
connectivity to imply that a graph G has property Bg,; for specific values
of d. All but one of these bounds are also shown to be sharp.

Throughout this paper, we only consider finite graphs without loops or
multiple edges. The notation generally follows that found in [3]. We use
P;(my, ma, ..., m;) to denote the blown-up path Cp, +Cpny+++-+Cppiy. A
blown-up cycle is defined analogously and is denoted C;(mi, ma,...,m;).
From this point on, when we say vertex (edge) disjoint z-y paths, we mean
internally vertex (edge) disjoint z-y paths.

2 Main Results

This section focuses on finding lower bounds on §(G) and «(G) that insure
a graph G has property Bg; ;. Throughout this section, we assume that
n, the order of a graph G, is sufficiently large. Before we begin our formal
discussion, we make some observations about a graph G that has property
Byg,,; in relation to 6(G) and &(G). For all values of d, i, and j, the
existence of property Bg; ; implies that 6(G) > i + j + 1; otherwise, we
delete vertices adjacent to and edges incident to a vertex of minimum degree
so as to disconnect the graph or make it trivial.

For the lower bound of x(G) for a graph G with property Bg;,j, the
value of d is influencial. We consider the separate cases in which d = 2,
d =3, and d > 4 as‘individual propositions.

Proposition 1. If G is a graph with property By ; j, then k(G) > i+7+1.

Proof: Suppose that G is a graph with property Bj; ;, and assume that
k(G) = m < i+j. Since §(G) > i+j+1, |[V(G)| = m+2. If m < i, we easily
obtain a contradiction. Thus, we assume m > ¢, and let {v1,...,v;,...,Um}
be a set of m vertices in G whose removal disconnects G. We choose the
vertices z and y from different components in G — {vy,...,%;,...,vm}. In
G, we delete the vertices w3,...,v;. The removal of any set of j edges
ensures us that d(z,y) = 2 because G has property B ; ;. If we remove
edges of the form zvy for k =i+1,i+2,...,m, we deleted at most 7 edges

from G — {v,...,v;}. Our necessary z-y path of length 2 does not contain
any of the vertices vy,...,%;,...,Vn Which gives us a contradiction. Thus,
K(G)>i+j+1. O

If we repeat the above argument except we now delete all edges from
z and y into viy1,viy2, .. ., Um, the lower bound on «(G) for a graph with
property Bz ; is proven.
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Proposition 2. If G is a graph with property B ; j, then k(G) > i+ l_%J +
1.

We observe that both lower bounds are achievable. For d = 2, let G
be the graph Kiij+1 + (Km U Krn) where m is large. After the deletion of
any set of i vertices and j edges from G, every pair of vertices is adjacent
to, in particular, at least one vertex from the Ky ;1. Thus, G is a graph
with property Ba;j, and «(G) = i+ j 4+ 1. For d = 3, let G be the
graph K""’l’z;.l"‘l + (Km U Kim) where m is large. Due to the structure of G,
we only need to check that property Bs; ; is satisfied for pairs of vertices
in distinct Kp,’s. For every pair of vertices z and y in distinct K,,’s, at
least one edge into K L4]+1 remains after the deletion of any set of 3
vertices and j edges from G which allows us to find an z-y path of length
at most 3 in the altered graph. Thus, G is a graph with property Bs; ;,
and #(G) =i+ [§] +1.

For d > 4, we cannot say much about the lower bound on x(G) for those
graphs G with property By ; beyond what is obvious. If a graph G has
%(G) < 1, and if we delete such a cut-set, it is clear that G cannot have
property Bg; ;. Thus, we have the following proposition.

Proposition 3. If G is a graph with property Bg;; where d > 4, then
k(G)2i+1.

If we consider the graph G in Figure 1, which is the blown-up path
Pi(m,i+1,m,m,...,m) where m is large, the lower bound on x(G) when

d > 4 is achievable.
‘el

i+1
1 d-1 d

Figure 1: A graph with property Ba; ; and s(G) =i +1

Clearly, (G} = i+ 1. If we delete any set of i vertices from G, at least
one vertex from the Kj,; remains. Let the subgraph Gy correspond to the
remains of the k*" complete graph in G after the vertex deletion. So Ga
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corresponds to the remains of the Kjiy;. To verify that G has property
By, j, we only need to check that for any 2 vertices z € Gy and y € G for
k=3,...,d, d(z,y) < d after the deletion of any set of j > 0 edges from
the altered graph. We first suppose that z € G; and y € Gs. Since G,
and G3 are still large, a neighbor of = and a neighbor of y are adjacent to
the same vertex in G2. Thus, d(z,y) < 4. Now, suppose that z € G; and
y € G where 4 < k < d. Due to the size of G, there exists a G, neighbor
of z that is adjacent to a vertex in G» after all edge deletions. We then
easily find a path of length k — 2 between this vertex in Gy and y. Thus,
we have an z-y path of length k < d so G has property Bg; ; for d > 4.

2.1 Minimum degree results

Here, we examine lower bounds on &(G) to imply that G has property
Bg;j. We obtain different bounds depending upon the value of d. In
each case the lower bound for §(G) is sharp. We first consider the case
when d = 2. Faudree, Jacobson, Ordman, Schelp, and Tuza in [8] showed

that for d > 2, §(G) > [WJ implies G has property Pym. By letting

m=14+5+1and d = 2, we have that §(G) > [n+i+ ‘+1J implies that
G has property Py i1 j41. By deﬁni.tior!, property P, ;1 implies property
Bs; ;. Therefore, 6(G) > ln+z+ + 1J implies that G has property
Bs; ;. Also in [8], Faudree, Jacobson, Ordman, Schelp, and Tuza used the
graph Kiy; + (K |2sg=t | UK r,,_.-_,-]) to demonstrate that the minimum
degree bound for property P;i;;4+1 is sharp when n — i — 7 is even. It is

i " s . = |ntitd| _
routine to f::heck that ¢ (KH., + (K[n—s—zJ U K[n_‘_,])) |25 -1,
For n—i—j odd and j > 0, we offer the following graph to demonstrate that
bound on §(G) is sharp. Let G be the graph composed of two Kntiti-1’s
that share i + j — 1 vertices. We include a complete matching between
the vertices of the complete graphs that are not shared. One can easily
verify that §(G) = ntidti-1 fet s be any vertex in G that is not
contained in both complete graphs, and let y be the unique vertex in G that
is adjacent to z along a matching edge. If we remove any set of ¢ vertices
from N(z) N N(y), the matching edge zy, and, in the case that § > 1, the
remaining 5 — 1 edges in N(z) N N(y) incident to z, then d(z,y) > 3.

Since property By, ; is a weaker property than property Py ;4j+1 When
d > 3, we expect our lower bound on §(G) to decrease as well. Indeed, for
d = 3 and 4, we are able to decrease our minimum degree requirement by i-
each time although the proof when d = 3 becomes more complicated than
the proofs of the other cases.
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]
Theorem 4. If §(G) > n—.l-;—-‘-—z-, then for n sufficiently large, G has
property B ; ;.

Proof: We assume the result is not true and argue to a contradiction. So
there exists a pair z,y € V(G) such that after the removal of some set of 1
vertices and j edges in G, d(x,y) > 4. We remove such a set of i vertices
and call the altered graph G’. We note that G’ contains n — i vertices

—_ L
and 6(G") > 225X 2. In @, let T = N(z) N N(y). Since deg =, deg
y > 2272 we have that 1] > 4. Let |I] = § + k where k > 0. Also,
define Sy = N(z) — I and S, = N(y) — I.

—i4d
Now, we first suppose zy € E(G’). Since deg z, deg y > n—;iz-, we
have that

—i4+ 4 ; —i—4
S:b1syl 2 B 1 - (Fak) = PR ke

_ 4
=2 —k-1+aandlet|S)|=""F"2 —k— 14 for
a, 8 2 0. Counting the vertices in G’, we see that

—ioid i
V(&) 2 ("——;—l—k-1+a)+ (n—;l—k—1+ﬁ>
J
+(§+k)+2

If o+ B —k > 0, we have a contradiction. Thus, we have k — a — 8 vertices
remaining in G’ that are not adjacent to z nor y where 0 < o < k and
0<f<k~a

Now, we consider an arbitrary vertex v € S; and its possible adjacencies
in G. To avoid creating any additional short z-y paths, v can be adjacent
to: all vertices in Sz; the vertex z; the i vertices that were removed; and
the k — a — B vertices not adjacent to either z or y. This gives a total of

Let |S;| = 2—

=n—-i+a+pf-k

n+i—1

n—i—% . 2
——2———k—1+a—1 +1+i+(k—-a-p0)= 3 -p-1.

2 l .
Since 6(G") > noiy , v must be adjacent to at least %+ B+1 additional
vertices in G’. Since v € Sz, v is not adjacent to y; therefore, the additional
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adjacencies of v must come from Sy, U I. Applying a similar argument, an

arbitrary u € S, must be adjacent to at least % + o+ 1 additional vertices
in S;Ul.

Next, we wish to show that we have more edge disjoint z-y paths of
length at most 3 than we can destroy due to the size of Sz and S, and
the number of additional adjacencies required for each vertex in these sets.
We choose a maximum matching M between S; and S,,. If (M| + |I]| > 7,
we have at least j + 1 edge disjoint z-y paths of length at most 3. Thus,
we assume that |M| + |I| < j. Note, however, that |M| + |I| > % since

1] > % Now, we proceed to construct a matching of size at least % between
Sz — V(M) and (S, N V(M))U 1. First, each v € S; — V(M) must send
their required additional edges to vertices in (S, N V(M)) U I; otherwise,
we obtain a larger matching. We choose a vy € S; — V(M) and distinguish
the edge voug where u, is any neighbor of vz in (S, NV(M)) U I. Next, we
select avUm € Sz — V(M) which is distinct from v,. Since vy, must §end at
least %+ﬂ+ 1 edges into (Sy, N V(M))U I and since |M| +|I| > %, there
exists a um € (S, NV(M))U I such that u,, is adjacent to vy, and uy, has
not yet been distinguished with some u, € S; — V(M). Since n is large,
|Sz — V(M) is large, and so we can iterate this procedure at least % times.
Once this is done, the set of distinguished edges gives us a matching of size

at least -% between Sz — V(M) and (S, NV(M)) U I. Repeating the same

procedure, we also obtain a matching of size at least % between S, — V(M)
and (S; NV (M))UI. Recall that zy € E(G). Thus, we have at least j+1
edge disjoint z-y paths of length at most 3 which gives us a contradiction.

If zy ¢ E(G’), then |S;| and |S,| each increase by one. Similar to
the previous case, we take a maximum matching M between Sz and S,.
We now have |[M| + |I| < 7, or else we are finished. Once again, each
v € S — V(M) and each v € Sy — V(M) must send out at least %+ 1
additional edges. So as not to contradict the maximality of M, it must be

the case that |M|+|I| > % + 1. Thus, we obtain matchings of size at least
% + 1 between S; — V(M) and (S, NV(M)) U T and between S, — V(M)

and (Sz NV (M)) U I which gives us a contradiction similar to the previous
case. Hence, G has property Bs; ;. O

The bound in Theorem 4 is sharp as evidenced by the graph in Figure 2.
n—i-2[§)+[4]

The value of m in Figure 2 is . To avoid clutter, we

2
use a line in Figure 2 to indicate the inclusion of all possible edges between
designated sets of vertices, and we mention that a set of 7 vertices is adjacent
to every vertex of G. We leave it to the reader to verify that §(G) =
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. l' _ .
"n +i+ 2 l'l — 1, regardless of the parity of n+i+ 4. If we remove the

1 vertices that are adjacent to every vertex; the I_%J edges from y to the
Klﬂ; and the [%-I edges from z to the Kfﬂ , then d(z,y) =4

O'n

) vertxces
adJacent to all

y

L
Figure 2: A graph G with §(G) = [n—ﬂ:;—z—ll — 1 but not property
Bs,i,;

We now turn our attention to the lower bound on §(G) when d =4.

Theorem 5. If §(G) > ﬁ%;l, then for n sufficiently large, G has
property By ;.

Proof: As in the proof of the previous theorem, we assume the result is not
true. So there exists a pair z,y € V(G) such that after the removal of some
set of 7 vertices and j edges in G, d(z,y) > 5. Remove such a set of vertices
and edges and call the altered graph G’. Note that |V(G’)| = n—i. Suppose
that o edges incident to z and 8 edges incident to y have been removed.
Due to the cardinalities of Ng/(z) and Ne«(y) (i.e., 251 is much greater
than j because n is large compared to ¢ and j.), there exists a vertex z’ €
Ne:(z) and a vertex y' € Ne:(y) such that degq.(z'), degs (v') > 2=5=1.
If the neighborhoods Ng-(z') and Ng«(y’) are not disjoint or contain z’
or ¥/, then we obtain an z-y path of length at most 4. Thus, Ng/(z'),
Ng:(¥'), and {z',y'} are disjoint. Counting the vertices of G’, we have
[V(G")] = 2(2=5=1) + 2 = n — i + 1 which gives a contradiction. Thus, an
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z-y path of length 4 exists in G’, and therefore, G has property By; ;. O

From our minimum degree results thus far, one might be inclined to con-
jecture that we may continue to decrease our minimum degree bound by a

factor of ‘-7{ for each incrimental increase in d. However, this is not true by
considering the following graph. Let the graph G be (K Logiy U K asi ]) +

K;. Then, §(G) = [&FJ — 1, and if we remove the K; and any j
edges, the resulting graph is disconnected. Thus, any hope of reducing
the minimum degree condition needed to imply By ; for d > 5 must also
incorporate a connectivity condition for x(G) > i + 1. Also, the graph
(K e K %-_.-]) + K, demonstrates that our minimum degree bound
for d = 4 is sharp.

2.2 Connectivity results

Now, we turn our attention to lower bounds on x(G) to imply Bg; ;
for specific values of d. For d > 2, Faudree, Jacobson, Ordman, Schelp,
and Tuza [8] proved that for a graph of order n, x(G) > "ﬁm +m
implies that G has property Py m. Ip particular, letting d = 2 and m =
i+ 7 + 1, we have that «(G) > Pﬂ'EJLl implies that G has property
P3i15+1, and therefore, implies that G has property Bs; ;. They also
demonstrate the bound is sharp when n + 4 + j is odd by considering the
graph Kij_1 + Cyq (2=5554, n=i=i=1'1,1) which we denote by G. We
leave it to the reader to verify that <(G) = m’gj——l and that G fails
to have property By ;. As in the §(G) discussion in the previous section,
the lower bound on «(G) to imply By, ; is smaller than that which imples
Py iy j41 for d > 3. The result for d = 3 follows.

2. -3_ .
Theorem 6. If x(G) > %—21, then for n sufficiently large, G has
property B, ;.

.35
Proof: Let G be a graph with «(G) > nt2i+ . We assume the result

is not true and argue to obtain a contradiction. So there exists a set of 4
vertices and 7 edges in G such that upon their removal, the diameter of the
altered graph is at least 4. We remove such a set of ¢ vertices from G and
call the altered graph G’. Then

. 33 . 37
n(g:)zﬁzg_ﬁ_i=§_—;_ﬁf._

111



Since, by assumption, G does not have property Bs; ;, there exists a
pair of vertices z and y in G’ such that the removal of some set of 7 edges
from G’ leaves the distance between z and y to be at least 4. By Menger's
—i+ 3
Theorem, there exists at least nott vertex disjoint z-y paths. No more
than j of these paths may be of length at most 3; otherwise, we contradict

. , n—i+ %
our assumption. We select a path system of p = x(G') >

vertex disjoint z-y paths such that the paths are of minimal length and
the number of paths of length at most 3 is maximal. (So no chords exist
along the paths.) Let px be the number of vertex disjoint z-y paths of
length k in our path system for k = 1, 2,3, and let ps be the number of z-y
paths in our path system of length at least 4. As we previously mentioned,
p1+p2 +p3 < J,and ps = p— p1 — p2 — p3. Also, we suppose that the
ps z-y paths of length at least 4 contain a total of 3ps +a internal vertices
where a > 0.

Counting the vertices on the p paths in our path system in addition to
the vertices z and ¥, we have that

V(G| > p2+2p3+3pa+a+2 =p2+2p3+3(p—p1—p2—p3)+a+2

v

., 3.
(n—z+-§1) —3p1—2p2 —psta+2.

Ifn—i+ %j —3py —2p2 —p3 +a+2 > n—1, we have a contradiction.

Thus, G’ contains at most 3p; + 2p2 + p3 — %j — a — 2 vertices outside of
our path system.

Now, we utilize the connectivity of G’ and the conditions imposed on
the selection of our path system to obtain additional short z-y paths which
will give us the contradiction we desire.

We define A to be the set of vertices in G’ that are adjacent to y on the
paths of length at least 4 in our path system. Note that

., . 3. .
n—-t+3 . .
|Al=p4 2 LT > % because n is sufficiently large. Next, we observe

that if we remove the following vertices from G’: all vertices on the p; =
p — p1 — p2 — p3 vertex disjoint z-y paths of length at least 4 that are not
adjacent to z or y; all vertices on the length 3 z-y paths that are adjacent
to y; the additional vertices in G’ not contained in our path system; and
the vertex y, the total number of vertices removed from G’ is at most

3.
(p~pr-p2-psta)+ps+3p+2mtp—gi-a-2+1

3.
=p+2p1tp2t+p3—i-1.
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Since p; +p2 +p3 < j and py < 1, it follows that 2p; +p2 +p3 — %j -1<

3 n—i+3j .
0. Thus, p+ 2p1 +p2 +p3 — 3 ji—-1<« LT so the remaining graph
must still be connected. It follows that the vertices in A must be adjacent

to at least % j+1-2py—p2—p3> % distinct vertices from G’ that were
not deleted above; otherwise, we contradict the connectivity of G’.

We define X to be the set of vertices adjacent to z that are contained
on paths of length 2 or 3 in our path system. Those vertices mentioned
above that are adjacent to the vertices in A must come from X so as not
to contradict the minimality of the paths chosen in our path system. Thus,
1X]> 4.

We now construct a matching between A and X. Let vk € A. The vertex

v, must be adjacent to more than % vertices in X. From the neighbors of

v in X, we distinguish the edge vxux for some ux € X. Because |X| > %,
we have that for any other v,, € A, we can select a u,, € X such that
um is adjacent to vy, and u, has yet to be distinguished to any other
ve € A. Thus, we distinguish the edge v,um, and continue until we run
out of vertices in X. The cardinalities of A and X ensure that the set of
distinguished edges form a matching of size greater than % between A and
X.

Similarly, we define B to be the set of vertices that are adjacent to z
on our paths of length at least 4 in our path system. Since n is sufficiently

large, |B| = pa > -% Let Y denote the set of vertices adjacent to y that
are contained on paths of length 2 or 3 in our path system. By removing
vertices from G’ similar to what was previously done, the vertices in B

are adjacent to more than % distinct vertices from Y. Employing a similar
argument to the one used for the sets A and X, we obtain a matching of size

greater than % between B and Y. Thus, we have more than j edge disjoint
z-y paths of length at most 3 which gives us a contradiction. Hence, G has
property Bz ;. (]

If we consider the graph G appearing in Figure 3, we show that the
bound on k(G) for d = 3 is sharp. As before, we use a line in Figure 3
to indicate the inclusion of all possible edges between designated sets of
vertices, and we mention that a set of i vertices is adjacent to every vertex
n—i-3|F] -2

of G. Also, the value of m in the K|n’s is , and ¢
equals either [m] or [m] + 1 so that the sum of the vertices in G is n.

One cut-set in G of minimum cardinality contains all vertices incident to
n—i-3 |5 -2 . i1
the vertex z. Thus, x(G) = { 3 +i4+1+42 lLT—J
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1 vertices
adjacent to all

Figure 3: A graph G with «(G) < w but not property Bs; ;

i 34—
This sum equals [w} — 1 except when n + 2i = 2 (mod 3)

. § .
and j is odd. In the later case, x(G) = lwéizl .

If we delete the K; adjacent to all vertices in G, the edge zy, the edges
between y and the right-most K Lis] in Figure 3, and the edges between
z and the middle K L] in Figure 3, d(z,y) = 4. Thus, property B3 ;is
not satisfied. -
For d = 4, we conjecture that x(G) > nt3it o + 1 implies property
B, ;. Employing a proof technique similar to the one used for d = 3 was
an accounting nightmare so we feel a different technique should be utilized
to prove the d = 4 case.
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