A Novel Data Structure for Unit Disk Graphs

J. Li, X. Liang, H. Selveraj, V. Muthukumar, and Laxmi P. Gewali’
School of Computer Science
University of Nevada, Las Vegas
{jianhong, xiaojunl, selvaraj, venkim}@egr.unlv.edu, laxmi@cs.unlv.edu

Abstract:

For constructing routes in mobile ad-hoc networks (MANET) and sensor
networks it is highly desirable to perform primitive computations locally. If a
network can be represented in the doubly connected edge list (DCEL) data
structure then many operations can be done locally. However, DCEL data
structure can be used to represent only planar graphs. In this paper we propose
an extended version of DECL data structure called ExtDCEL that can be used
for representing non-planar graphs as well as their planar components. The
proposed data structure can be used to represent geometric networks in mobile
computing that include unit disk graphs, Gabriel graphs, and constrained
Delaunay triangulations. We show how the proposed data structure can be used
to implement hybrid greedy face routing algorithm in optimum O(m) time,
where m is the number of edges in the unit disk graph. We also report on the
implementation of several routing algorithms for mobile computing by using the
proposed data structure.

1. Introduction

Research and development problems dealing with mobile ad-hoc
networks (MANET) and sensor networks has been considered by several
researchers in recent years [1-5]. The nodes in both types of networks are low-
powered computing elements equipped with wireless transmission device of
finite range. There is no fixed infra structure to connect such nodes. Nodes
within the transmission range can exchange messages directly, and nodes
outside of their transmission range can possibly exchange messages via a
sequence of intermediate relay nodes. The process of selecting an ordered
sequence of intermediate nodes to exchange messages between a source node S
and a target node T is called routing. In both type of networks, nodes can be in
either active or inactive state, and in MANET they can change their position.
Due to node mobility and the possibility of their state change, the connectivity
of wireless network changes with the progress of time in both types of networks.
Any routing algorithm designed for ad-hoc networks can use only small limited
amount of processing time and memory space per node. Furthermore, most
primitive computations should be done locally. One of the main objectives in

* Corresponding Author

JCMCC 54 (2005), pp. 145-156

mobile computing is to determine global properties of ad-hoc networks by
performing local computation on neighboring nodes.

Network models from computational geometry have been used with
success in designing mobile ad-hoc networks. Delaunay triangulations, Gabriel
graphs, unit disk graphs, relative neighborhood graphs, and Yao graphs are some
of the geometric structures used for constructing location based routes in mobile
computing [8]. For investigation and the actual implementation of routing
algorithms it is necessary to represent the networks in a suitable data structure.
One of the widely used data structures in computational geometry for
representing geometric graphs is the doubly connected edge list (DCEL)
structure [7]. However, DCEL can be used to represent only planar graphs.

In this paper, we propose a data structure called Extended Doubly
Connected Edge List (ExtDCEL) that can be used to represent any non-planar
geometric graph as well as its planar components. This data structure is very
useful for implementing various location-based routing algorithms in mobile
computing. In Section 2, we present a brief review of location based routing
algorithms. In Section 3, we describe the proposed ExtDCEL data structure and
show how it facilitates quick construction and quick update of routes in both
planar and non-planar graphs and present some actual implementation results.
The implementation includes greedy routing, standard face routing, hybrid
greedy-face routing, and improved face routing.

2, Review of Geometric Routing Algorithms

The routing problem in MANET is to construct a path between a source
node S and a destination node T that are not within the transmission range. All
consecutive nodes in the constructed S-T-path must be within the transmission
range so that the path can be used to route messages from S to T. Most of the
geometric algorithms are essentially location based. In location based routing
algorithms it is assumed that the sender knows the location of the destination
node within certain accuracy. This is a valid assumption if the nodes are
assumed to have access to global positioning service. These algorithms can be
categorized into three types: (i.) greedy routing, (ii.) face routing, and (iii.)
hybrid routing. We assume that the transmission ranges of all nodes are
identical and equal to some constant value. Without loss of generality the
transmission range is taken as unity. The location based routing problem can be
formally defined as follows.

Location Based Routing Problem: Given (i) a set V of mobile nodes equipped

with wireless devices, (ii) a start node S, and (iii) a target node T, construct a
route connecting them that can be used to transmit exchange messages.

146

A straightforward and intuitive model of ad-hoc network is obtained by
connecting all pair of nodes lying within the transmission range. Such a network
is called the unit disk graph (UDG). The unit disk graph is not necessarily
planar and could be very dense if the number of nodes per unit area is large.
Figure 1 shows the unit disk graph for 16 nodes.

Figure 1: Illustrating the Unit Disk Graph ({UDG)

2.1 Greedy Routing

One of the simplest algorithms for constructing a source target path is
the greedy most forward routing algorithm [8]. In this approach, the source node
S forwards the message to the node that is closest to the target node T. This is a
pure localized algorithm and works well if the number of nodes per unit area is
very large. However, for some node distribution, this approach can get trapped
in a local minimum and the algorithm fails to construct the route even when
several routes connecting source to destination exist. For example, in Figure 1,
source node S forwards message to node A, which is the node closest to the
target node T. Next, node A forwards the message to node B which is the node
closest to node T. Continuing this greedy forwarding strategy, the message
reaches node H, from where there is no neighboring node that makes positive
progress towards the target node and the message gets trapped there. Greedy
most forward algorithm constructs routs successfully if the number of nodes per
unit area is very large. These algorithms are relatively simpler to implement.

2.2 Face Routing
The technique that is always successful in constructing a route (if a

route exists) is the face-routing algorithm [1, 4-5). The first idea of face routing
technique was reported in the paper dealing with compass routing [1]. For the

147

applicability of the face routing algorithm, the network must be a planar graph.
Fortunately, geometric graphs such as the Gabriel graphs (GG) and relative
neighborhood graph satisfy planarity property and efficient algorithms are
known for their construction. The notion of Gabriel graph can be easily
visualized in term of empty disk test. For a pair of nodes u and v, let D(w,v)
denote the disk having diameter the line segment with end points at and v.
Nodes # and v are connected by an edge in the Gabriel graph if D(u,v) does not
contain any other node. If the size of the empty disk is restricted to be no more
than the transmission range then we get Constrained Gabriel Graphs (CGG).
CGG are known to capture the connectivity of mobile network. Figure 2 shows
an example of a Constrained Gabriel graph. It is straightforward to observe that
Gabriel graphs can be constructed locally by only examining the pair of nodes
that lie within the transmission range.

The face routing algorithm constructs a route connecting source node S
to node T by exploring the faces of the graph intersected by the line segment
connecting the source and the destination nodes. The algorithm constructs the
path by processing faces one by one in the order they occur along the source
destination line segment. It is known that face routing algorithm guarantees to
yield a route if a route exist [1]. Figure 2 illustrates the route connecting nodes S
and T in a Gabriel graph constructed by face routing approach. The constructed
route is drawn as shaded segments. As seen in the figure the route is constructed
by using portions of the boundaries of the faces intersected by the line segment
connecting S and T. If the planar graph has faces with large number of boundary
edges then the face routing algorithm may yield a route with large number of
hops.

Figure 2: Illustrating the Gabriel Graph

If the Gabriel graph has a very large size face then the face routing algorithm
may yield a route with large number of hops. To address this issue, several

148

variations of face routing algorithms have been proposed [4,5]. In one such
variations, the search area is bounded by an ellipse, whose parameter is
determined by the length of the shortest path from S to T. The length a of the
shortest path between S and T is estimated initially as twice the length of the
straight line segment S and T. If a route is contained within the initially chosen
ellipse, then the algorithm becomes successful. Otherwise, the size of the ellipse
is made bigger by doubling the estimated shortest path a. This doubling process
continues until the search becomes successful. It may be noted that when the
search is not successful at any stage, the algorithm retums back to the initial
starting point S. It is shown [4,5] that this bounded adaptive face routing
algorithm finds a route in O(ap) time, where a is the number of edges in the
shortest path connecting S to T.

2.3 Hybrid Routing

As observed above, the greedy routing generates short length routes for
dense network and could get trapped in a local minimum on sparse graphs. On
the other hand, face routing is always successful for route generation if a route
exit, but could generate long length route if the underlying planar graph contains
large size faces. The reason face routing generates long length route is that the
many short edges are eliminated when a planar graph such as the Gabriel graph
is extracted from the unit disk graph. To address this issue hybrid algorithms
that switch back and forth between face routing state and greedy routing state
have been developed [8). The algorithm works by representing the network in
both Gabriel graph and unit disk graph. The hybrid routing algorithm starts by
executing the greedy most forward algorithm on the unit disk graph. If the
greedy strategy is trapped in a local minimum then the algorithm uses face
routing in the Gabriel graph to escape from the trap and resumes the greedy
method in the unit disk graph. Since all nodes of the unit disk graph are also in
the Gabriel graph the algorithm can always find an escaping face from the
trapping node at any local minimum. This approach is known to work fairly well
for large class of mobile networks.

3. Extended Doubly Connected Edge List (ExtDCEL) Data Structure

One of the commonly used data structures for representing planar
graphs is the doubly connected edge list (DCEL) [3,7). DCEL is suitable for
updating the graph efficiently when there is change in nodes or edges or in
connectivity. In DCEL representation if a node changes its position the resulting
change in the connectivity can be done locally. But the network model used in
mobile computing may not necessarily be planar.

For the representation of non-planar geometric graphs, we propose an
enhancement of doubly comnected edge list data structure called Extended

149

Doubly Connected Edge List (ExtDCEL). The proposed ExtDCEL data
structure can be used to represent the non-planar graphs UDG as well as a planar
approximation of UDG such as, the constrained Gabriel graph. As in DCEL data
structure, each edge of the graph is represented by a pair of oppositely directed
half-edges which are twin of each other. Reference [7] gives the detail of DCEL
data structure. To obtain ExtDCEL, we add two additional information in the
standards DCEL: (i) for each node v;, we maintain a list of neighbor nodes that
are within the transmission range; and (ii) for each half edge e;, we maintain the
jump edge €., that can be used to skip certain number of nodes in the face on
which e, is incident. The neighbors of a node v; can be used to construct the unit
disk graph and jump edges can be used to route the path around the face quickly.
Figure 3(a) shows the unit disk graph of 10 mobile nodes with the indicated
transmission range. In the graph non-Gabriel edges are drawn as dashed line
segments.

Vz Vz

V.
i o Vs f,

\ &]] «
Vs Vo \ 7’ Vs
S0 & [N
v
= %
f l)
Vu .Vn

(a) Unit Disk Graph Graph (b) ExtDCEL Representation
Figure 3: Illustrating ExtDCEL Data Structure

ExtDCEL represents the graph by maintaining records for nodes, half-edges, and
faces. A connected non-planar graph such as UDG can be viewed to consist of a
connected planar component and a few extra edges. Each edge in the planar
component is incident on a face. In term of the counterclockwise traversal of a
face, each half-edge of the planar component has unique half-edge as its
predecessor and a unique half-edge as its successor. The record of a half-edge
includes this relationship and other information. Specifically, the record for each
half-edge e; contain entries for indexes of (i) start node of e, (ii) twin half-edge
of e, (iii) next half-edge of e, (iv) previous half-edge of ¢;, (v) the face incident

150

on e;, and (vi) jump-edge of e, Similarly, the record for each node v, include
entries for (i) node id, (ii) index of the half edge incident on v, (iii) coordinates
of v;, and (iv) the list of neighbors of v,. A face-record contains entries for its id
and the index of a half-edge on its boundary. Table 1, Table 2, and Table 3 show
the partial vertex, edge, and face records for the graph shown in Figure 3.

Vertex | Coordinates | Incident-Edge | Neighbors
Vs (x4, y4) es V3, Vs
Vs (x5,y5) es Vi, Vs
4 (x6, y6)] Vs, Vs,
Vi x7,¥7) () Vs, Ve Vi

Table 1: Listing of Vertex Records

Half-Edge | Twin | Next | Prev | Inc Face | Start Vertex Jump Edge
€ € € €10 fi Vs 7]
) €4 €s €2 fi Vs €n
€s €6 es e fy Vs -

Table 2: Listing of Half-Edge Record

Face Index | Inc Edge
fo €
fi)
Table 2: Listing of Half-Edge Record

The proposed data structure was used to implement a variety of routing
algorithms that include the face routing algorithm, greedy most forward
algorithm, hybrid greedy face routing, and improved face routing algorithm. The
implementation is done in the Java programming language. The performance of
the algorithms was examined by executing them on several test data. Some test
data were generated randomly and some were designed to have very large size
faces. Snap-shots of the output generated by the implemented program are as
shown in Figures 4-6. The ExtDCEL data structure can be used to efficiently
construct the standard face route and the hybrid greedy face route. These
algorithms are listed as Standard FaceRouting (Subsection 3.2) and
GreedyFaceRouting (Subsection 3.3).

3.1 Time Complexity Analysis
The Standard Face Routing Algorithm listed above is the description of

the face routing algorithm given in [1] by using the proposed data structure. The
detail sketch of time complexity analysis of the face routing algorithm is given

151

in [1]. It is established in [1] that the time complexity of face routing algorithm
is O(n), where n is the number of vertices in the Gabriel graph. The time
complexity of hybrid Greedy Face routing algorithm implemented by using
ExtDCEL data structure is stated below.

Theorem 1: The time complexity of GreedyFaceRouting algorithm is O(m),
where m is the total number of vertices in the unit disk graph.

Proof: From the vertex record (Table 1) all neighbors of a vertex can
be found in O(d) time, where d is the degree of that vertex. By examining the
neighbors of a vertex v, the vertex nearest to the target node T can be found
within the same time. Hence, one execution of mostForward (startVertex, T)
function takes O(d) and consequently each execution of the while loop of Step
2.1 takes O(d) time. If k edges are traversed in Step 2.2 by face routing then the
time for that traversal is O(k). Since the traversal by the greedy algorithm is
done only in the forward direction, each vertex is processed only a constant
number of time. If r vertices are processed in total (most forward and face
routing) then the total time is O(rd’), where d’ is the average degree of
processed vertices. It is observed that the sum total of the degree of all vertices
is equal to twice the total number of edges m in the graph. Hence the total time
for the algorithm is O(m).

3.2 Algorithm Standard FaceRouting

Step 1: i) Let S, T be the start and target vertices, respectively;
ii) Let startEdge be the half edge incident at S;
ili) currEdge = startEdge; output currEdge;
iv) currEdge = currEdge.next; f= currEdge.incFace;
v) startEdge = currEdge;
Step2: while (currEdge.startVertex = T){
// Scan the boundary of face fto identify the furthest edge of face f
// that intersects with segment ST.
intPoint = Null;
Step 2.1: while (currEdge != firstEdge) {
if (ST intersects with currEdge) {
if (intPoint = Null) {
exitEdge = currEdge;
intPoint = intersection(ST, currEdge);

}
else {
exitEdge = currEdge;

newlIntPoint = intersection(ST, currEdge);
intPoint = furthest(intPoint, newIntPoint);

}

152

currEdge = currEdge.next;
} // end Step 2.1
/loutput edges of face from startEdge to exitEdge
currBEdge = startEdge,
Step 2.2 while (currEdge != exitEdge){
output currEdge;
currEdge = currEdge.next ;
} /lend Step 2.2
// switch to the next face
currEdge = currEdge.twin;nstartEdge = currFace;
S=currEdge.incFace; currEdge = currEdge.next;
output curredge ;
} // end Step 2

3.3 Algorithm GreedyFaceRouting
Step 1: i) LetS, T be the start and target vertices, respectively;

ii) startVertex=S;
iii) endVertex = mostForward(startVertex,T);

Step 2: while (startVertex !=T) {
endVertex = mostForward(startVertex,T);
Step 2.1: while (endVertex != Null) {

output segment(startVertex, endVertex);
startVertex = endVertex;
endVertex = mostForward(startVertex,T);
}//end Step 2.1
Step 2.2; if (endVertex = Null)
{
(i) Use standard face routing algorithm to escape from

local minima and identify new startVertex.
(ii) endVertex = mostForward(startVertex, T);
} //end Step2.2
}// end Step 2

153

Figure 5: Route Generated by Greedy Routing in UDG

154

Figure 6: A Very Long Route Generated by Standard Face Routing Algorithm

4. Discussion

We presented an overview of geometric networks and routing
algorithms applicable in mobile computing and sensor networks. We examined
the data structures that can be used for representation and maintenance of planar
graphs. We proposed an extension of doubly connected edge list data structure
called extended doubly connected edge list (ExtDCEL) that can be used for
implementing several routing algorithms in mobile computing and sensor
networks. The proposed data structure is convenient for representing both planar
and non-planar geometric graphs, and can be maintained with local computation.
The proposed data structure is used to implement several location based routing
algorithms for mobile computing. In particular, the hybrid greedy face algorithm
can be implemented very easily by using ExtDCEL. Several complicated power
aware routing algorithms have been considered in recent years. It would be
interesting to investigate the applicability of ExtDCEL data structure for
implementing power aware routing algorithms.

155

References

[1] Prosenjit Bose, Pat Morin, Ivan Stojmenovic, and Jorge Urrutia, “'Routing
With guaranteed delivery in ad-hoc networks,” ACM Wireless Networks,7, Nov.
2001, pp.609-616.

[2] Susanta Datta, Ivan Stojmenovic, and Jie Wu, *Internal Node and Shortcut
Based Routing with Guaranteed Delivery in Wireless Networks," Cluster
Computing 5,2002, pp. 169-178.

[3]M. de Berg, M. Krteveld, M. Overmars, and O. Schwarkoft, Computational
Geometry: Algorithms and Applications, Springer Verlag, Berlin, 1997.

[4] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger, **Asymptotically
Optimal GeometricMobile Ad-Hoc Routing," Proceedings of DIALM, 2002.

[5] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger, ~“Worst Case
Optimal and Average Case Efficient Geometric Ad-Hoc Routing," Proceedings
of the ACM MOBIHOC, 2003, pp. 267-278.

[6] J. Li, L. Gewali, H. Selvaraj, and V. Muthukumar, "*Hybrid Greedy Facw
Routing for Ad-Hoc Sensor Networks,” Proceedings of Euromicro Symposium
on Digital System Design, 2004, pp. 574-578.

[7] Joseph O'Rourke, Computational Geometry in C, Cambridge University
Press, 1998.

[8] Ivan Stojmenovic (Editor), Handbook of Wireless Networks and Mobile
Computing, John Wiley and Sons, 2002.

156

