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Abstract

At each vertex in a Cayley map the darts emanating from that
vertex are labeled by a generating set of a group. This generating set
is closed under inverses. Two classes of Cayley maps are balanced and
antibalanced maps. For these cases the distributions of the inverses
about the vertex are well understood. For a balanced Cayley map
either all the generators are involutions or each generator is directly
opposite across the vertex from its inverse. For an antibalanced Cayley
map there is a line of reflection in the tangent plane of the vertex
so that the inverse generator for each dart label is symmetric across
that line. An e-balanced Cayley map is a recent generalization that
has received much study, see for example [2, 6, 7, 13]. In this note
we examine the symmetries of the inverse distributions of e-balanced
maps in a manner analogous to those of balanced and antibalanced
maps.
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1 Introduction and Definitions

Intuitively a map of a graph is a “drawing” of the graph onto an orientable
closed surface so that edges intersect only at their vertices. In this paper
we are concerned with a special type of map of a Cayley graph known as a
Cayley map. In [11, 12] Siréfi and Skoviera define and classify two types of
regular Cayley maps: balanced and antibalanced. Balanced and antibalanced
Cayley maps exhibit marked symmetry in the distribution of inverses at a
vertex. A recent generalization of balanced and antibalanced maps is that of
an e-balanced Cayley map [7]. Two recent papers on e-balanced Cayley maps
are [2) and [6]. In this paper we investigate the symmetries inherent in the
inverse distributions of e-balanced Cayley maps. Every Cayley map can be
covered by a regular Cayley map [9]. Thus we may limit our investigation to
regular e-balanced Cayley maps. A regular Cayley map is one that exhibits
a high degree of symmetry (see below for the definition).

We follow the theoretical background and terminology of Nedela and
Skoviera, set forth in [8]. A graph is a quadruple K = (D,V;S, L), where
the dart set D = D(K) and the vertez set V = V(K) are disjoint nonempty
finite sets, S : D — V is a surjection that assigns to each dart its initial
vertex, and L is a permutation on D of order 2 that determines the edges of
the graph (dart § and L(5) together correspond to one and the same edge
of the graph). Under this definition, there are three possible kinds of edges:
links, loops, and semiedges. Links are incident with two distinct vertices
(SL(5) # S(8)). Loops and semiedges are incident with a single vertex
(SL(8) = S(8)); when L(8) = 0, the dart § corresponds to a semiedge, and
when L(8) # §, the dart § corresponds to a loop. In this paper we will only
be concerned with simple graphs that have no loops, semiedges, or multiple
edges between vertices. .

An oriented map M is a 2-cell imbedding of a graph (D,V; S, L) in an
oriented surface; all maps in this paper will be oriented. Specifically, M is an
ordered triple (D; R, L), where D is the set of darts, L is the permutation of D
with order 2 that determines the edges of the graph, and R is a permutation
of D that specifies the cyclic ordering of darts at each initial vertex, i.e.,
S(R(5)) = S(8), for all § € D. We also call R the dart rotation function for
map M. The cycles of R determine the vertices of the graph, and the cycles
of RL constitute the region boundaries.

An automorphism of the map M = (D; R, L) is a bijection ©:D—-D
that commutes with R and L, i.e., OR = RO and ©L = LO. By this



definition, a map automorphism preserves a map's vertices, edges, and ori-
ented boundary regions. The set of all map automorphisms of M forms the
automorphism group of M, which is denoted by Aut M. Since an auto-
morphism of M is uniquely determined by specifying the image of one dart,
|[Aut M| < |D|. When |Aut M| = | D), the map M has the

largest possible automorphism group and is called a regular

map. Recently, certain classes of regular maps have become known 4,7,
10, 12, 1] through the study of Cayley maps.

Let G be a finite group and let A be a generating set for

G such that 1 ¢ A and A is closed under inverses. The Cayley graph
CG(G,A) is a graph with the elements of G as its vertex set with an edge
between vertices g, and g, if and only if g;'g; € A. The dart set of the
Cayley graph is G x A, the initial vertex function S is defined by S(g9,z) = g,
and the permutation L is defined by L(g, z) = (9z,z™"), i.e., CG(G, A) =
(GxA,G;S,L). Let p: A — A be a cyclic permutation. Then the Cayley
map M = CM(G,A,p) = (G x A;R,L) is the 2-cell imbedding of the
Cayley graph CG(G,A) such that R(g,z) = (g, p(z)), that is, the cyclic
permutation of darts incident from each vertex is determined by p. Again,
an automorphism of M is a bijection © : GX A — G x A such that OR = RO
and ©L = L, and M is regular if |Aut M| = |G]|A|.

In a Cayley graph CG(G, A), every dart incident from vertex ge€Gisof
the form (g,z), = € A; we call z a dart label. In this paper we describe how
the inverse of dart label z is distributed relative to z about the imbedded
vertex of the Cayley map in the plane tangent at the vertex to the surface
of imbedding. This distribution is called the inverse distribution. Several
authors (2, 6] in the current century have touched on this topic, because the
inverse distribution of a regular Cayley map may be used in determining the
automorphism group of the map.

This paper is divided into the following sections.
1. Introduction and Definitions (current section)

2. Inverse Distributions for Regular Cayley Maps
3. e-Balanced Cayley Maps of Prime-Power Degree
4. e-Balanced Cayley Maps of General Degree



2 Inverse Distributions for Regular Cayley
Maps

A Cayley map M = CM(G, A, p) that satisfies the condition p(z™!) = p(z)™!
for all z € A is said to be balanced [1]. An antibalanced Cayley map satisfies
the condition p(z~!) = (p~!(z)) ! [12}. In 7] Martino, Schultz, and Skoviera
introduce the generalization of an e-balanced Cayley map, one that satisfies
the condition p(z™!) = (p*(z))~! for all z € A. Thus a balanced Cayley
map is a 1-balanced Cayley map, and an antibalanced Cayley map is a (-1)-
balanced Cayley map. For an e-balanced Cayley map

e =1modk

where k = |A| is the degree of M.
If k is a power of a prime, a well-known result of classical number theory
[3] gives us the solutions to this equation.

Theorem 2.1. Let g be a prime and n > 1 an integer; let k = q*. The
solutions of €2 =1 mod k are:

1. if q is odd, then e = £1 mod k

2 ifk=2, thene=1mod2

8. if k=4, then e = +1 mod 4

4 ifg=2andn>3, thene=*1modkore=5x1modk.

If k has more than one prime divisor, then the Chinese Remainder The-
orem may be used to find the number of solutions for e.

Let M = CM(G, A, p) be a regular Cayley map. Label the elements of A
by subscripts 4 such that A = {z,22,...,Zx} and p(z;) = Zis). The inverse
distribution T of M is a permutation of order 2 on the set {1,2,..., k} such
that z;! = z,(). It is shown in (7] that Aut M, the automorphism group
of Cayley map M, has a right group action on {p) = {r°p',7% ..., -1},
This action induces a group homomorphism ¥ : Aut M — Si, where S is
the symmetric group on k letters. An equivalent action of the dart group
is also defined in [9). The image of ¥ is generated by 7 and the k-cycle
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n=(1,2,...,k). The e-balanced condition then becomes a statement about
how T conjugates 5, namely
™mr =17
Liskové, Mataj, and Skoviera [6] have completely characterized inverse
distributions of e-balanced Cayley maps, as follows.

Theorem 2.2. Let M = CM(G, A, p) be an e-balanced Cayley map where
k =|A|, and let 7, : Sy — Sy be defined as 7,(3) = ei mod k. The distribution
of inverses T € Sy, associated with M has one of the following forms:

lL.r=1,o0r

2. when k is even, 2*||k, and e = +1 mod 2", then T = 7°r., where d =
ged(e — 1,k)/2.

In case 1, 7(i) = ei and A contains gcd(k,e — 1) involutions; in case 2,
7(4) = ei +d and A has no involutions.

The above results were also independently discovered by one of the au-
thors of this paper, see [13]. The number of involutions in an e-balanced
Cayley map has been calculated by Martino, Schultz and Skoviera in (7).

3 e-Balanced Cayley Maps of Prime-Power
Degree

Let M = CM(G,A,p) be a regular Cayley map. In this section we show,
when k = |A| is the power of a prime number, the symmetries inherent in
the inverse distribution 7 when M is e-balanced. These distributions fall
into a limited number of cases, depending on the values of e and k. Some
are already well known: when e = 1 or —1. We review those cases, and
consider the cases when e is not 1 or —1. We .provide illustrations of the
cases, adopting the convention that a dart that represents an involution in
A (an involutory dart) is depicted as a double line and a letter from the
beginning of the alphabet, and a dart that is not its own inverse (a non-
involutory dart) is represented by a single-line arrow and a letter from the
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end of the alphabet. Darts of the same pattern are inverses of each other,
or a non-involutory dart pair. If non-involutory pairs reflect across a line
in the tangent plane of the vertex, that line is depicted by a dotted line.
Further, in some of the figures we adopt the convention of numbering the
darts counter-clockwise from 1 to k with k in the vertical position.

By Theorem 2.1, when k is the power of an odd prime, e is either 1 or
—1, and so the associated Cayley map must be either 1-balanced or (—1)-
balanced. The following results are already known from [11] and [12].

Theorem 3.1. Let M be a regular Cayley map CM(G,A,p). Let k = |A|
and e be an element of Z; such that € = 1 mod k. If M is e-balanced and
if k is a power of an odd prime g, then, when e =1, all darts incident from
a vertez are involutions; and when e = —1, there is ezactly one involutory
dart a, while each non-involutory dart pair reflect across a line through a.

1-balanced (-1)-bélanced

k is a power of an odd prime

Figure 1:

By Theorem 2.2, if e = 1 (M is 1-balanced or “balanced”), the in-
verse distribution 7 = (1,1)(2,2)...(k,k) = ¢, the identity permutation
of S,, and A contains gcd(k,k) = k involutions; p = (a1,az,... Jap). If
e = —1 (M is (—1)-balanced or “antibalanced”), the inverse distribution
7 =(1,-1)(2,-2)... (5%, —%5!) and A contains ged(k, —2) =1 involution.



In this case, p = (x1,%2,...,%1,8,%; ..., %3 ,27") where ! = &1, Note
that the line of reflection between darts and their inverses coincides with the
single involution.

We now consider the case when k is a power of 2. For the first two cases,
2 and 4, e is either 1 or —1 and, as above, the results are known.

When k = 2, by Theorem 2.1, e = 1; hence, M is 1-balanced. But since
2 is even and divides itself, and e = +1 mod 2, Theorem 2.2 provides two
different possible inverse distributions: 7 = ¢, the identity permutation of
Sk, A contains two involutions, and p = (g,b); or 7 = (1,2), A contains no
involutions, and p = (z,z™?). '

possible 1-balanced rotation schemes
k is a power of 2

Figure 2:

When k = 4, e is either 1 or —1. Again, since 4 is even and divides
itself, and e = +1 mod 4, there are two different possible inverse distribu-
tions for each case. When e = 1, either 7 = +, A contains ged(4,4) = 4
involutions, and p = (a,b,c,d); or 7 = (1,3)(2,4), A contains no involu-
tions, and p = (z,¥,z7!,y7!). When e = -1, either 7 = (1, -3), A contains
ged(4, —2) = 2 involutions, and p = (z,a,z7!,b); or 7 = (1,4)(2,3), A con-
tains no involutions, and p = (z,y,¥~',z™!). Note in the former case that
the line of reflection between darts and their inverses coincides with the pair
of involutions, and in the latter the line coincides with no dart at all.



possible (-1)-balanced rotation schemes
kis a power of 2

Figure 3:

When k = 2" withn > 3, theneis 1, -1, % —1,0r §+ 1; M need not
necessarily be 1-balanced or (—1)-balanced.

Theorem 3.2. Let M be a regular Cayley map CM(T,A,p). Let k = |A|
and e be an element of Zi such that €2 =1 mod k. If M is e-balanced and if
k is a power of 2, then:

1. when e = 1, either A consists entirely of involutions, or else each dart
and its inverse lie symmeirically about the vertez;

2 when e = —1, either A contains no involutions, but all the darts lie
symmetrically about a line in the tangent plane of the vertez from their
inverses; or else two involutions lie opposite each other and all the
other darts lie symmetrically about a line containing the involutions
from their inverses;

8. whene= %—f— 1, there is one e-balanced form for p, in which the darts
alternate between involutions and inverse pairs across the vertez;

4. whene = % — 1, there is ezactly one e-balanced form for p: for each
inverse pair of darts, the labels of the darts are either both even or both
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odd, and there are two lines through the vertez, perpendicular to each
other, such that the even inverse pairs of darts lie symmetrically about
one line, and the odd inverse pairs lie symmetrically about the other.

Proof. Let k = 2" for some positive integer n.

1) When e = 1, by Theorem 2.2, either 7(3) = 1 xi =i or 7(3) = 1 #i+
ged(e — 1,k)/2 = i + £. In the former case 7 = ¢, A consists entirely of
involutions, and p = (a1,8,,...,x). In the latter case, 7 = (1,5 + 1)(2, 5 +
2)...(,%+1)...(5,k), A contains no involutions, and

_ -1 -1 -1
p_(xl)z%-“:xhzl 1WTe - Iy )

where | = %, i.e., the inverse of each dart is the dart symmetrically across
the vertex.

2) When e = —1, by Theorem 2.2, either 7(3) = —1%i = —i or 7(i) = —1*
i+ ged(e—1,k)/2 = 1—i. In the former case, 7 = (1,-1)(2,~2) ... (51, 5+
1), A contains 2 involutions, and p = (a,¥1,¥2,- - -, 911, 0,4 % - - -, ¥ L 01 ),
where [ = £; it is clear from 7 that the two involutions (k) and (%) lie opposite
each other and all the other darts reflect their inverses about a line through
the involutions. In the latter case, 7 = (1,k)(2,k~ 1)(3,k-2)... (5, 5 +1),
A clearly contains no involutions, and

— -1 -
p=(z1,22...,20,2; " ,..., 23", 27")

where [ = § Here, all the darts reflect their inverses across the line in the
tangent plane of the vertex between 1 and k at one point and between % and
£+1 at the other.

3) In the final cases the order k must be greater than or equal to 8; then
l= § is greater than or equal to 4. When e = [ + 1, then by Theorem 2.2,
7(i) = ei = li+1i = £i+4. Hence 7 = (1,14+1)(2,20+2)(3,31+3) ... (k, kl +
k) = (1,14+1)(3,3[+3)...(k—1,1-1) (deleting duplicate transpositions); 7
is separable into even-labeled transpositions and odd-labeled transpositions.
All the even-labeled darts are involutions, while the odd-labeled darts are
symmetric across the vertex from their odd-labeled inverses. Thus there are
! involutions in A, and

= -1 -1
p= (:cl,al,zg,ag,...,z;,a;,...,x, NS , Q).

Note that the even-labeled darts, as all involutions, are of the exact form
as one of the possible 1-balanced for { darts rotations, while the odd-labeled
darts, symmetric across the vertex, are of the other form.
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4) When e = | — 1, then by Theorem 2.2, 7(i) = ei = li —i = 8-
Hence 7 = (1,1 - 1)(2, 2 - 2)(3,31-3)...(%, "1-5) (k, kl - lc)—(l l-
1)(3,0 = 3)...(k— 1,1+ 1)(2, —2)(4 —4) (2,,) .(k, k) (deleting dupli-
cate transpositions). Again, 7 is separable into even-labeled transpositions
and odd-labeled transposmons Note that there are exactly two involutions
among the even-labeled darts, & 3 and k, and the other even-labeled darts re-
flect their inverses across a lme that coincides with £ 3 and k. At the sa.me
tlme, the odd-labeled darts reflect their inverse across & line between & 3 and

2 both of which are even labels. Thus A contains 2 involutions and

p= (zhyl _1 lea ,---,zgay§»---,241.,_1,5,---'31 :y%)

alternates between the entries in the two possible (—1)-balanced for ! darts
rotations, with the second rotation cycled by § — 1. Thus for each inverse
pair of darts, the labels of the darts are either both even or both odd, and
there are two lines through the vertex, perpendicular to each other, such that
the even inverse pairs of darts lie symmetrically about one line, and the odd
inverse pairs lie symmetrically about the other.

O

6-balanced for 8 darts

Figure 4:
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Example 3.3. Let k = 8 and e = 5; then p alternates between the two 1-

balanced rotations (z1,z2,27",z7") and (a,b, ¢, d), where a, b, ¢, and d are all
tnvolutions. That is,

p=(21,a,22,b, 27, ¢, 25, d).
On the other hand if k = 8 and e = 3, then p alternates between the
two (—1)-balanced rotations (z1,22,2;",27") and (y1,a,37%,b), where a and
b are involutions; the second rotation is not cycled since § ~1=0. That is,

-1 -1 o~
P=($1,y1,$1 $a’z2)y1 )zzl)b)'

8
b
! > X?jlv 7
x1'- o
-1
2 ' 6
Y1
> h ° 'xz
3% X a 's
4
3-balanced for 8 darts

Figure 5:

For k =32 and e = 15, the second rotation is cycled by & — 1 = 3.

-1 -1 -1
p=(zl:y3 1 22,Y2 »T3,Y; 1 T4,Q,Ts5,Y1, L6, Y2, T7, Y3, T8, Y4,
-1 -1 -1 -1 -1 -1 =% 1 =1 , 1 =1 -1
Tg Y5, T7 ,Y6,Tg 1 Y7, Ts ,b,$4 Y7 %3 Y6 1T 2 Ys 2Ty 2 Y )
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4 e-Balanced Cayley Maps of General Degree

We now consider the case that k = |A| is not a power of a prime. Let k = k) k;
where k, and ko are relatively prime. The distribution of the inverses of an
e-balanced map of degree k is a “composite” of the distributions for maps of
degree k; and k.

By the Chinese Remainder Theorem, there is a ring isomorphism a :
Zi — Zy, x Zy, defined by a(r) = (r1,72) where r; = mod k) and r; =
r mod k;. Since ged(k;, k2) = 1, there exists integers a and b such that
ak, 4+ bks = 1. The inverse a~! is defined by a~1(r;, ;) = ribk; + r2ak; mod
k.

From the inverse distribution 7 : Sp — Sk, we define my(n) = 7(r)
mod k; and 73(r;) = 7(r) mod k. Theorem 2.2 shows that 7, and 7, are
well-defined. The functions 7; and 7, may be defined as permutations on the
sets {1,2,...,k} and {1,2,...,k;} respectively. We will denote these sets
A, and A,. The distributions 7; and 7; induce e;- and e;-balanced rotations
on A; and A,.

We adopt the notation: i stands for 1 or 2. For convenience , we denote
the e-balanced for k darts rotation as the “k-rotation” and the e;-balanced
for k; darts rotation as the “k;-rotation.” Label the darts in the k-rotation
1 through k;. In the k;-rotation, the inverse of the dart labeled k; is located
at label w;. If dart k; is an involution, then w; = k;. By the form of the
involution 7; associated with the k;-rotation, the inverse of dart ; is located
at w; + r;e; in the k;-rotation, by Theorem 2.2.

Proposition 4.1. With the above notation, if 7(k) = w, then
7(r) = (w) + r1e1)bks + (w2 + rae2)ak;.

Proof.
a(7(r)) = (1 (r), 72(r2))-
0

Remark 4.2. That is, to find the inverse of (ry,72) € Ay X Ay = A first use
the symmetry of the k;-rotation on A, x {r2} to find (11(r1),72), then use
the symmetry of the kq-rotation on {1,(r)} x A, to find (ni(r1), 7a(r2)). Or
one may first use the ex-symmelry on {r} x A, and then the e,-symmetry
on A x {my(r2)}.

14



(3.5)
(1,1) 1|5 2.4)
1 14
(22) \ * (1.3)
2 M
(33)3 12 (3,2)

(1 ' 4) Y PSR -"" -";--'-.’ ) '"\"‘-:-- ........... -11 (2’1)
P - N
@5)° 1 (15)
6 ?
@y 7 s O
(1,2) (2,3)
4-balanced for 15 darts
Figure 6:

Figure 6 shows a 4-balanced for 15 darts rotation. From Theorem 2.2, we
know that, considered as a permutation,

T = (1,4)(2,8)(3,12)(6,9)(7,13)(11, 14)

(since k is not even, 7(i) = 4i). The inner letters depict this inverse distri-
bution: if we consider the dart pointing straight “up” to lie at position 15,
and advance in a counter-clockwise direction, dart z, lies at position 1 while
dart z7! lies at position 4, dart z, lies at position 2 while dart z;! lies at
position 8, etc. The involutory darts, a,b, and c, lie at positions 5, 10 and
15, respectively.

The outer pairs of numbers label the darts from Z3 x Zs, using 3 or 5
instead of 0. To demonstrate the method of finding the inverse distribution
according to Proposition 4.1, we first note that a(4) = (1, 1), 1(3) = 1%i =
i, and 72(é) = —1+i = —i. Consider label (r1,7) = (1,1); (r(r1),72) =
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(1*1,1) = (1,1); then (n(r),n(r2)) = (1,-1%1) = (1,-1) = (1,4).
Likewise for (ry,72) = (1,2): (1i(r1), m2(r2)) = (1#1,-1%2) = (L,3).
Observe that, because of the nature of a~!, advancing from A, x {r} to
A, x {ry + 1} rotates the copy of A; by a(-’é) radians. Similarly, advancing
from {r} x Az to {r1 + 1} x A, rotates the copy of Az by b(%%) radians.
We are now ready to summarize the inverse distributions of e-balanced
Cayley maps.

Theorem 4.3. Let M = CM(G, A, p) be an e-balanced Cayley map of degree
k. There are seven possible cases.

1.

If e = 1, then either all the generators are involutions or inverse pairs
are symmetrical about the vertez.

. If e = —1, then inverse pairs are symmetrical about one line in the

tangent plane that either coincides with two involutions or else coincides
with no dart.

Ife = £+ 1, then the dart labels alternate between involutions and
inverse pairs across the vertez.

Ife = % — 1, then the inverse pairs lie symmetrically about one of
two perpendicular lines. The lines that the pairs are associated with
alternate as one rotates about the vertex.

. If k = kyk, with gcd(ky, ko) = 1, ale) = (—1,1), and for integers a,b,

ak; + bky = 1, then inverse pairs lie symmetrically about one of either
ks, if ky is odd, or 521, if ky is even, lines. As one advances counterclock-
wise from dart to dart, the lines of reflection rotate counterclockwise by
a(%) radians.

If k = kiky with ged(ky, kz) = 1, a(e) = (¥ + 1,—1), and for integers
a,b, ak, + bk, = 1, then inverse pairs lie symmetrically about one of !‘-21
lines. As one advances counterclockwise from dart to dart, the lines of
reflection rotate counterclockwise by a(3) + b(fn—") radians.

If k = kyky with ged(ky, k2) = 1, a(e) = (§—1,1), and for integers a, b,
ak, + bk, = 1, then inverse pairs lie symmetrically about one of 2k,
lines. As one advances counterclockwise from dart to dart, the lines of
reflection rotate counterclockwise by a(3=) + b(}) radians.
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Remark 4.4. These seven cases ezhaust all possibilities. If k = kiky with
ged(kr, ka) = 1, then a~'(5 +1,1) = 5+ 1 and al(-1,-)=k—1 I
k = kkoks with ged(ky, ka, ks) = 1, then a~}(§ +1,1,-1) = B E+1,-1)
and a”'(§ - 1,-1,1) = B-Y(% - 1,1), for ring isomorphisms a : Z; —
Zk‘ xz,,, sza andﬂ:Zk—»Zk,k, sza.

Proof of Theorem 4.9. As we have already stated we may assume that M is
regular. A

Cases (1) through (4) follow exactly as in the proofs of Theorems 3.1 and
2.

Case (5): The symmetry of ks,-rotation is either the identity or reflection
across the vertex (or equivalently rotation IT by = radians. If R, is reflection
across a line [, then I1R; = R,,, reflection across the line perpendicular to L.
Thus the effect of IT is to rotate all the lines of reflection. Thus without loss
of generality we may assume the symmetry of the kz-rotation is the identity.
Therefore, we have a line of reflection for each Ay x{z},z€ Ay Ifk, is
even, the lines are repeated twice.

The subset A; x {z + 1} is rotated by (%) from A, x {z}.

Case (6) is a similar argument with the roles of k; and k;, reversed, but the
Symmetry of the k;-rotation proceeds I, [1%, I3, . .., IT®, where I1 is rotation
by 7 radians. This introduces an extra a(%) in the rotation of the lines of
reflection.

Case (7) is also a similar argument to case (5), but the symmetry of the
ky-rotation proceeds IR, I2R,, TI*R,, ... 179 By which introduces an extra
b(3) in the rotation of the lines of reflection. Since bk; =1 mod k;, we have
ged(b, ki) = 1. This implies that b is odd as is k; so there will be 2k; lines of
reflection.

a

Asanexample of case 5, let k = 15 = 9+3,e = 4, ale) = (-1,1) € ZsxZ,,
a =2 and b = -3, and see Figure 7. Note that the line of symmetry for each
(—1)-balanced for 5 darts rotation itself rotates counter-clockwise by 2(3r)
radians, or (F) radians clockwise.Note that the 15-rotation consists of three
S-rotations. A k)-rotation is produced whenever there is an involution in the
kz-rotation by Proposition 4.1 and Remark 4.2.

As a final example if k = 12 =344, e = 5, ale) = (-1,1) € Z; x Z,,
a = —1,b =1, then note first that e = 'f — 1, but we may also use item (5)
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Y11 Zs ]
4-balanced for 15 darts

Figure 7:

of Theorem 4.3. The lines of symmetry rotates by 3 radians clockwise (or
—3 radians counter-clockwise) in Figure 9, but the 4-rotation is not- repeated
over and over again as in the previous example, since the inverse distribution
2 = (1,3)(2,4) does not consists of involutions.
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