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Abstract

In this paper, we study the decomposition of the graph (AD,)**
into extended cyclic triples, for all A > a. By an extended cyclic
triple, we mean a loop, a loop with symmetric arcs attached (known
as a lollipop), or a directed 3-cycle (known as a cyclic triple).

1 Introduction

Let G be a graph and G** be a graph which is obtained by attaching
a loops to each vertex of G (denoted G*! by Gt for brevity). As usual,
AD, and MK, denote the A fold complete digraph and graph on v vertices,
respectively, and an edge {a,b} in the graph K, can be regarded as sym-
metric arcs (a,b) and (b, a) in the digraph D,. A Mendelsohn triple system
of order v, MTS(v), is a pair (V, B), where V is a v-set and B is a collec-
tion of cyclically ordered triples of distinct elements of V, such that every
ordered pair of distinct elements of V' is contained in only one member of
B. This concept was introduced by N.S. Mendelsohn [7], who proved that
a MTS(v) exists if and only if v # 2(mod 3), v # 6. F.E. Bennett (1]
introduced the concept of a system, similar to an MT'S, in which a triple
may have repeated elements.

An extended Mendelsohn triple system of order v, EMTS(v), is a pair
(V, B), where V is a v-set and B is a collection of cyclically ordered triples
of elements of V, where each triple may have repeated elements and will
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be called a block, such that every ordered pair of elements of V, not nec-
essarily distinct, is contained in exactly one block of B. It has been well
established that an extended Mendelsohn triple system is co-extensive with
the variety of quasigroup satisfying the identity z(yz) = y. (It is called a
semi-symmetric quasigroup). The blocks of an EMTS are of three types:
[z,9,2), [z,z,y)], [z,z,z) which we call cyclic triple, lollipop and loop, re-
spectively. By an extended cyclic triple, we mean a cyclic triple, a lollipop,
or a loop. Observe that [z,y,2] contains the ordered pairs (z,y), (y, 2),
(2,2); [z, ,y] contains the pairs (z,z), (z,¥), (¥,7); and [z, z, 2] contains
only the pair (z,z). An EMTS(v) which has a loops will be denoted by
EMTS(v,a). If (V,B) is an extended Mendelsohn triple system with pa-
rameters v and a, we say B is an EMTS(v,a) and write B € EMTS(v, a).
We say EMTS(v,a) exists if there exists an extended Mendelsohn triple
system with parameters v and a.

F. E. Bennett [1] gave the necessary and sufficient conditions for the
existence of an EMTS(v,a) as follows.

Theorem 1.1 [1] There ezists an EMTS(v,a), if and only if, 0 < a < v
and

(i) if v = 0(mod 3), then a = 0(mod 3);

(4i) if v # 0(mod 3), then a = 1(mod 3);

(i) if v =6, then a < 3.

In graph notation, an EMTS(v, a) is equivalent to the decomposition
of the digraph D} into cyclic triples, v — a lollipops and a loops. Now, we
consider the following question.

Can the graph (AD,)** be decomposed into extended cyclic triples with
all possible number of loops?

From now on, a decomposition of G is a decomposition of G into ex-
tended cyclic triples. In the process of each construction, we need the pack-
ing for the digraph AD,. A packing of the graph AD, with cyclic triples
(or a packing of AD, for brevity) is a set M of cyclic triples formed from
the arcs of AD, with the multiplicity of each arc in M less then or equal
to A. The leave of the packing of AD, are the arcs of AD,\M. When the
cardinality of the set M is a maximum, the packing is called the maximum
packing of AD, and the corresponding leave set denoted by L(AD,). For
v # 2(mod 3) and v # 6, there is an MTS(v). L(AD,) = @ by taking each
triple of the MTS(v) A times. When v = 6, L(Ds) is a 1-factor of Kg. The

138



decompositions B and B* [11] of 2Dg and 3Dg are obtained by taking
{[0’ 1, 2]: [01 2, 1]’ [oo, 0, 2]’ [00, 0, 3]}

and
{[0,1,2],[0,2,4],[0,3, 1], [00,0,2], [0, 0,4],[00,0,4]}

as starter blocks on Zs U {00}, respectively. Taking the union of the de-
compositions of 2Dg and 3Dg, we obtain L(ADg) = 0 for all A > 2.
When v = 2(mod 3), L(D,) contains only one edge by the existence of
EMTS(v,1). Therefore, the set L(AD,) is

(i) 9 if v # 2(mod 3) and (v,)) # (6,1), or v = 2(mod 3) and X =
0(mod 3);
- (ii) 1-factor of K if (v, ) = (6,1);
(iii) one edge if v = 2(mod 3) and A = 1(mod 3);
(iv) two edges if v = 2(mod 3) and A = 2(mod 3).

Recently, some papers investigated the structure of generalized triple
systems. M. E. Raines and C. A. Rodger [8, 9, 10] considered this problem
for extended triple systems and V. E. Castellana and M. E. Raines [3]
for extended Mendelsohn triple systems. In sections 2, we will give the

decomposition of the graph (AD,)** for a = 1, 2 and 3. Lastly, we will
give the general results.

2 Decomposition of (AD,)*?, for a =1,2,3

It can be determined by the means of a computer that the necessary con-
dition for the existence of the decomposition of (AD,)* with ¢ loops,
0<a<uy,is

(i) if a = 0(mod 3) then v = 0(mod 3) or v = 2(mod 3) and A = 2(mod 3);
(ii) if a = 1(mod 3) then v = 1(mod 3) or v = 2(mod 3) and A = 1(mod 3);
(iii) if @ = 2(mod 3) then v = 2(mod 3) and A = 0(mod 3).

Theorem 2.1 If v = 0(mod 3) or v = 2(mod 3) and A = 2(mod 3) then

the digraph (AD,)* can be decomposed into cyclic triples, lollipops and a
loops, for alla = 0 (mod 3) and 0 < a <.
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Proof. The digraph (AD,)* can be regarded as the union of the subgraphs
D} and (A — 1)D, on the same underlying vertices set X. And we will
denote it by (AD,)* = D} U(A—-1)D,,.

When v = 0 (mod 3), v # 6, the first part D} can be decomposed into
cyclic triples, lollipops and 3k loops according to the existence of EMT'S(v,
3k) and the second part (A — 1)D, can be decomposed into cyclic triples
by L((A - 1)D,) = 0. When v =6, Ty = BU {[z,z,2] | z € X} forms
a decomposition of 2Dg with 6 loops. Now, T is obtained from T} by re-
moving the blocks {[0,1,2], [0,2,1], [0,0,0], [1,1,1], [2,2,2]} and replacing
them with {[0,0,1], [1,1,2], [2,2,0]}. Then T3 is a decomposition of 2D
with 3 loops. Let X = {z,, 3, 3, 24, T5, 26}, taking two of the same maxi-
mum packing of Dg with two leave sets {{z1,z2}, {z3,z4}, {z5,76}} and re-
placing those leave sets and loops with {[z1,z1, z2), [z2, 2, 21], [z3, T3, Z4],
(x4, 4, 3], [25, 75, 6), [Z6, Ts, 5]}, We obtain a decomposition of (2Dg)*
without a loop. T3 = B* U {[z,z,z] | z € X} forms a decomposition of
3Dg with 6 loops. From (3Dg)* = Df U2Ds, the decomposition of (3Dg)*
with 3 loops and without a loop can be obtained from the existence of
EMTS(6,3) and EMTS(6,0), respectively. As for A > 4, it follows by
(ADg)* = (2Dg)* U (A — 2)Ds.

When A = 2 (mod 3) and v = 2 (mod 3), the first part D} can be
decomposed into cyclic triples, lollipops and 3k + 1 loops, 0 < 3k + 1 < v,
(say one loop at ) by the existence of EMT'S(v, 3k+1) and the second part
(A —1)D, can be decomposed into cyclic triples and one-edge (say {z,y})
due to the results of packing. The digraph (AD,)* can be decomposed into
cyclic triples, lollipops and 3k loops by combining the loop z and the edge
{z,y} to alollipop [z,z,y]. 3

Theorem 2.2 If v = 1(mod 3) or v = 2(mod 3) and X\ = 1(mod 3) then
the digraph (ADy)* can be decomposed into cyclic triples, lollipops and a
loops, for alla= 1 (mod 8) and 0 < a <w.

Proof. Consider (AD,)* = D} U (A - 1)D,. When v = 1(mod 3) or
v = 2(mod 3) and A = 1(mod 3), the first part D} can be decomposed
into cyclic triples, lollipops and 3k + 1 loops, 0 < 3k + 1 < v, according to
the existence of EMTS(v, 3k + 1) and the second part (A — 1)D,, can be
decomposed into cyclic triples by L((A —1)D,) = §. Therefore, the digraph
(ADy)* can be decomposed into cyclic triples, lollipops and 3k + 1 loops. g

Theorem 2.3 Ifv = 2(mod 3) and X = 0(mod 3) then the digraph (AD,)*

can be decomposed into cyclic triples, lollipops and a loops, for all a = 2
(mod 3) and 0 < a < .
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Proof. Consider (AD,)* = D} U (A —1)D,. When v = 2(mod 3) and A =
0(mod 3), the first part D} can be decomposed into cyclic triples, lollipops
and 3k + 1 loops, 0 < 3k+ 1 < v and k > 1, with two loops at = and y
according to the existence of EMT'S (v, 3k+1) and the second part (A—1)D,
can be decomposed into cyclic triples and two edges {{z,y}, {y, 2}} due to
the results of packing. Replacing the edges {{z,y}, {y, z}}, the loops = and
y with lollipops [z, z,y] and [y,¥, 2], the digraph D} can be decomposed
into cyclic triples, lollipops and a loops, where a = 2 (mod 3) and 2 < a <
v — 3. From L(AD,) = 0, the digraph (AD,)* can be decomposed into
cyclic triples and v loops. g

In the same way, the necessary condition for the existence of the de-
composition of (AD,)*? with a loops, 0 < a < 2v, is

(i) if a = 0(mod 3) then v = 0(mod 3) or v = 2(mod 3) and A = 1(mod 3);
(ii) if @ = 1(mod 3) then v = 2(mod 3) and A = 0(mod 3);
(iii) if @ = 2(mod 3) then v = 1(mod 3) or v = 2(mod 3) and A = 2(mod 3).

As for the decomposition of (AD,)*? for those data, we consider (AD,)*?
= D} U ((A —1)D,)*. Combining the decomposition of first part by The-
orem 1.1 and the decomposition of second part by Theorems 2.1, 2.2 and
2.3, the digraph (AD,)*2 can be decomposed into cyclic triples, lollipops
and a loops, for all a in each case above. So, we have the following three
Theorems.

Theorem 2.4 If v = 0(mod 3) or v = 2(mod 3) and A\ = 1(mod 3) then
the digraph (ADy)*? can be decomposed into cyclic triples, lollipops and a
loops, for alla= 0 (mod 8) and 0 < a < 2v.

Theorem 2.5 If v = 2(mod 3) and A\ = 0(mod 3) then the digraph
(ADy)*? can be decomposed into cyclic triples, lollipops and a loops, for
alla= 1 (mod 8) and 0 < a < 2v.

Theorem 2.6 If v = 1(mod 3) or v = 2(mod 3) and X = 2(mod 3) then
the digraph (AD,)*2 can be decomposed into cyclic triples, lollipops and a
loops, for alla = 2 (mod 3) and 0 < a < 2v.

Similarly, the necessary condition for the existence of the decomposition
of (AD,)*3 with a loops, 0 < a < 3v, is
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(i) if @ = O(mod 3) then v # 2(mod 3) or v = 2(mod 3) and A = 0(mod 3);
(ii) if @ = 1(mod 3) then v = 2(mod 3) and A = 2(mod 3);
(iii) if a = 2(mod 3) then v = 2(mod 3) and X = 1(mod 3).

From the constructions of EMTS in [4], the following theorem is ob-
tained.

Lemma 2.7 [{] An EMTS(v,a) can be embedded in an EMTS (2v+i,a),
fori=0,3.

Lemma 2.8 For v Z 0 (mod 3), the digraph D} can be decomposed into
cyclic triples, lollipops and one loop, which contain the patterns of blocks
T, where T = {[z,z,2], [z,¥, 2], [z,2,y]} for some vertices z, y and 2.

Proof: The digraph D} can be decomposed into T U {[2,2,1]}, (3,3,2],
(4,4,2]}, the digraph Df can be decomposed into 7' U {[2,2,3}, [3,3,5],
[4,4,2], [5,5,4], [1,2,5],[1, 5,2]} and the digraph D7 can be decomposed
into T U {[1,6,7], [1,7,6], [4,6,2], [4,2,6], [4,5,5], [3,2,2], (2,7, 7], [3,7. 5],
[6,3,3], [4,4,7], [5,6,6], [1,2,5], [3,5,7], [1,5,2]}, where T = {[1,1,1],[L,3,
4], [1,4,3]}. Applying Lemma 2.7 with these small cases, we can construct
the new systems of the other order containing T'.

Theorem 2.9 If v # 2(mod 3) or v = 2(mod 3) and A = O(mod 3) then
the digraph (AD,)*® can be decomposed into cyclic triples, lollipops and a
loops, for alla = 0 (mod 3) and 0 < a < 3v.

Proof. Consider (A\D,)** = G; U G2, where Gy = D} and Gs = ((A -
1)D,)+2.

Case 1: When v = O(mod 3), by Theorem 1.1 and Theorem 2.4, the
digraph (AD,)*® can be decomposed into cyclic triples, lollipops and 3k
loops.

- Case 2: When v = 1(mod 3) or v = 2(mod 3) and A = 0(mod 3), the
digraph G can be decomposed into cyclic triples, lollipops and 37 +1 loops,
0 < 3i+1 < v, by Theorem 1.1 and the digraph G2 can be decomposed into
cyclic triples, lollipops and 3j + 2 loops, 0 < 35 + 1 < 2v, by Theorem 2.6.
Combining the two structures, the digraph (AD,)*® can be decomposed
into cyclic triples, lollipops and 3k loops with k > 1. As for k = 0, by
Lemma 2.8 and Theorem 2.6, the digraph G; can be decomposed into
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cyclic triples, lollipops and one loop containing the patterns T} = {[z, z, z],
[=,9,2], [2,2,y]} and the digraph G2 can be decomposed into cyclic triples,
lollipops and 2 loops, say T2 = {[y,¥,], (2, 2,2]}. Replacing T3 UT> with
{[z,z,¥],[v,9, 2], [2, 2, 2]}, the digraph (AD,)*® can be decomposed into
cyclic triples and lollipops. g

In the same way as in case 1 of Theorem 2.9, we can obtain the following

two theorems.

Theorem 2.10 If v = 2(mod 3) and A = 2(mod 3) then the digraph
(ADy)*3 can be decomposed into cyclic triples, lollipops and a loops, for
alla= 1 (mod 3) and 0 < a < 3v.

Theorem 2.11 If v = 2(mod 3) and A = 1(mod 3) then the digraph
(ADy)*3 can be decomposed into cyclic triples, lollipops and a loops, for
alla= 2 (mod 3) and 0 < a < 3v.

3 Conclusions.

Using the above theorems, we obtained the following results:

Theorem 3.1 When v > 2 and A > «, the digraph (AD,)** can be de-
composed into extended cyclic triples.

Proof. When a > 4, we consider
(AD,)* = (@ = ))Du) T U (A - (a - §))Du)™,

where i = 1,2,3 depend on a = 1,2,0(mod 3), respectively. The first part
can be decomposed into the unions of (3D,)*3 and the second part can
be obtained by the results of section 2. So, the digraph (AD,)** can be
decomposed into extended cyclic triples. g
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