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Abstract

New identities involving the Catalan sequence ordinary gener-
ating function are developed, and a previously known one es-
tablished from first principles using a hypergeometric approach.

Introduction

The Catalan sequence {cg, c1,¢2,¢3,¢4,C5,...} = {1,1,2,5,14,42, ...}, with
general (n + 1)th term

1 2n
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is well known to have ordinary generating function (o0.g.f.)
—~ 1-y1T-4z
= "= Y- 2
6) = 3 cos - @

Defining associated ‘even’ and ‘odd’ functions (so that E(z)+O(z) = G(z))
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the following identities, readily verified, are seen to hold:

Identity 1.1
1+ 2zE(z)O(z) = E(z).

Identity 1.2
z[E%(z) + O%*(z)] = O(=z).

Identity 1.3
[1 - 2zE(z)][1 — zO0(z)]G*(z) = 1.

Richard Stanley, in the informative and expanding “Catalan Addendum”
(1)} to a variety of problems involving, and combinatorial interpretations
of, the Catalan numbers layed out in [2, Ch.6], cites Louis Shapiro as the
originator of these (see the solution to Problem 6.19(ppp) of [1]; also Re-
mark 5 later). In addition, Shapiro is said to have communicated a more
‘elegant result still, which is equally trivial to check by hand:

Identity 2
E%(z) = G(4z?).

In this paper we first present new identities for E(z) and O(z), each of
which arises naturally and easily from Identities 1.1,1.2 (by uncoupling
them; an analogue to Identity 1.3 is also given). We then go on to show
that, rather interestingly, Identity 2 can be established without a priori
knowledge of the closed form for G(z)—the proof of this fact, constructed
from first principles using a hypergeometric approach, constitutes the main
contribution of the article. Accordingly, the author would like to express
his thanks to Christian Krattenthaler for his (computer-assisted) advice on
a line of attack, without which the particular route taken through succes-
sive hypergeometric transformations would almost certainly not have been
found, such is the nature of the argument made.

1This is available electronically as a link from his web homepage, and is constantly
being added to. We reference the address of the .pdf version of the document.
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Lemma 1

42304 (z) - 82203 (x) + 520%(z) - O(z) + = = 0.
Proof From Identity 1.1 E(z) = [1 — 2z0(z)]™!, which when substituted
into Identity 1.2 gives the result after some manipulation.O

Lemma 2
4z2E*(z) — E*(z) +1 =0.

Proof From Identity 1.1 O(z) = [E(z)—1]/2zE(z), which when substituted
into Identity 1.2 gives the result after some manipulation.O

Remark 1 Being a quadratic in E%(z) the equation can be solved, and
so Lemma, 2 checked, to give E2(z) = [1 £+/1 — 1622 | /8z>—with reference
to the definition of E(z) (3), it is the negative sign in front of the radical
which is the correct one.

Remark 2 As a point of interest, we note that Identity 1.3 is a consequence
of Lemma 2 and Identity 1.2, for consider Lemma 2 which is re-arranged
to read

1 = E%*z)-422F%(2)
E%(z)[1 - 422 E%(z)]
= E%(z)[1 - 2zE(2)][1 + 2zE(z))

= @[1 - :cO(z)J[l —2zE(z)][1 + 2zE(z)] (by Identity 1.2)
= [1-zO0(z)]1 - 2zE(z)] (%ﬂ + 2E(:c)0(x))

= [1-zO0(x)][1 - 2zE(z)][E?(z) + O*(z) + 2E(z)O(x)] (ditto)
= [1-20()|l1 - 2E@)|E() + O@)P

= [1-20(z)]1 - 2zE(x)]G?(z). 4)

Remark 3 A further identity, analogous to Identity 1.3, can be derived in a
similar fashion:

Lemma 3

1 + 22E(2)][1 - 20(z))G*(~2) = 1.
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This is also immediate from Identity 1.3 itself, on replacing = with —z and
appealing to the parity of E(z), O(z).

We now detail our proof of Identity 2.

Proof of Identity 2
By definition (3),

[e o]
E'@) = 3 cwowa®™™)

n,n'=0

> S(s)z, (P1)

8=0

where

S(s) = Z C2nCon’- (P2)

2(n+n')=s

We initially re-write S(s) as
S(8) = ) canCs2n
13 1, _1_1,
= C3 4F3 (43 41’ 213 32 2 | 1 (P3)
217257

when converted to hypergeometric form (the sum upper limit [}s] in the
first line is the greatest integer not exceeding 1s). The s even/odd cases
are now dealt with separately. Whilst from (P2) clearly S(s) = 0 for s
odd, we show this formally—for both completeness and interest—as part
of the proof. Note that (u),, will denote the usual rising factorial function
v(u+1)(u+2)---(u+m-—1).

Case A: Suppose s (odd) = 1,3,5,... In 1927 Whipple published a trans-
formation [3, (6.1), p.264] (for convenience, we actually use the version in
Bailey [4, (4.6.1), p.32])

a,b,c,—m
F bt B | 1 —_
4 3(n—b,n-c,n+m‘ )
(")m(n—b"c)m F %K’_%a’%"'%"’_%a’b’c’_m ll (P4)
(k—D)m(k—Om > K—a, 3K 5+36b+c—Kk+1-m
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valid for integer m > 0 (both sides are unity form = 0). If weset £ = 1—1s,
a=-1s,b=1c=3 andm=§+4s=1,2,3,...,it contracts to

1 1 3 1 1
—$H Tz 38
“F3( t-isi-ged 1)
(1- 8)§+§,(—13)1+%8 13 _1_ 1,4
2 F. 44 2 2 1
G- 19343 (E - 39)342s - \b—}s1-1s
(1-39)343(=38)3+30 (5~ 19)3436(—% — 15)3+4s
(% - %8)14.13(4 28)%+%, (2 48)%4_%3(—- - —s)%_'_%s
=0 (P5)

on first applying the well known Pfaff-Saalschiitz identity (see, for example,
[4, (2.2.1), p.9]) to evaluate the 3 F2(1) series which appears, and then noting

that
0o = (1-1 , 5=1,5,9,13,...,
4 4 44+4s
1 1
0 = (-2-2 , s=3,7,11,15,... (P6)
171,
Case B: Suppose s (even) = 0,2,4,..., and set @ = }, b = —38 =
0,-1,-2,...,c=3%,d=—1 - 15 in the 1985 transformation of Gasper [5,

(3.3), p.1065]

a,bed _
45 (1—a+b,1-a+c,1—a+d l l) -
F1-dl(a+b—dI'(a+c—dI'(1+b+c—d)

Ta—-dT(1+b—-dI(1+c—dI'(a+b+c—d)

Qpy...,09
X9Fs(
ﬂly'"’ﬂB

(where oy =b+c—d, a2 =1+ ib+ic—1d, a3 =% -}a+1b+ic—3d,
a4=1—5a+;b+§c—5d as—a+b d ag=a+c— d a7—a,as—b
ap =c, 1 = sb+ic—3d, B = L +Sa+Lb+3e—1d, Bs = Ja+3b+3c—3d,
ﬁ4=1—a+c, ﬂs—l—a+b ﬂs—l—a+b+c—d ﬂ7-—1+c—d
Bs = 1+ b—d), which holds so long as at least one of a,b or c is a negative
integer (or zero). In this instance it gives

1) (P7)
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AN L (8L hdni |
T2 (3T(E + 3)0(3 + 39) Hhi-521+383
3\2
- (2)%8 +Fs %) l.éiil,%"-%s)%)_%s)% 1 (P8)
EIWOIARG W SR P A

(recall the relation (u); = I'(x +t)/T'(u)). Now, Dougall’s formula (see, for
example, [6, (2.3.4.4), p.56]) states that, for integer m > 0,

. a,1+%a,b,c,d,1+2a—b—c—d+m,—m 1
e %a,1+a—b,l+a—c,1+a—d,b+c+d-a—m,1+a+m
1+a-bdm(l+e~-)m(l+a—-dm(l+a-b-c—d),’

whereby, choosinga = §,b=3+3s,c=1%,d=3 and m = 1s, the 7F5(1)
series is evaluated in (P8) which then becomes

11,3 _1_1g
B4 204 2 21 =), (P10)
§- 353138
where s 5 L1 L
(3)35(3)36(3 — 28)15(—39) 1, (P11)

fs) = (%)%a(2)}s(% - %3)%8(_% - -;-8)%8

after a little simplification. In turn,
(%)%a(% - %s)%s(l)iﬁa
= P12
19=5,.0.6- 1, (P12)

noting that (i) (—%s)és e (—1)5"’(1)%8 and, via the result

(@)n = (-1)"(—z —n+ 1), (P13)
that (ii) (%)%0 = (—1)%3(—-} - %3)%,. Moreover, from (P13) again,
11 L (1
(3-7), = (),
(% - %s)% = (-1 G)% , (P14)
whence . 3
_ (5)3s(D36(3) 36 (P15)

f(S) B (%)-}s(%)%s(z)%s '
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To reduce f(s) further still to a desired form, we deploy the identity

GG e o

twice with z = 1,1, n = 1s, yielding

1)s($) 4,
(%)s(z)g-a
(35 +2)4,
(%3 + %)%s

f(s)

(P17)

after re-writing, and Case B is finished; we have, finally,

(28 + 2).},
(38 + 33
combining (P3),(P10),(P17).

S(s) = cs—— 8=0,2,4,..., (P18)

We are now in a position to complete the proof without difficulty. Since,
as demonstrated by Case A, S(s) = 0 for s odd, (P1) is revised to read

E%(2) = i S(2s)x?°. (P19)

§=0
Thus, in order to establish Identity 2 it is required merely to show that
[~ [> ¢}
) S(20)2% = G(4a?) = ) _ cs(42?)" (P20)
§=0 8=0

using (2)—in other words,

S(2s) = 4%c, = s‘-ll-l ( 2: ), s>0. (P21)
From (P18),
(s+2),
S(2s)
( +2)s
1 (s+2), 43)
=0,1,2,..., P22
e (a) =02, em

and (P21) duly follows (we leave this last step as a straightforward algebraic
exercise for the reader).D

171



We end with a couple of remarks.

Remark 4 Equation (P2) gives that S(2s) = Y| _; c2nCy(s—n)- By (P21),
therefore, an equivalent statement of Identity 2 is the binomial coefficient
identity

8

Z C2nC2(s—n) = 4°c,, 8§20, (5)

n=0
a proof of which, via generating functions, is posed as Problem 6.C10(a) in
[1] (see also its solution, where (5), as here, is commented upon in the con-
text of Identity 2). Note that a similar type of result is set as 2(c) (p.44) in
the Exercises section of [7], to which combinatorial and non-combinatorial
proofs have been found (see p.52). Presently the question of a bijective
proof of (5) remains an open one (1, Problem 6.C10(b)], as does that of
Identity 1.3.

Remark 5 At the time of writing (November 2004), it is the August 2004
version of [1] to which reference is made here. In it, Identities 1.1,1.2 are
cited as a private communication in the form of a preprint from Shapiro
(published thereafter as [8]) entitled “Catalan Trigonometry”2 in which a
simple bijective proof of Identity 1.2 is given (a parallel argument is said
to establish Identity 1.1). Other than in [1], to the author’s knowledge
Identity 2 has to date not appeared formally in the literature, although
it can be recovered from a line in [8] using, for example, Identities 1.1,1.2
and Lemma 2 (see the Appendix for details). Other Catalan, and Catalan
related, identities may be seen in [9].

Appendix

Here we recover Identity 2 from Shapiro [8, p.135] who writes that some
algebraic manipulation results in the relation

o(e) = 25) + 22 96 (4a2) (A1)

where g(z) = [E%(z) — O%(z)]/E(z) is a generating function defined (on
p-132) in the context of a Riordan group. Re-arranging,

2G(42?) = 2E(z) + ng—)- - g(z)

250 called because, according to Shapiro [8, p.130], these “[generating function] iden-
tities have a family resemblance [to] the double angle formulas for sine and cosine (or
cosh and sinh)”.
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20 — O2
- 25(e) + 2 _ () 0%
= E(z)+ Olz) + OFZ’((Q%)-
= E(z)+ E(2) + 0%(a) + %2(%) (by Identity 1.2)
= 2F%(z), ' (A2)
thus establishing Identity 2, if
O*z) _
E(z) + O*(z) + Blz) E*(z), (A3)
that is to say, if
E%*(z) + E(:z:)O.2 (z) + O%*(z) = E3(x). (A4)
To show (A4), consider the Lh.s.
E%(z) + E(x)0%(z) + O%(z)
= FE%(z) + [E(z) + 1]0?(z)
2
= E%(z)+[E(z) +1] (%) (by Identity 1.1)
_ 4’B'(2) + [E() + [E(z) — 17
- 42 F2 ()
_ 42?FE%(z) + E3(z) - E*(z) — B(z) +1
- 422 F2(z)
E3z)-E
= _TS;)ET(zgi) (by Lemma 2)
_ E*z)-1
T 4x2E(z)
= E3z), (A5)

as required, using Lemma 2 once more.
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3See http://www.mat.univie.ac.at/~kratt/hyp_hypq /hyp.html#HYP.

173



have refrained from using a fully automated verification of the result (via
an implementation of the now familiar and widely used WZ method of Wilf
and Zeilberger (see, e.g., [10] for information)) in favour of the approach
taken here. Whilst supported by computation the latter is, structurally, in
line with the manner in which the problem would have been tackled before
the advent of symbolic software designed to deal with proofs of binomial
coefficient identities, and in this respect is illuminating in its own way.
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